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Abstract
Breast tumor segmentation of ultrasound images provides
valuable information of tumors for early detection and diag-
nosis. However, speckle noise and blurred boundaries present
challenges for breast lesions segmentation, especially for ma-
lignant tumors with irregular shapes. Recent vision trans-
formers have shown promising performance in handling the
variation through global context modeling. Still, they have
not thoroughly solved the problem of ambiguous boundaries
as they ignore the complementary usage of the boundary
knowledge. In this paper, we propose an efficient transformer
based method, Ultrasound-Former, to simultaneously address
speckle noise interference and boundary problems of breast
lesion segmentation. Specifically, we propose two modules:
the Noise Suppression Module (NSM) and the Boundary Re-
finement Module (BRM). The NSM filters noise information
from the coarse-grained feature maps, while the BRM pro-
gressively refines the boundaries of significant lesion objects,
effectively optimizing blurred boundaries. Through extensive
experiments on the breast ultrasound dataset, we demonstrate
that Ultrasound-Former outperforms state-of-the-art methods
for medical image analysis.

Introduction
Breast cancer is a common female disease, which seriously
threatens women’s health and life. Therefore, regular breast
screening and diagnosis are very important to formulate
treatment plans and improve survival rates. Due to the flexi-
bility and convenience of ultrasound imaging, it has become
a convention modality for breast tumors screening. In re-
cent years, many deep learning methods based on ultrasound
images have been proposed for breast lesion segmentation.
However, complex ultrasound patterns continue to pose the
following challenges: 1). Blurred boundaries caused by low
contrast between foreground and background, 2). Segmen-
tation disruption due to speckle noise (as illustrated in Fig-
ure 1).

To further address the issue of blurred boundaries caused
by breast lesions, two optimization strategies: expanding
the receptive field and the attention mechanisms have been
widely used. The dilated convolution operation is a com-
monly used strategy to expand the receptive field. For ex-
ample, (Hu et al. 2019) obtained the large receptive field of
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Figure 1: Challenges of breast ultrasound image segmenta-
tion task. The red line are boundaries of the breast lesions. 1)
severe speckle noise are in BUS images and 2) The bound-
aries of breast tumors are blurred.

breast tumors by using dilated convolutions in deeper net-
work layers. In terms of attention mechanism, (Lee, Park,
and Hwang 2020) proposed a channel attention module to
further improve the performance of U-Net for breast lesions
segmentation. (Yan et al. 2022) proposed an attention en-
hanced U-Net with hybrid dilated convolution, merging di-
lated convolutions with an attention mechanism. Although
progress has been made by these methods, the optimization
paradigm from fine to coarse granularity struggles to cap-
ture prominent object regions in deeper convolutional lay-
ers, where object regions and boundaries stand as two cru-
cial distinguishing features between normal tissue and breast
tumors. Thus, we propose an iteratively enhanced Boundary
Refinement Module (BRM) based on a global map. Our mo-
tivation stems from the fact that, during breast tumor anno-
tation, clinicians first roughly locate a lesion area and then
accurately extract its silhouette mask according to the lo-
cal features. Within the Ultrasound-Former, we predict the
coarse region first and subsequently model the boundaries
implicitly through axial reverse attention. There are three
advantages to this strategy, including better learning abil-
ity, improved generalization capability, and higher training
efficiency.

In ultrasound imaging, speckle noise significantly impacts
segmentation accuracy by propagating across various convo-
lutional layers at different scales. Current methods primarily
leverage the concept of deep supervision to develop refined
networks (Qi, Wu, and Chan 2023), exploring neighbor-
ing decisions to correct potential errors induced by speckle



Table 1: The network’s performance variation when elimi-
nating high-frequency information. We use the mainstream
method UNet (Ronneberger, Fischer, and Brox 2015) to
evaluate the impact of high-frequency on ultrasound image
segmentation on BUSI testset (Al-Dhabyani et al. 2020).
Building upon (Dong, Wang, and Wang 2023), Low-Pass
Filter consists of multiple pooling operations. We integrated
Low-Pass Filter into the last two stages of the UNet archi-
tecture. ↑ denotes higher the better and ↓ denotes lower the
better.

Method mDice↑ mIoU↑ MAE↓
UNet 0.7023 0.6073 0.0509

UNet + Low-Pass Filter 0.7546(+5.23) 0.6579(+5.06) 0.0421(-0.88)

noise. However, we propose addressing noise influence from
a more fundamental perspective by introducing ”frequency.”
In an intriguing experiment, we examined the network’s per-
formance variation when eliminating high-frequency infor-
mation (detail and noise) in deeper layers. As shown in Ta-
ble 1, we observed a substantial improvement in model per-
formance when the network included only low-pass oper-
ators (solely containing low-frequency information), indi-
cating that speckle noise within high-frequency information
disrupts spatial consistency. To address this phenomenon,
we introduce a Noise Suppression Module, decoupling high
and low-frequency information in feature maps and denois-
ing the high-frequency components. While, following prior
work’s principles, Ultrasound-Former also incorporates a
deep supervision mechanism.

Our method, built upon Transformer-based encoder, BRM
and NSM modules for breast lesions segmentation in ul-
trasound image segmentation, dubbed Ultrasound-Former,
is elucidated in Figure 2. Its efficacy is validated through
extensive experiments on the breast ultrasound dataset and
results hightlight significantly improvement over existing
methods. Our contributions include:

• We present a novel breast lesions segmentation frame-
work, termed Ultrasound-Former. Unlike existing CNN-
based methods, we adopt the pyramid vision transformer
as an encoder to extract more robust features.

• To support our framework, we introduce two sim-
ple modules. Specifically, NSM is utilized to suppress
speckle noise within high-frequency information, while
BRM performs boundary refinement based on coarse re-
gions.

• Comparative experiments juxtaposed with leading-edge
medical image segmentation models demonstrate the su-
perior efficacy of our method on the breast ultrasound
dataset.

Related Work
Ultrasonic image segmentation
The powerful nonlinear learning ability makes full convolu-
tion network (FCN) and U-Net have achieved great success
in medical images segmentation (Zhou et al. 2018; Huang
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Figure 2: The framework of our proposed Ultrasound-
Former comprises primarily of the Pyramid Vision Trans-
former, Partial Decoder (Fan et al. 2020), Noise Suppression
Module, and Boundary Refinement Module.

et al. 2020). Enlightened by this, many deep learning meth-
ods are proposed to segment breast lesions from ultrasound
images. In 2018, (Almajalid et al. 2018) are the first to sys-
tematically evaluate the impact of different FCN variants
on breast lesions segmentation and achieve segmentation
results that outperform traditional methods. MDF-Net (Qi,
Wu, and Chan 2023) introduces a novel multi-scale dynamic
fusion strategy, employing a two-stage end-to-end architec-
ture to achieve enhanced feature exploration and noise re-
duction. NU-Net (Chen et al. 2022) utilizes sub-networks of
varying depths with shared weights to attain robust repre-
sentations of breast tumors.

Vision Transformers
Since 2017, the Transformer proposed by (Vaswani et al.
2017). This method based on attention mechanism and
completely eliminating convolution has attracted the atten-
tion of scholars. Later, the proposal of Vision Transformer
(ViT) (Dosovitskiy et al. 2020) introduced Transformer into
the computer vision field for the first time, and ViT validated
the feasibility of pure transformer architectures for computer
vision tasks. Although the transformers are originally pro-
posed to explore global dependency, recent studies find that
the transformers also need local communication (Wang et al.
2021; Cao et al. 2022), which can be achieved through the
local window shift or pyramid architecture. As for medical
image segmentation, the effectiveness of vision transform-
ers is verified by TransUNet (Chen et al. 2021) and Trans-
Fuse (Zhang, Liu, and Hu 2021).

The Proposed Method
An overview of Ultrasound-Former is shown in Figure 2.
Upon inputting a ultrasound image, we initially extract four
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Figure 3: Overall architecture of NSM.

levels of feature maps of various scales sequentially utilizing
the Pyramid Vision Transformer (PVT) block (Wang et al.
2021). We input the feature maps from the last three stages
into NSM individually for the suppression of speckle noise,
followed by utilizing parallel partial decoder (Fan et al.
2020) to generate high-level semantic global maps. Lastly,
a set of reverse axial attention mechanisms is employed to
refine the lesion boundaries progressively. Detailed exposi-
tions of NSM and BRM are presented as follows.

Noise Suppression Module
Speckle noise, a complex physical characteristic in ultra-
sound images, often leads to confusion in object localiza-
tion. The frequency representation can be used as a new
paradigm of learning difference between categories, which
can excavate the information ignored by human vision.
To mitigate this, we propose a Noise Suppression Module
(NSM) which consider speckle noise suppression from a fre-
quency perspective, as illustrated in Figure 3.

Low-pass Filter (LPF). Low-frequency components oc-
cupy most of the energy in the absolute image and represent
most of the semantic information. A low-pass filter allows
signals below the cutoff frequency to pass, while signals
above the cutoff frequency are obstructed. Thus, we employ
typical average pooling as a low-pass filter. However, the
cutoff frequencies of different images are different. To this
end, we employ channel split, the feature map is partitioned
into multiple groups and control different kernels and strides
in multigroups to generate low-pass filters. For m-th group,
we have:

LPFm (vm) = Up (Γs×s (v
m)) , (1)

where Up (·) represents upsampling and Γs×s denotes the
adaptive average pooling with the output size of s× s.

High-pass Filter (HPF). High-frequency information is
crucial to preserve details in segmentation. As a typical
high-pass operator, convolution can filter out irrelevant low-
frequency redundant components to retain favorable high-
frequency components. The high-frequency components de-
termine the image quality and the cutoff frequency of the
high-pass for each image is different. Similar to LPF, we
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Figure 4: Overall architecture of BRM.

partition the feature map into n groups. For each group, we
use a convolution layer with different kernels to simulate the
cutoff frequencies in different high-pass filters. For the n-th
group, we have:

HPFn (v
n)) = Λk×k (v

n) , (2)

where Λk×k denotes the depthwise convolution layer with
kernel size of k × k. The continuous accumulation of
speckle noise within the internal high frequencies often
yields adverse effects on the extracted high-frequency in-
formation. Therefore, we employ Gaussian Filtering on the
high-frequency features to effectively eliminate noise.

W (x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3)

G(x, y) =

k∑
i=−k

k∑
j=−k

W (i, j) · I(x+ i, y + j), (4)

where G(x, y) represents the value of the Gaussian function
at the spatial coordinates (x, y), σ is the standard deviation
of the Gaussian function, and k stands for the window size
of the Gaussian filter. The final output FNSM is obtained by
summing the denoised high-frequency information with the
low-frequency information:

FNSM = HPFn (v
n) +G(LPFn (v

n)). (5)

Boundary Refinement Module
As discussed above, our global map Sglobal is derived from
the deepest segment of the network, achieved via partial de-
coders, which can only capture a relatively rough location
of the breast lesion, without structural details. To address
this issue, we propose Boundary Refinement Module (BRM)
to progressively mine discriminative breast tumor through
an erasing foreground object manner, as illustrated in Fig-
ure 4. We propose to adaptively learn the reverse attention
in three parallel high-level features. In other words, our ar-
chitecture can sequentially mine complementary regions and
details by erasing the existing estimated lesion regions from
highlevel side-output features, where the existing estima-
tion is up-sampled from the deeper layer. Simultaneously,



Table 2: Quantitative comparison of different methods on BUSI (Al-Dhabyani et al. 2020) to validate our model’s learning
ability. ↑ denotes higher the better and ↓ denotes lower the better. Red indicates the best results and blue represents the second-
best results.

Method All Benign Malignant
mDice↑ mIoU↑ MAE↓ mDice↑ mIoU↑ MAE↓ mDice↑ mIoU↑ MAE↓

UNet (Ronneberger, Fischer, and Brox 2015) 0.6943 0.6033 0.0496 0.7219 0.6362 0.0380 0.6232 0.5183 0.0798
Attention U-Net (Oktay et al. 2018) 0.6934 0.6016 0.0509 0.7247 0.6374 0.0378 0.6125 0.5092 0.0845

UNet++ (Zhou et al. 2018) 0.7023 0.6070 0.0509 0.7212 0.6301 0.0398 0.6538 0.5476 0.0796
UNet3+ (Huang et al. 2020) 0.7055 0.6139 0.0493 0.7358 0.6433 0.0388 0.6487 0.5414 0.0765

PraNet (Fan et al. 2020) 0.7698 0.6847 0.0413 0.7841 0.7037 0.0320 0.7330 0.6272 0.0654
DoubleU-Net (Jha et al. 2020) 0.7735 0.6870 0.0461 0.8016 0.7179 0.0333 0.7010 0.5885 0.0790

UACANet (Kim, Lee, and Kim 2021) 0.7473 0.6650 0.0442 0.7593 0.6773 0.0353 0.7163 0.6089 0.0672
SANet (Wei et al. 2021) 0.7708 0.6842 0.0458 0.7929 0.7074 0.0351 0.7136 0.6065 0.0732

UNext (Valanarasu and Patel 2022) 0.7171 0.6258 0.0436 0.7366 0.6509 0.0332 0.6668 0.5613 0.0702
CaraNet (Lou et al. 2022) 0.7769 0.6968 0.0383 0.7947 0.7199 0.0287 0.7289 0.6267 0.0633
DuAT (Tang et al. 2022) 0.8017 0.7163 0.0406 0.8164 0.7137 0.0314 0.7285 0.6284 0.0667

XBound-Former (Wang et al. 2023) 0.7986 0.7083 0.0419 0.8059 0.7094 0.0322 0.7283 0.6215 0.0670
PVT-CASCADE (Rahman and Marculescu 2023) 0.8118 0.7270 0.0380 0.8374 0.7582 0.0245 0.7456 0.6465 0.0619

Ultrasound-Former (Ours) 0.8183 0.7350 0.0355 0.8375 0.7601 0.0262 0.7686 0.6704 0.0596

we introduce axial attention for further saliency analysis of
higher-level features. This consideration primarily addresses
the complexity of ultrasound images, requiring increased fo-
cus on the object regions.

The axial attention is based on self-attention (Vaswani
et al. 2017) which factorizes 2D attention into two 1D at-
tention along height and width axes:

Attentionrow(·) = softmax

(
QrowK

T
row√

dk

)
Vrow, (6)

Attentioncol(·) = softmax

(
QcolK

T
col√

dk

)
Vcol, (7)

FAxial = Attentioncol(Attentionrow(v)). (8)

The reverse attention weight WReverse is de-facto for salient
object detection in the computer vision community (Fan
et al. 2020; Kim, Lee, and Kim 2021), and can be formu-
lated as:

WReverse = Θ(σ (Up (Sglobal))) , (9)

where P (·) denotes an up-sampling operation, σ(·) is the
Sigmoid function, and Θ(·) is a reverse operation subtract-
ing the input from matrix E, in which all the elements are
1. It is worth noting that the erasing strategy driven by
reverse attention can eventually refine the imprecise and
coarse estimation into an accurate and complete prediction
map. Finally, we obtain the output boundary refinement fea-
tures FBFM by multiplying the axial attention output feature
FAxial by a reverse attention weight WReverse, as below:

FBFM = WReverse × FAxial. (10)

Experiments
Experimental Settings
Datasets and Evaluation protocols. We conduct experi-
ments on the BUSI dataset (Al-Dhabyani et al. 2020). The
dataset contains 780 images acquired by two types of ul-
trasound equipment (LOGIQ E9 ultrasound and LOGIQ E9

Agile ultrasound system) in the Baheya Hospital. The aver-
age image size of these images is 500×500 pixels. For quan-
titative comparison, we report three widely-used metrics in-
cluding the mean Dice coefficient (mDice), mean Intersec-
tion over Union (mIoU), and mean absolute error (MAE).
mDice and mIoU focus on the internal consistency of ob-
jects, while MAE represents the average value of the abso-
lute error between the prediction and ground truth.

Implementation Details. We utilize a pre-trained
PVT (Wang et al. 2021) model on ImageNet (Deng et al.
2009) as the backbone and conduct end-to-end training
employing the AdamW optimizer (Loshchilov and Hutter
2017). The initial learning rate is set to 1e-4 and the weight
decay is adjusted to 1e-4 too. Further, we resize the in-
put images to 352 × 352 with a mini-batch size of 8 for
100 epochs. Given the diverse scales of objects in medi-
cal imaging, a multi-scale training is adopted following pre-
vious work (Dong et al. 2021). To ensure a fair compari-
son, the evaluation results of the comparative models within
this paper are derived using the officially provided open-
source code. All experiments are carried out utilizing Py-
Torch (Paszke et al. 2019) on a singular NVIDIA GeForce
RTX 4070 GPU boasting 12 GB of memory.

Comparison with State-of-the-Art Methods
The quantitative evaluation results on ultrasound images
are presented in Table 2. For breast lesions with indis-
tinct boundaries, Ultrasound-Former achieves consistent
improvements against baseline models under comparable
mDice, mIoU and MAE. The visualization of our method
and comparative methods are shown in Figure 5. Our
method has the best performance in segmenting lesion. For
instance, in the case of malignant tumor (first row, with ser-
rated or lobulated boundary), other methods exhibit signifi-
cant instances of false negatives, while our method addresses
this issue well. Similarly, under blurred boundaries (second
row) and speckle noise (third row) conditions, Ultrasound-
Former exhibited no issues of either missed detections or
false positives.
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Figure 5: Qualitative comparison of different methods on BUSI (Al-Dhabyani et al. 2020). The red curve is the ground-truth
boundary. The green curve is the segmentation results of our method.

Ablation Study

Effectiveness of Different Network Components. In Ta-
ble 3, we employ a Transformer-based encoder combined
with a partial decoder as our baseline. Note that our partial
decoder is only deployed on the high-level features, which
achieve an mDice score of 78.79%. This not only showcases
the effectiveness of Transformer encoder but also highlights
a natural advantage over conventional CNN-based methods.
We further investigate the contribution of the Noise Sup-
pression Module. We observe that adding NSM improves
the baseline performance, increasing the mDice score from
78.79% to 80.31%. These improvements suggest that intro-
ducing NSM component can enable our model to enhance
the quality of global maps. We verify the performance en-
hancement after integrating Boundary Refinement Module.
A noticeable improvement of 1.93% in mDice score com-
pared to the baseline is observed. This substantiates that
BRM enables our model to accurately distinguish breast tu-
mors. Finally, by simultaneously integrating the two primary
components, we achieved a performance boost of 3.04%.
This indicates that the fusion of high-quality coarse-grained
information with refined boundary recovery is crucial and
indispensable for localizing breast lesions.

Quantitative comparison of variants of NSM. As re-
ported in Table 4, when showcasing variations of the NSM
module, we aimed to demonstrate the impact of frequency
information on speckle noise suppression. It’s noteworthy
that retaining only the low-pass filter within the NSM re-
sulted in exceptional performance, surpassing an mDice
score of 81%. However, introducing high-frequency infor-
mation led to performance degradation, indicating that the
cumulative noise error within the high-frequency data im-
paired the model’s performance. Additionally, leveraging
Gaussian filtering on top of the high-frequency filter ef-
fectively mitigated noise errors, preserving valuable high-
frequency information and contributing to a 0.76% perfor-
mance boost.

Table 3: Ablation study on the effectiveness of different
components.

PD NSM RFM mDice(%) mIoU(%)
! 78.79 70.16
! ! 80.31(+1.52) 71.49(+1.33)
! ! 80.72(+1.93) 72.10(+1.94)
! ! ! 81.83(+3.04) 73.50(+3.34)

Table 4: Quantitative comparison of variants of NSM.

LPF HPF(w/o denoise) HPF mDice(%) mIoU(%)
! 81.07 72.34
! ! 80.31(-0.76) 71.49(-0.85)
! ! 81.83(+0.76) 73.50(+1.16)

Conclusion

In this paper, we present an efficient Transformer based
method for breast lesions segmentation in ultrasound im-
ages, named Ultrasound-Former, which utilizes a pyramid
vision transformer backbone as the encoder to explicitly ex-
tract more powerful and robust features. Extensive exper-
iments show that Ultrasound-Former consistently outper-
forms the current cutting-edge models on the BUSI dataset
without any pre-/postprocessing. Specifically, we obtain
the above-mention achievements by introducing two simple
components, i.e., a noise suppression module (NSM) and a
boundary refinement module (BRM), which effectively sup-
press the cumulative high-frequency internal errors caused
by speckle noise and, from a practical perspective, optimize
the boundary refinement process. We hope this research will
stimulate more novel ideas for solving the breast lesion seg-
mentation task in ultrasound images.
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