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Abstract

Recent works on implicit neural representations have made
significant strides. Learning implicit neural surfaces using
volume rendering has gained popularity in multi-view re-
construction. However, accurately recovering fine details is
still challenging, due to the underlying ambiguity of geome-
try and appearance representation. In this paper, we present
TU-NeuS, a volume rendering-based neural implicit surface
reconstruction method capable of recovering fine geometry
details, which extends NeuS by two additional loss functions
targeting enhanced reconstruction quality. First, we encour-
age the rendered surface points from alpha compositing to
have zero signed distance values, alleviating the geometry
bias arising from transforming SDF to density for volume
rendering. Second, we directly locate the zero-level set of
SDF networks and explicitly perform multi-view geometry
optimization by leveraging the sparse geometry from struc-
ture from motion in multi-view stereo. Extensive quantitative
and qualitative results demonstrate that our method recon-
structs high-accuracy surfaces with details, and outperforms
the state of the art.

Introduction

Recent advances in implicit representation and neural ren-
dering NeRF(Mildenhall et al. 2021) has provided a new al-
ternative for geometric modeling and novel view rendering.
However, applying the vanilla NeRF with the soft density
representation to accurately reconstruct the geometry with
fine-grained surface details remain challenging. In contrast,
the neural implicit surface NeuS(Wang et al. 2021) was pro-
posed to apply the signed distance function (SDF) rather
than the soft density to model the object surface within
the NeRF framework explicitly. The object surface is repre-
sented as the zero-level set of the SDF modeled by the multi-
layer perceptron (MLP). NeuS and its variants have shown
that SDF can flexibly represent the scene geometry with ar-
bitrary topologies, and produce significantly better results
in neural surface reconstruction than the vanilla NeRF ap-
proach.

In this paper, we propose a Details recovering Neural im-
plicit Surface reconstruction method named TU-NeuS, with
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two constraints to guide the SDF field-based volume render-
ing and thus improve the reconstruction quality. our method
is able to reconstruct more accurate geometry details than
the state of the art(Mildenhall et al. 2021; Wang et al. 2021).

To get rid of geometric errors of the standard volume ren-
dering approaches, NeuS applies a weight function that is
occlusion-aware and unbiased in the first-order approxima-
tion of SDF. However, we argue that the weight function un-
der a non-linearly distributed SDF field causes bias between
the geometric surface point and rendered surface point from
alpha compositing. To this end, we propose a novel scheme
to mitigate this bias. Specifically, we generate additional dis-
tance maps during the volume rendering, back-project the
distance into 3D points, and penalize their absolute SDF
values predicted by the geometry MLP network. By doing
this, we encourage the consistency between volume render-
ing and the underlying surface.

Meanwhile, we directly locate the zero-level set of SDF
networks and explicitly perform multi-view geometry opti-
mization by leveraging the sparse geometry from structure
from motion (SFM). Directly locating the zero-level set of
SDF networks guarantees that our geometry modeling is un-
biased. This enables our method to focus on true surface op-
timization.

To summarize, the main contributions of our work are as
follows:

* We provide a theoretical analysis of the geometry bias
resulting from the unregularized SDF field in a vol-
ume rendering-based neural implicit surface network,
and propose a novel constraint to regularize this bias.

* Based on our theoretical analysis, we propose to directly
locate the zero-level set of SDF networks and leverage
multi-view geometry constraints to explicitly supervise
the training of SDF networks. In this way, the SDF net-
works are encouraged to focus on true surface optimiza-
tion.

* We evaluate qualitatively and quantitatively the pro-
posed method on DTU (Mescheder et al. 2019) datasets,
and show that it outperforms the state of the art, with
high-accuracy surface reconstruction.
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Figure 1: Overview of TU-NeuS. The modules in bold black font are our work. Previous neural implicit surfaces learning
methods mainly depend on the color loss to implicitly supervise the SDF network. Our proposed TU-NeuS explicitly supervises
the SDF network by introducing the Point loss from sparse 3D points and rendered-surface loss from rendered-surface sampling

points.

Related work
Traditional multi-view 3D reconstruction.

Traditional multi-view 3D reconstruction is the classical
pipeline of surface reconstruction from multi-view im-
ages. Given multi-view input images, traditional multi-
view 3D reconstruction uses structure from motion
(SFM)(Schonberger and Frahm 2016; Snavely, Seitz, and
Szeliski 2006) to extract and match features of neigh-
bor views, and estimate camera parameters and sparse 3D
points. After that, multi-view stereo (MVS)(Furukawa and
Ponce 2009; Xu and Tao 2019) is applied to estimate dense
depth maps for each view, and then all the depth maps are
fused into dense point clouds. With the development of deep
learning, many attempts have been made but the problem
still exists.

Implicit Surface Representation and
Reconstruction.

The success of NeRF(Mildenhall et al. 2021) in represent-
ing a scene by 5D radiance field has recently drawn con-
siderable attention from the community of both computer
vision and computer graphics. Implicit neural representa-
tion leverages physics-based traditional volume rendering
in a differentiable way, enabling photorealistic novel view
synthesis without 3D supervision. While NeRF-like ap-
proaches(Mildenhall et al. 2021; Zhang et al. 2020; Bar-
ron et al. 2022) achieve impressive rendering quality, their
underlying geometry is generally noisy and less favor-
able. To alleviate the above issue, the current implicit sur-
face re- construction methods employ surface indicator
functions, mapping continuous spatial coordinates to occu-
pancy(Mescheder et al. 2019) and SDF (Wang et al. 2021;
Mescheder et al. 2019), where Marching cubes(Lorensen
and Cline 1998) is commonly applied to extract the implicit
surface at any resolution. IDR(Yariv et al. 2020) renders the
color of a ray only on the object surface point, and applies
differentiable ray tracing to back-propagate the gradients
to a local region near the intersection. Vol[SDF(Mescheder
et al. 2019), NeuS(Wang et al. 2021) designs an occlusion-
aware transformation function mapping signed distances to

weights for volume rending, with a learnable parameter to
control the slope of the logistic density function. However,
this mapping function is only unbiased in a regularized SDF
field which is linearly distributed, so we propose a novel
constraint to compensate for the geometry bias. We build our
framework on NeuS(Wang et al. 2021), but we believe our
proposed method could be adapted to any volume rendering-
based neural implicit surface reconstruction work.

Proposed Solution

Using multi-view images of an object, our objective is to re-
construct the surface through neural volume rendering. The
object’s spatial field is represented by a signed distance func-
tion (SDF), and the corresponding surface is obtained from
the zero level set of the SDF. During volume rendering, our
focus is on optimizing the signed distance function. In this
section, we address the inherent bias in color rendering lead-
ing to inconsistencies between rendered colors and implicit
geometry. To resolve this, we introduce explicit SDF opti-
mization for achieving geometry consistency. Figure 1 pro-
vides an overview of our approach.

Bias in color rendering

During volume rendering, a discrepancy arises between the
rendered colors and the object’s geometry, resulting in in-
consistency with the actual surface colors. For an opaque
solid object ) € R3, the opacity can be represented by an
indicator function O(p):
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When observing or capturing colors through cameras, we
perceive the light traveling along the light ray into our
eyes or cameras. Utilizing the inherent optical properties of
opaque solid objects, we approximate that the colors C' in
the image set {I;} correspond to the colors ¢ of the object
intersecting with the light ray v from the respective camera
position o:

C(o,v)= clo+t*y), ()



Here, t* = argmin{tlo +tv =p, p € 0Q, t € (0, o0)}.
The term OS2 denotes the geometric surfaces. This assump-
tion is justified as we can neglect light transmission through
the opaque object. The light intensity experiences a sharp
decay to nearly zero upon passing through the surface of
the opaque object. We express the object’s surface mathe-
matically through the signed distance function. The signed
distance function sdf (p) represents the signed distance be-
tween a spatial point p and the surface Jf2. Thus, the surface
0{2 can be mathematically represented as:

92 = {plsdf (p) = o} . 3)
With neural volume rendering, we estimate the signed dis-

tance function sgif and color field ¢ by Multi-Layer Percep-
tron (MLP) networks Fg and G :

sdf (p) = Fo (p) , 4)
¢ (0’ v, t) =Go (0) v, t) . (5

Thus the estimated colors of the image with camera position
o can be represented as:

+oo
C:/o w (1) & (t)dt, ©)

where ¢t is the depth along the ray that comes from o with
the direction v and w(t) is a weight for the point at ¢. For
simplicity, the notes 0 and v are omitted. To obtain discrete
counterparts of w and ¢, we also sample ¢; discretely along
the ray and use the Riemann sum:

C= Zn:w (t:) & (t:)- @)

Notably, the goal of novel view synthesis is to make an accu-

rate prediction of the colors é, and bend efforts to minimize
the difference between the colors of ground truth images C'

and the prediction C:
C=C=> wt)é(t). (8)
i=1

In surface reconstruction tasks, what we concentrate more is
the surface of the object rather than the color. In this way,
the above formula can be rewritten as:

C =3 wt)e(t) +wt;)e ()

+w () (E(t) — () + D wt)eé(t)
i=j+1 )

= w (t;) & () + sampte + Zw (t:) & (L)

i#]
=w (tj) ¢ (t*) + €sample T Eweight,
where sdf (%) = 0, t; denotes the nearest sample point

from t*, 5qmpie denotes the bias caused by sampling oper-
ation and &€,¢;45¢ denotes the bias caused by weighted sum

operation of volume rendering. With Formula (2), it can be
rewritten as:

w (tj) é (tA*) + Esample + Eweight =cC (t*) 5 (10)
é (tA*) _ c (t*) — Esample — Eweight. (11)
w (t;)

There the total bias between the colors of object surface and
estimated surface is:

Ac=¢(t*) —c(t*)
_ (1 —w (tj))c (t*) — Esample — Eweight (12)
w (t5) '

The relative bias is:

Ac o 1 _ Esample + Eweight (13)

Te(t)  w(ty) w(t;) e (t)

When w (tj) approaches to 1, €,¢ign: approaches to 0 and
dc approaches to €sqmpieC (t*). In this case, the total bias is
only caused by discrete sampling, which is small. So TU-
NeuS adopts a simple solution which is to directly use the
geometry of the object for supervision.

oc

Point cloud Constraint

The SDF network, which estimates the signed distance from
any spatial point to the surface of the object, is the key net-
work that we need to optimize. So we propose an explicit su-
pervision method on the SDF network to ensure its accuracy
directly with points in 3D space. For less extra cost, we use
points generated by structure from motion (SFM) (Schon-
berger and Frahm 2016; Snavely, Seitz, and Szeliski 2006)
to supervise the SDF network.

Since our focus is on opaque objects, certain parts of
these objects may be invisible from the viewpoint of a spe-
cific camera position. Consequently, only a subset of sparse
points is visible for each view. For an image I; captured from
the camera position o;, the visible points P; align with the
feature points X; of I;:

X; =K; [R;|t;] P;, (14)

where K; is the internal calibration matrix, R; is the rota-
tion matrix and ¢; is the translation vector for image ;. The
coordinates of X; and P; are all homogeneous coordinates.
The scale index before X; is omitted for simplicity. Accord-
ing to feature points of each image, we get visible points for
each view and use them to supervise the SDF network while
rendering image from the corresponding view.

While rendering image I; from view V;, we use the SDF
network to estimate SDF values for the visible points P;
of V;. Based on the approximation that the SDF values of
sparse points are zeroes, we propose the point cloud loss:

['point = Z NLZL%AZJC (py) - Sdf (p]) |
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where N; is the number of points in P; and | - | denotes the
L, distance. It is worth noting that the loss we use to su-
pervise the SDF network varies according to the view being
rendered. In this way, the introduced SDF loss is consistent
with the process of color rendering.

With the explicit supervision on the SDF network, our
network could converge faster owing to the use of geome-
try prior. Besides, because the complex geometric structures
with strong textures are the concentrated distribution areas
of the sparse points, our method could capture more metic-
ulous geometries.

Rendered-surface Constraints

To address rendered-surface bias, we propose a novel strat-
egy to regulate the SDF field for volume rendering by miti-
gating the mentioned rendered-surface bias. By considering
a 3D point along a ray, we can render the distance %,cpdered
between the camera center and the average point for volume
rendering through discretizing the volume integration:

n
witi
trendered = m ; (16)

where n is the number of sampling points along a ray, w;
represents the discrete counterpart of the weight in w(t) =
exp (f fot J(u)du) o(t), and t; is the distance from a sam-

pling point to the camera center. Then the volume-rendered
surface point X,enderqd can be formed by back-projection:

Xrendered = O + trenderedV- (17)

Finally, we build a rendered-surface bias loss:

1
‘cbias = @ Z

Xrendered €S

‘f(xrendered”; (18)

where f is the geometry network outputting SDF values,
S is the subset of X,.cpdereq Where ray-surface intersection
has been found. By penalizing the absolute value of SDF
of the rendered surface points, we encourage the geometry
consistency between the implicit SDF field and the radiance
field for volume rendering. Intuitively, this constraint regu-
larizes the SDF distribution for unbiased volume rendering,
and thus leads to more accurate surface reconstruction. It
is also worth noting, that Eikonal loss (Gropp et al. 2020a)
widely used in neural implicit surface reconstruction regu-
larizes the gradient field of SDF by constraining the gradient
norm. Both Eikonal loss and our rendered-surface bias loss
support each other, enhancing the reconstruction quality.

Loss function

During rendering colors from a specific view, our total loss
is:
L= ‘Ccolor + a‘creg + Bﬁpoint + ’Y‘cbia& (19)
L color 18 the difference between the ground truth colors and
the rendered colors:
1
Ecolor = N Z |Cz - Cz| (20)

i=1

And L, .4 is an eikonal term (Gropp et al. 2020b) to regular-
ize the gradients of SDF network:

1 & .
Ereg = N Z (lv*Sdf(pz)l - 1)2' (21)
=1

In our experiments, we choose «, £ and y as 0.3, 1.0 and 0.5
respectively.

Experiments
Experimental setting

Datasets. Following established practices (Yariv et al.
2020; Wang et al. 2021; Yariv et al. 2021), we per-
form surface reconstruction using 15 scans from the DTU
dataset (Aanas et al. 2016) to assess our method. The DTU
dataset comprises objects of diverse categories, exhibiting
variations in appearance and geometries. Each scan includes
49 or 64 images at a resolution of 1200 x 1600, accompa-
nied by camera parameters. Additionally, we conduct tests
on 7 challenging scenes from the low-res set of the Blended-
MVS dataset (Yao et al. 2020). BlendedM VS scenes feature
varying numbers of views and camera parameters, captured
by images at a resolution of 768 x 576, with view counts
ranging from 31 to 143. For evaluation on the DTU dataset,
we assess our reconstructed surfaces using the Chamfer Dis-
tance provided by DTU evaluation metrics (Aanas et al.
2016). Regarding the BlendedMVS dataset, we present vi-
sual representations of the reconstructed surfaces to illus-
trate their effects.

Scan || COLMAP | NeRF | NeuS | Ours
24 0.81 1.90 1.00 | 0.44
37 2.05 1.60 1.37 | 0.79
40 0.73 1.85 093 | 0.35
55 1.22 0.58 0.43 | 0.39
63 1.79 2.28 1.10 | 0.88
65 1.58 1.27 0.65 | 0.58
69 1.02 1.47 0.57 | 0.55
83 3.05 1.67 1.48 | 1.35
97 1.40 2.05 1.09 | 091
105 2.05 1.07 0.83 | 0.76
106 1.00 0.88 0.52 | 040
110 1.32 2.53 1.20 | 0.72
114 0.49 1.06 0.35 | 0.31
118 0.78 1.15 0.49 | 0.39
122 1.17 0.96 0.54 | 0.39

mean 1.36 1.49 0.84 | 0.61

Table 1: Results on DTU scenes. The surfaces produced by
colmap are trimmed with trimming value 7.

Baselines. To better evaluate our method, we compare it
with the-state-of-art learning-based methods and the tradi-
tional reconstruction method, colmap (Schonberger et al.
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Figure 2: Surfaces reconstructed on DTU and BlendedMVS. We use NueS trained with mask supervision and colmap with

trimming value 7.

2016). For learning-based methods, we compare with NeRF,
NeuS and Colmap. For colmap, we use the reconstructed
surface with trim parameter 7 (the best performance).

Comparisons

We compare the reconstruction quality with the Chamfer
distances of our method and baselines on DTU dataset. Ta-
ble 1 shows the quantitative results. Notably, our method
outperforms baselines by a large margin. Specifically, it
outperforms state-of-the-art neural implicit surfaces learn-
ing methods by over 25% and outperforms the traditional
method colmap by 22%. As shown qualitatively in Fig. 2,
our method achieves high-quality surface reconstruction in
both complex thin structures and large smooth regions. For
example, our method can recover abrupt depth changes in
Scan 37 and reconstruct planar structures in Scan 24 and 40.
To test the capability of handling various scenes, we test on 7
challenging scenes of the BlendedMVS dataset. Qualitative
results in Fig. 2 show that our method yields more smooth
and consistent surface quality than other methods.

Ablation Study

To evaluate the effect of our proposed contributions, we con-
duct an ablation study on DTU dataset. NeuS is adopted as
our baseline. Different modules are progressively added to
the baseline to investigate their efficacy. Results are reported
in Table 2. We see that, with rendered-surface constraint ,
Model-A has begun to 0.76. With the proposed the point

| Lootor  Lias  Lpoint | Mean Chamfer

Baseline v 0.84
Model-A N v 0.76
Model-B v v 0.63
TU-NeuS v v v 0.61

Table 2: Ablation study on DTU scenes.

coloud constraint, Model-B can lead to much more perfor-
mance improvement.

Conclusion

We introduce TU-NeuS, a volume rendering-based neural
implicit surface reconstruction method recovering fine-level
geometric details. We analyze the cause for geometry bias
between the SDF field and the volume rendered color, and
propose two novel loss functions to constrain the bias. Ex-
tensive experiments on different datasets show that TU-
NeusS is able to reconstruct high-quality surfaces with fine
details and outperforms the state of the art both qualitatively
and quantitatively.
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