
Unveiling Spatial Relations in Nested Named Entity Recognition:A CNN-Driven
Approach

BenYuan Chen,30920231154340,AI
Zheng Fang,30920231154343,AI

Jie Hu,36920231153193,AI
XinJie Peng,309J20231154356,AI

Abstract

Named entity recognition (NER) is the task to detect and
classify the entity spans in the text. But as the complexity
of downstream tasks increases, Research on nested named
entity recognition is becoming increasingly popular. Nested
Named Entity Recognition is an extended form of NER. In
nested NER, unlike traditional NER, the boundaries between
entities can contain each other, forming a nested or hierar-
chical structure. Span-based methods have been widely used
to tackle the nested NER. Most of these methods will get a
score matrix, where n means the length of sentence, and each
entry corresponds to a span. However, in previous work, re-
searchers mainly focused on generating this fractional ma-
trix, while ignoring the spatial relationships in the fractional
matrix. The spatial relationship includes the positional rela-
tionship between spans, that is, whether one span overlaps
within, outside, or partially within another span.In this task,
we propose using Convolutional Neural Network (CNN) to
model these spatial relations in the fractional matrix. We hope
to validate the performance of the model in handling nested
named entity recognition tasks on multiple datasets by com-
bining the fractional matrix obtained based on span method
and spatial relationships simulated using CNN.

Introduction
Named Entity Recognition (NER) is a natural language pro-
cessing (NLP) task that focuses on identifying and catego-
rizing named entities within a given text.Named entities are
specific words or phrases that represent real-world objects,
such as people’s names, locations, organizations, dates, nu-
merical values, and more.

Nested Named Entity Recognition (Nested NER) is a
more advanced and complex variant of traditional Named
Entity Recognition (NER) in natural language processing.
‘Nested Entities’ are named entities containing references to
other named entities as in [University of[Tokyo]], in which
both [Tokyo] and [University of Tokyo] are named enti-
ties.Such nested entities are frequent in data sets like ACE
2004, ACE 2005 and GENIA(e.g., 17% of NEs in GENIA
are nested (Finkel and Manning 2009))

Traditionally, solving this task involved primarily using
the sequence labeling paradigm, where a label is assigned

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to each token(Yan et al. 2019).This method isn’t suitable for
nested NER, where tokens can belong to multiple entities.To
address this concern, the span-based approach, which as-
signs labels to individual spans, was introduced(Eberts and
Ulges 2019; Li et al. 2019).

Eberts and Ulges 2019.used a pooling method over to-
ken representations to get the span representation, and then
conducted classification on this span representation.Li et al.
2019.transformed the NER task into a Machine Reading
Comprehension form, they used the entity type as the query,
and asked the model to select the spans that belong to this
entity type.

The spans adjacent to a given span exhibit special rela-
tionships with the central span. Exploiting these spatial cor-
relations could prove advantageous.In this paper, we use the
Biaffine decoder(Dozat and Manning 2016) to obtain a 3D
feature matrix where each entry represents a span. We then
treat this feature matrix as an image and use convolutional
neural network (CNN) to model the local interactions be-
tween spans.

We evaluated our method on three nested NER bench-
marks (ACE 2004, ACE 2005, GENIA) and compared this
simple method with recently proposed methods. Despite the
simplicity of our method, it yielded relatively large perfor-
mance gains in three widely used nested NER datasets.We
believe that this way of viewing the spann feature matrix as
an image will provide some insight into future exploration
of span-based methods for nested NER tasks.

related work
Currently, there are generally four frameworks used for
nested named entity recognition: sequence labeling frame-
work, using hypergraph for efficient span representation,
sequence-to-sequence framework, and span classification
methods. However, each of these four methods has its own
shortcomings:

Sequence Labeling Framework(Wang and Lu 2018): In
nested named entity recognition, a token can contain multi-
ple entities, which necessitates the use of Cartesian products
in entity labels. However, Cartesian labels are inevitably af-
fected by the long tail problem.

Using hypergraph for Efficient Span Representa-
tion(Wang and Lu 2018): Using hypergraph is an innovative
approach in natural language processing that aids in

Figure 1: The proposed method in this paper. Use several
blocks of CNN to model the spatial correlations between
neighbor spans.

handling complex entity nesting structures and span rela-
tionships more flexibly and efficiently. In nested named
entity recognition, hypergraph provide a more powerful
representation to better capture and manage the complex
relationships between spans. However, this method’s
decoding process is overly complex.

Sequence-to-Sequence Framework: Seq2Seq models are
widely applied to various natural language processing and
sequence generation tasks. A Seq2Seq model consists of two
main components: an encoder and a decoder. It is used for
generating entity sequences. Entity sequences can be either
entity pointer sequences or entity text sequences. However,
Seq2Seq methods require substantial decoding time.

Span Classification(Yu, Bohnet, and Poesio 2020): Span
classification is a natural language processing task that in-
volves identifying and classifying specific spans or segments
in text. This method enumerates all possible spans in a sen-
tence and uses pooling techniques to obtain span repre-
sentations. Span methods are easily parallelizable and have
a straightforward decoding process, making them widely
adopted. However, prior work has overlooked the relation-
ships between adjacent spans.

Proposed Method
In this section, we first introduce the nested NER task, then
describe how to get the feature matrix.After that, we present
the CNN module to model the spatial correlation on the fea-
ture matrix. At general framework of our proposed method
can be viewed in Figure 1.

Nested NER Task
In many practical applications, it is common that the named
entities have a nested structure(Strassel and Mitchell 2003;

Figure 2: Nested NER Task

Finkel and Manning 2009). Specifically, an entity could con-
tain other entities or be a part of other entities, which breaks
the second assumption mentioned above. As the example
shown in Figure 2, the outer entity “the Oakland Zoo” con-
tains an inner entity, i.e., “Oakland”. In the AnCora corpus
of Spanish and Catalan newspaper text, nearly half of en-
tities are embedded within another entity. Named entities
with the nested structure are also prevalent in specific do-
mains. For example, approximately 17% of entities in the
GENIA corpus, a biomedical domain corpus labeled with
entity categories such as protein and DNA, are embedded.
Consequently, the NER task is required for further recog-
nizing named entities with nested structures (i.e., both outer
entities and inner entities), rather than the longest outer en-
tity only. The inherent complexity of nested entities makes
the nested NER a more challenging task than traditional flat
NER. Given an input sentence X = [x1, x2, ..., xn] with n
tokens, the nested NER task aims to extract all entities in X .
Each entity can be expressed as a tuple (si, ei, ti). si, ei are
the start and end indices of the entity. ti ∈ {1, ..., |T |} is its
entity type, and |T | is the number of entity types. As the task
name suggests, the entities may overlap with each other, but
different entities are not allowed to have crossing bound-
aries. For a sentence with n tokens, there are n(n + 1)/2
valid spans.

Span-based Method for Nested NER
We have transformed this task into a span classification task,
where the model assigns an entity label to each valid span.
The method begins by using an encoder to encode the input
sentence, expressed as:

H = Encoder(X)

Here, H ∈ Rn×d, and d is the size of the hidden layer.
Various pre-trained models, such as BERT, are commonly
utilized as the encoder. For words tokenized into multiple
pieces, we employ max-pooling to aggregate their hidden
states.

After obtaining the contextualized embeddings of tokens,
previous approaches typically concatenate them with static
word embeddings and character embeddings. The combined
embedding is then input into a BiLSTM layer. To simplify

the model, we avoid using additional embeddings or the
BiLSTM layer.

Next, we use a multi-head biaffine decoder to obtain the
score matrix as follows:

Hs = LeakyReLU(HWs),

He = LeakyReLU(HWe),

R = MHBiaffine(Hs, He)

Here, Ws,We ∈ Rd×h, where h is the size of the hidden
layer, and MHBiaffine(·, ·) represents the multi-head bi-
affine decoder. The resulting matrix R ∈ Rn×n×r, where r
is the size of the features.

The input of the Multi-head Biaffine decoder consists
of two matrices Hs, He ∈ Rn×h, and the output is R ∈
Rn×n×r. The formulation of the Multi-head Biaffine de-
coder is as follows:

S1[i, j] = (Hs[i]⊕He[j]⊕ wi−j)W

Here, ⊕ denotes vector concatenation, wi−j ∈ Rc is the
span length embedding for length i−j, and W ∈ R(2h+c)×r.
The detailed process of the decoder is as follows:

1. Firstly, Hs and He are split into a series of sub-matrices
Hsk , Hek using a Split operation, where k is the index of the
head. The Split operation equally divides the matrix along
its last dimension, resulting in sub-matrices of dimensions
n× hk.

2. Compute the first part S1, which is obtained by
element-wise multiplication of the sub-matrices at corre-
sponding positions for each head k. Specifically, for each
head k, calculate S(1)2k[i, j] = H(sk)[i] · U · H(ek)[j]

T ,
where U ∈ Rhk×r×hk is a learnable parameter. Concate-
nate the results from all heads to obtain S2, i.e., S2 =
Concat(S(1)2, ..., S(1)2K).

3. The final output R is the sum of S1 and S2, i.e.,
R = S1 + S2. Each element R[i, j] in the matrix R can
be regarded as the feature vector for the span, representing
the span from the j-th to the i-th position.

Each cell (i, j) in the matrix R can be viewed as the fea-
ture vector v ∈ Rr for the span. For the lower triangle of R
(where i > j), the span encompasses words from the j-th to
the i-th position.

CNN on Score Matrix
As illustrated in Figure 3, cells exhibit relationships with
those in their vicinity. Consequently, we propose the uti-
lization of Convolutional Neural Networks (CNN) to model
these interactions. The following CNN block is iteratively
applied in our model:

R0 = Conv2d(R),

R00 = GeLU(LayerNorm(R0 +R)),

Here, Conv2d, LayerNorm, and GeLU represent 2D
convolution, layer normalization (Ba, Kiros, and Hinton
2016), and the GeLU activation function(Hendrycks and
Gimpel 2023), respectively. Layer normalization is per-
formed in the feature dimension. It is noteworthy that due
to varying token counts n in sentences, the shapes of their

Figure 3: All valid spans of a sentence. We use the start and
end tokens to pinpoint a span, for instance, “(2-4)” repre-
sents “New York University”. Spans in the two orange dot-
ted squares indicates that the center span can have the special
relationship (different relations are depicted in different col-
ors) with its surrounding spans. For example, the span “New
York” (2-3) is contained by the span “New York University”
(2-4). Therefore, the “(2-3)” span is annotated as “d”.

corresponding R matrices differ. To ensure consistent results
when processing R in batches, the 2D CNN excludes a bias
term, and all paddings in R are zero-filled.

After undergoing several CNN blocks, the resulting R00

is further processed by another 2D CNN module.
In summary, this passage describes the application of

CNN to the score matrix. Initially, the score matrix R un-
dergoes convolutional operations (R0), followed by further
adjustments through layer normalization and the GeLU ac-
tivation function, resulting in R00. This process is repeated
multiple times, and the output is further processed by an-
other 2D CNN module. Such a design aims to capture local
interactions in the score matrix, enhancing the model’s abil-
ity to model relationships.

The Output
We utilize a perceptron to obtain prediction logits as follows:

P = Sigmoid(Wo(R+R00) + b)

Here, Wo ∈ R|T |×r, b ∈ R|T |, and P ∈ Rn×n×|T |.
Subsequently, we employ binary cross-entropy to calcu-

late the loss:

LBCE = −
∑

0≤i,j<n

yij log(Pij)

In contrast to prior approaches that typically only use the
upper triangular part to compute the loss (Yu, Bohnet, and
Poesio 2020; Zhu and Li 2022), we incorporate both upper

ACE2004 ACE2005

Precision Recall F1 score Precision Recall F1 score

W2NER(BERT-large) 87.17 87.70 87.43 85.78 87.81 86.77

SG(RoBERTa-base) 86.70 85.93 86.31 84.37 85.87 85.11

Ours(BERT-large) 87.98 87.50 87.74 86.26 87.56 86.91
Ours without CNN(BERT-large) 86.60 86.48 86.54 84.91 87.39 86.13

Ours(RoBERTa-base) 87.33 87.29 87.31 86.70 88.16 87.42
Ours without CNN(RoBERTa-base) 86.09 86.88 86.48 85.17 88.0 86.56

Table 1: Results for the ACE2004, ACE2005, and Genia datasets. BERT-large or RoBERTa-base in parentheses means the
pre-trained model used as the sentence encoder.

and lower triangles in the loss calculation. The reason is that,
for batch computation, we cannot solely compute the upper
triangle part. Since the lower triangle part has already been
computed, we utilize it for the output as well. The tags in the
score matrix are symmetric, meaning the tag in the (i, j)-th
entry is the same as in the (j, i)-th entry.

During inference, we compute scores in the upper trian-
gular part as:

P̂ij =
Pij + Pji

2

where i ≤ j. Subsequently, we exclusively use this upper
triangular score to obtain the final prediction. The decoding
process generally follows(Yuan et al.).’s method (2020). We
initially prune out non-entity spans (those with scores below
0.5), then sort the remaining spans based on their maximum
entity score. We select spans in accordance with this order,
and if a span’s boundary conflicts with selected spans, it is
ignored.

Experiment
Data Sets
We conduct experiments in the following three widely used
nested NER datasets: ACE2004(Doddington et al. 2004),
ACE2005(Walker and Consortium 2005), Genia(Kim et al.
2003), to comprehensively testify the effectiveness of our
method.

Besides, we choose some other methods for nested
NER as our baselines to be compared, these methods are
W2NER(Li et al. 2022) and SG(Wan et al. 2022). In order to
strictly control variables and ensure rigor, for every method,
we preprocess and split all the data sets in the same man-
ner as suggested(Strassel and Mitchell 2003). For ACE2004,
We divide the data set into three parts: training set, verifica-
tion set, and test set. The number of sentences contained in
each subset is 6297, 742, and 824 respectively. The average
sentence length is 23.52. For ACE2005, we divide the data
set in the same manner, and the number of sentences con-
tained in each subset is 7178, 960, and 1051 respectively,
and the average sentence length is 20.59. For the Genia data
set, these numbers are 15038, 1765, and 1732, and the av-
erage sentence length is 26.47. We replicate each experi-

ment five times and report its average performance. The pre-
processing and tokenization of data for every experiment re-
main the same.

Results
Firstly we conducted an ablation experiment. As shown in
Table 2, we tested two entity recognition tasks in the 3 data
sets mentioned above, flat entity recognition and nested en-
tity recognition. We can see that for both two tasks, the
model with CNN always outperforms the model without
CNN in all test data sets, which shows that the application
of CNN can improve the effect of NER, especially on the
nested NER task where the model using CNN is significantly
better than the model without CNN. Next, we tested the per-
formance of different models in ACE2004 and ACE2005.
For our model proposed, we also tested the performance of
the models with different sentence encoders used, and with
or without CNN. The result shows that our method, with
CNN, outperforms the other two methods on both data sets,
and both BERT-large and RoBERTa-base as the sentence en-
coder achieve good scores. That proves that using CNN to
model the interaction between neighbor spans can be bene-
ficial to the nested NER task.

Our Intuitive Analysis and Explanation
Why CNN helps? Here we will not give rigorous mathe-
matical proofs, but make qualitative analysis and explana-
tions based on intuitive understanding. The usage of CNN
based on a conventional nested NER task shows unexpect-
edly good results in a very, embarrassingly simple way. It
outperforms some other recently proposed baseline methods
which are more complex than ours. In order to understand
this phenomenon, we conducted another ablation experi-
ment, which showed that the improvement effect brought by
CNN is very significant, the recall score of nested named en-
tity recognition can be improved by at least two points. Con-
ventional methods cannot do nested NER task well, largely
because they do not explore the contextual semantic infor-
mation between spans. As we mentioned before, we gener-
ate a score matrix from a multi-head Biaffine decoder. Fo-
cusing on a center element of the score matrix, we notice
that the eight elements that are spatially close to the cen-

FEP FER NEP NER

ACE2004
with CNN 86.9 87.3 88.4 88.8
without CNN 86.3 86.8 89.4 86.6

ACE2005
with CNN 86.2 88.3 91.4 89.0
without CNN 85.2 87.9 91.3 86.2

Genia
with CNN 81.7 79.4 71.7 75.5
without CNN 79.0 80.0 72.7 64.8

Table 2: Ablation experiment results on whether to CNN on
score matrix. This table records the precision and recall for
flat and nested entities in the test set of three datasets. FEP,
FER, NEP and NER denote the flat entity precision, flat en-
tity recall, nested entity precision and nested entity recall,
respectively. Compared with models without CNN, the most
improved metric is bold.

ter element also have a close relationship semantically. In
other words, the spatiality of the score matrix is highly re-
lated to the hierarchical relationship of span semantics. That
is to say, we can exploit the semantic information of spans
through the spatial information of the score matrix. CNN is
a good explorer of spatial information and can discover spa-
tial semantic information of spans, thereby improving the
recognition effect of named entities.

Conclusion
In our project, we use a method for span-based nested NER
tasks, which uses CNN on the score matrix to improve the
model’s performance. It is very simple to apply CNN in a
vanilla span-based NER model, however, experiments on
different data sets and comparisons with some other mod-
els show that our method achieves comparable or better per-
formance than some recently proposed methods. We ana-
lyzed the results and came to the following inferences: A
nested relationship between spans can be regarded as a sort
of spatial relationship. CNN is good at exploiting spatial re-
lationships, hence, CNN can exploit the spatial correlation
between neighbor spans, thereby it can help to find more
nested named entities.

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer Nor-
malization. arXiv:1607.06450.
Doddington, G. R.; Mitchell, A.; Przybocki, M. A.;
Ramshaw, L. A.; Strassel, S. M.; and Weischedel, R. M.
2004. The automatic content extraction (ace) program-tasks,
data, and evaluation. In Lrec, volume 2, 837–840. Lisbon.
Dozat, T.; and Manning, C. D. 2016. Deep biaffine at-
tention for neural dependency parsing. arXiv preprint
arXiv:1611.01734.
Eberts, M.; and Ulges, A. 2019. Span-based joint entity
and relation extraction with transformer pre-training. arXiv
preprint arXiv:1909.07755.
Finkel, J. R.; and Manning, C. D. 2009. Nested named entity
recognition. In Proceedings of the 2009 conference on em-
pirical methods in natural language processing, 141–150.
Hendrycks, D.; and Gimpel, K. 2023. Gaussian Error Linear
Units (GELUs). arXiv:1606.08415.
Kim, J.-D.; Ohta, T.; Tateisi, Y.; and Tsujii, J. 2003.
GENIA corpus—a semantically annotated corpus for bio-
textmining. Bioinformatics, 19(suppl 1): i180–i182.
Li, J.; Fei, H.; Liu, J.; Wu, S.; Zhang, M.; Teng, C.; Ji, D.;
and Li, F. 2022. Unified named entity recognition as word-
word relation classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, 10965–
10973.
Li, X.; Feng, J.; Meng, Y.; Han, Q.; Wu, F.; and Li, J. 2019.
A unified MRC framework for named entity recognition.
arXiv preprint arXiv:1910.11476.
Strassel, S.; and Mitchell, A. 2003. Multilingual resources
for entity extraction. In Proceedings of the ACL 2003
workshop on Multilingual and mixed-language named en-
tity recognition, 49–56.
Walker, C.; and Consortium, L. D. 2005. ACE 2005 Mul-
tilingual Training Corpus. LDC corpora. Linguistic Data
Consortium. ISBN 9781585633760.
Wan, J.; Ru, D.; Zhang, W.; and Yu, Y. 2022. Nested named
entity recognition with span-level graphs. In Proceedings
of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 892–903.
Wang, B.; and Lu, W. 2018. Neural Segmental Hypergraphs
for Overlapping Mention Recognition. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing.
Yan, H.; Deng, B.; Li, X.; and Qiu, X. 2019. TENER: adapt-
ing transformer encoder for named entity recognition. arXiv
preprint arXiv:1911.04474.
Yu, J.; Bohnet, B.; and Poesio, M. 2020. Named Entity
Recognition as Dependency Parsing. In Proceedings of the
58th Annual Meeting of the Association for Computational
Linguistics.
Yuan, Z.; Tan, C.; Huang, S.; and Huang, F. ???? Fusing
Heterogeneous Factors with Triaffine Mechanism for Nested
Named Entity Recognition.
Zhu, E.; and Li, J. 2022. Boundary Smoothing for Named
Entity Recognition.

