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Abstract

Point-based interactive image segmentation can ease the bur-
den of mask annotation in applications such as semantic seg-
mentation and image editing. However, fully extracting the
target mask with limited user inputs remains challenging. We
introduce a novel method, Variance-Insensitive and Target-
Preserving Mask Refinement to enhance segmentation qual-
ity with fewer user inputs. Regarding the last segmentation
result as the initial mask, an iterative refinement process is
commonly employed to continually enhance the initial mask.
Nevertheless, conventional techniques suffer from sensitiv-
ity to the variance in the initial mask. To circumvent this
problem, our proposed method incorporates a mask match-
ing algorithm for ensuring consistent inferences from dif-
ferent types of initial masks. We also introduce a target-
aware zooming algorithm to preserve object information dur-
ing downsampling, balancing efficiency and accuracy. Ex-
periments on GrabCut, Berkeley, SBD, and DAVIS datasets
demonstrate our method’s state-of-the-art performance in in-
teractive image segmentation.

Introduction
Interactive Image Segmentation (IIS) serves as a prominent
method for the extraction of binary masks corresponding to
targeted objects, guided by user interaction cues. It holds
substantial significance in diverse applications, ranging from
easing the burden of data annotation in semantic segmen-
tation to acting as essential components in image editing
tasks such as image inpainting (Bertalmio et al. 2000). The
field of IIS recognizes a variety of interaction cues, includ-
ing points (Xu et al. 2016), bounding boxes (Yu et al. 2017),
and scribbles (Lin et al. 2016). Within this study, our focus is
drawn to the utilization of both positive and negative points,
which can be efficiently generated through user clicks, as
demonstrated in Fig. 1. The central challenge in this domain
lies in the generation of accurate object masks with the min-
imum necessary user interaction.

The earliest point guided IIS method built upon convo-
lutional neural networks (CNN) can be traced to (Xu et al.
2016). Subsequent developments have introduced iterative
methods to increase the flexibility of model training. For in-
stance, Mahadevan, Voigtlaender, and Leibe (2018) unveiled
an iterative training framework that autonomously samples
pseudo click points relative to error maps between predicted

Figure 1: We enhance the interactive image segmentation
model’s robustness against initial mask fluctuation using
mask matching regularization (a) and introduce a target-
aware zooming operation (b) for image downsampling.

and ground-truth (GT) segmentations, thereby enhancing the
adaptability of IIS. Similarly, Sofiiuk, Petrov, and Konushin
(2022a) strategized an approach to iteratively refine the pre-
viously generated mask in the current interaction phase. Re-
cent contributions such as (Lin et al. 2022) and (Chen et al.
2022) have expanded upon this foundation by employing a
coarse-to-refine framework. This methodology initially exe-
cutes a preliminary coarse segmentation from a global low-
resolution perspective and subsequently refines the details
from a localized high-resolution viewpoint.

Despite recent advancements, existing methods still ne-
cessitate a moderate number of interaction points to attain
satisfactory segmentation performance. A significant issue



with current techniques, including those developed in (Sofi-
iuk, Petrov, and Konushin 2022a; Lin et al. 2022; Chen et al.
2022), is their sensitivity to the fluctuation of the initial
mask. Throughout each training step, the initial mask is ei-
ther set as fully zero or derived from the model’s previous
prediction. Consequently, models trained in this fashion ex-
hibit a lack of robustness when addressing the fluctuation
of intermediate masks during inference. Another prevailing
challenge is that existing approaches typically rely on con-
ventional downsampling techniques, such as bilinear inter-
polation, to enhance inference efficiency. This process in-
evitably leads to information loss, complicating the discrim-
ination of the target object. As seen in Fig. 2, a state-of-the-
art method FocalClick (Chen et al. 2022) still requires quite
a few clicks to delineate the complete object.

In response to these challenges, we introduce a novel al-
gorithm entitled Variance-Insensitive and Target-preserving
Mask Refinement to ameliorate IIS performance with fewer
interaction points. Centered on a CNN model, our method
predicts the target segmentation map from an image, uti-
lizing accumulated click maps and an initial mask as sup-
plementary inputs, as illustrated in Fig. 1. To fortify the
model against initial mask fluctuation, we propose a mask
matching regularization strategy. This involves generating
two initial mask variants: 1) utilizing the segmentation map
from the first interaction step; 2) synthesizing a mask by
distorting the GT mask, guided by the intersection-over-
union (IoU) metric. Drawing inspiration from the smooth-
ness assumption (Bonaccorso 2017), we establish a regular-
ization term between model predictions for the two initial
mask variants as shown in Fig. 1 (a). This innovation al-
lows greater flexibility in selecting the initial mask, diver-
sifying beyond conventional methods like RITM (Sofiiuk,
Petrov, and Konushin 2022b) and FocalClick (Chen et al.
2022). Furthermore, as shown in Fig. 1 (b), we incorporate
a Target-Aware Image Zooming (TAIZ) operation, inspired
by (Thavamani et al. 2023), to mitigate information loss
during image downsampling. Our TAIZ operation uniquely
leverages the combination of the last segmentation map and
click maps to generate a re-sampling grid that redirects
points outside the salient region to inside it. The efficacy
of our approach is evident in Fig. 2, which illustrates supe-
rior segmentation results with even fewer clicks compared to
FocalClick. Comprehensive experiments conducted on four
public datasets, namely GrabCut (Rother, Kolmogorov, and
Blake 2004), Berkeley (Martin et al. 2001), SBD (Hariharan
et al. 2011), and DAVIS (Perazzi et al. 2016), demonstrate
that our method sets a new benchmark for state-of-the-art
performance in the field of IIS.

Main contributions of this paper are summarized as below.

• We develop an innovative framework for interactive im-
age segmentation, incorporating mask matching regular-
ization. This alleviates the model’s sensitivity to vari-
ances in the initial mask.

• We introduce a target-aware image zooming operation
specifically tailored for interactive object segmentation,
which can maintain the intrinsic characteristics of the tar-
get object during the input image downsampling process.

Figure 2: Illustration of segmentation results from Fo-
calClick and our method across varying click numbers.
Green and red points indicate foreground and background
clicks, respectively.

• We conduct extensive experiments on GrabCut, Berke-
ley, SBD, and DAVIS datasets. The results affirm that our
method significantly surpasses existing methods.

Related Work
Interactive Image Segmentation
Interactive image segmentation (IIS) has been a longstand-
ing challenge in computer vision. The advent of deep learn-
ing in semantic segmentation led to its application in IIS by
Xu et al. (2016), establishing a mainstream approach. Early
deep learning-based IIS methods (Liew et al. 2017; Xu et al.
2016, 2017) overlooked the information contained in previ-
ously generated masks. Mahadevan, Voigtlaender, and Leibe
(2018) recognized the importance of previous segmentation
results as additional inputs, a concept subsequently adopted
by many researchers (Lin et al. 2020; Chen et al. 2022; Wei,
Zhang, and Yong 2023; Zhou et al. 2023).

Hao et al. (2021a) sought to fully utilize generated masks
by implementing multi-stage feature fusion, while others
performed a coarse segmentation and then incorporated ad-
ditional modules to refine the coarse segmentation out-
put (Chen et al. 2021; Hao et al. 2021b). However, such
approaches may substantially increase the inference time.
To accelerate the mask refinement process, Wei, Zhang,
and Yong (2023) attempted to accelerate local refinement
through similarity-driven updates, and Chen et al. (2022) ex-
ploited local refinement by focusing on specific regions.

A persistent challenge in existing methods is the loss of
critical visual information during the downsampling pro-
cess, which is typically employed to ensure efficiency in in-
ference. This loss is particularly detrimental to identifying
intricate aspects of the target object such as boundaries and
small-scale components. To address this challenge, we intro-
duce a new target-aware image zooming (TAIZ) algorithm.
Unlike traditional downsampling methods, TAIZ accentu-
ates the content of the target object, thus offering a more
nuanced understanding of the target object.

Consistency Regularization
In line with the smoothness hypothesis (Bonaccorso 2017), a
model should exhibit robustness against variations in the in-
put, meaning that the introduction of noise to input samples
should not significantly affect the model’s inference. This
principle has inspired many semi-supervised learning tech-
niques e.g. (Xie et al. 2020; Sajjadi, Javanmardi, and Tas-



dizen 2016), which leverage a prediction consistency regu-
larization to explore unlabeled samples. It also has impor-
tant implications for interactive image segmentation meth-
ods, where the previously generated mask is often utilized
as the initial mask for refinement in subsequent interaction
steps (Sofiiuk, Petrov, and Konushin 2022a; Sofiiuk et al.
2020). However, such methods may become sensitive to
changes in the initial mask during testing. To address this
issue, we propose a mask matching regularization strategy
that enhances model robustness. This is achieved by enforc-
ing the model to generate consistent predictions across dif-
ferent variations of the initial mask.

Methodology
This work addresses the problem of point-based interactive
image segmentation. Given an image I ∈ RH×W×3, we
train a convolutional neural network (CNN) model to extract
the target object through T interaction rounds. In addition
to the image and cumulative click points, the inputs include
the segmentation map obtained from the previous interaction
round as the initial mask.

Framework Overview
As shown in Fig. 3, we follow (Chen et al. 2022) to con-
struct the network architecture which is consisting of a
coarse segmentation module and a local refinement mod-
ule. The coarse segmentation module generates a coarse
segmentation map from the input image I , guided by an
initial mask and click maps. Let the initial mask be de-
noted by M0 ∈ RH×W , and the click maps be represented
as a two-dimensional disc map D ∈ RH×W×2, indicat-
ing the positions of positive and negative clicks. The seg-
mentation logit of the coarse segmentation module is de-
fined as O1 ∈ RH×W , where O1 = Fcoarse(I,D,M0) and
Fcoarse(·) denotes the inference function of the coarse seg-
mentation module. The coarse segmentation mapM1 is then
obtained by thresholding O1. The local refinement module
is targeted at improving the segmentation in a specific local
region determined by the maximum connected region in the
difference map between M1 and M0. Concretely, it extracts
patches from I , O1, D, and the penultimate feature map of
the coarse segmentation module, corresponding to the local
region. Then, it regards theses patches as inputs, generating
refined local segmentation logit Ô1 which is subsequently
used for updating the coarse segmentation result.

To fortify the robustness against fluctuations in the ini-
tial mask, we introduce a regularization approach that en-
sures consistency between coarse segmentation results de-
rived from different forms of initial masks. Additionally, we
design a target-aware image zooming algorithm to retain the
target content while downsampling the input image.

Learning with Mask Matching Regularization
In point-based image interactive segmentation, a common
approach is the iterative refinement of the current segmen-
tation map with newly incorporated clicks (Sofiiuk, Petrov,
and Konushin 2022a; Lin et al. 2022). While this iterative

pipeline efficiently leverages previously generated segmen-
tation results, it often lacks robustness against changes in the
initial mask, as it relies on either a blank mask or the exact
segmentation map of the last interaction round during train-
ing.

To mitigate this limitation, we introduce a novel ap-
proach called Mask Matching Regularization (MaskMatch),
in which the coarse segmentation module is trained. Specif-
ically, each training sample comprises four elements: the in-
put image I , initial mask M0, click map D, and ground-
truth segmentation map G. Following (Chen et al. 2022),
new positive (negative) clicks are synthesized from false
negative (false positive) pixels in M0. Next, two temporary
masks M ′0,1 and M ′0,2 are generated according to two dis-
tinct strategies: 1) We input the input image I , blank mask,
and a synthesized click point into the coarse segmentation
module, yielding the first temporary mask M ′0,1. 2) The sec-
ond temporary maskM ′0,2 is generated by perturbingGwith
boundary adjustment and region interference operations as
in (Cheng et al. 2020) continuously, until it reaches the IoU
value of M ′0,1. Details of this IoU-aware mask perturbation
process are provided in the supplementary document.

WithM ′0,1 andM ′0,2, the interactive segmentation process
restarts for K additional steps (where K is randomly cho-
sen from {0, 1, 2, 3}), producing two segmentation masks
M0,1 and M0,2, respectively. Two click maps D1 and D2

can be acquired according to M0,1 and M0,2, respectively.
These elements are then fed into the coarse segmenta-
tion module to generate two segmentation logits O1,1 =
Fcoarse(I,D1,M0,1) and O1,2 = Fcoarse(I,D2,M0,2). A
matching regularization term between O1,1 and O1,2 is then
established:

Lmr = Γ(1(σ(O1,1) > 0.9) ◦ `bce(σ(O1,2), σ(O1,1))),
(1)

where ◦ denotes the element-wise product; 1(·) is the indica-
tor function; σ(·) is the Sigmoid function; `bce(·) represents
the binary cross entropy function; Γ(·) is the element-wise
average function. The optimization process is stabilized by
back-propagating the gradient through O1,2 but not O1,1,
and selecting only high-confidence pixels in O1,1 for the
computation of the regularization term.

The conventional supervised learning objective constrains
predictions on (I,D1,M0,1):

Lsup =Γ(`nf (σ(O1,1), G))

+ Γ(`nf (σ(Ô1,1), Ĝ) + `nf (Ê1,1, Ĝe)),
(2)

where Ô1,1 is the segmentation logit of the refinement mod-
ule; Ĝ is the GT mask of the local view; Ê1,1 is the edge map
predicted by an auxiliary branch in the refinement module
following (Chen et al. 2022), and Ĝe represents the GT of
the edge map; `nf (·) denotes the normalized focal loss func-
tion proposed in (Sofiiuk, Barinova, and Konushin 2019).

The overall loss function is formed by combining these
two terms in Eq. (1) and (2):

L = Lsup + 1(IoU(M0,1, G) > α)× Lmr, (3)

where α (= 0.8) is a constant; IoU(M0,1, G) calculates the
intersection-over-union between M0,1 and G. Here, if the



Figure 3: Workflow of our method during training. The network architecture is composed of a coarse segmentation module and
a refinement module. Two types of initial masks derived from the prediction of the first interaction round and the other mask
perturbed from the GT mask are adopted to construct the mask matching regularization.

Figure 4: Inference process of our method. The target-aware
image zooming is used to enhance the segmentation result.

quality of M0,1 is not high, the mask matching regulariza-
tion would be ignored, sinceO1,1 may not be able to provide
accurate supervision under such circumstance.

Target-Aware Image Zooming
Traditional methods often downsample images using stan-
dard interpolation algorithms to save computation but
compromise essential visual details. Drawing inspiration
from (Thavamani et al. 2023), we introduce Target-Aware
Image Zooming (TAIZ), ensuring the preservation of crucial
object information while reducing image resolution.

We initiate by defining a guidance map S ∈ RH×W to
highlight the object of interest. An inverse mapping func-
tion T : [0, 1]2 → [0, 1]2 is constructed to map a point
(x, y) in the target image to (Tx(x), Ty(y)) in the source
image. Tx(x) and Ty(y) determine the horizontal and ver-

tical coordinates, respectively. Marginalizing S horizontally
and vertically yields vectors Sy ∈ RH and Sx ∈ RW re-
spectively, which are represented as Sy = S · 1W×1 and
Sx = (11×H · S)T. Then, Tx(x) and Ty(y) are calculated as
below:

Tx(x) =

∫
x′
x′Sx(x′)K(x, x′) dx′∫

x′
Sx(x′)K(x, x′) dx′

, (4)

Ty(y) =

∫
y′
y′Sy(y′)K(y, y′) dy′∫

y′
Sy(y′)K(y, y′) dy′

, (5)

where K(x, x′) = e−
(x−x′)2

2σ2 (with σ as the standard devia-
tion) is the Gaussian kernel function. This inverse mapping
function concentrates insignificant points towards salient
ones in the guidance map S. Hence, it can be used to down-
sample images without substantial information loss for the
salient regions implied by S as visualized in Fig. 1 (b).

During training, the above TAIZ operation is used to dis-
tort half of images by regarding the GT mask as the guid-
ance map, optimizing segmentation performance on TAIZ-
processed images. During testing, the input image I , click
mapD, and initial maskM0 are inputted into the interaction
segmentation pipeline, producing a segmentation logit O2.
Bilinear interpolation is used to downsample inputs for effi-
ciency. Applying a threshold of 0 toO2 yields maskM2. The
union of M2 and D serves as the guidance map for creating
the inverse mapping function T (·). Using this function, we
obtain the low-resolution versions of I ,M2 andD as I ′,M ′2,
and D′, respectively. These are then fed into the coarse seg-
mentation module, producing O′2. This is resampled to the
original space using T −1, creating Õ2. The final segmenta-
tion logit, O, is generated by combining O2 and Õ2 with the
following formulation: O = (1 − λt)O2 + λtÕ2, where t
is the interaction round. Considering the quality of guidance



map is not high in early interaction rounds, we set λt to 0
if t < T/2; otherwise, λt = max(T/2, t)/T . The inference
process is depicted in Fig 4.

Experiments
Datasets and Evaluation Metrics
Datasets. The training images are collected from
COCO (Lin et al. 2014) and LVIS (Gupta, Dollar, and
Girshick 2019) datasets, containing 1.04 × 105 images and
1.6 million instance-level masks. Four publicly available
datasets are used for evaluating IIS methods:

• GrabCut(Rother, Kolmogorov, and Blake 2004) con-
tains 50 images with single object masks.

• Berkeley (Martin et al. 2001) contains 96 images with
100 object masks.

• SBD (Hariharan et al. 2011) is comprised of 8,498
training images with 20,172 polygonal masks, and 2,857
validating images with 6,671 instance-level masks. Only
the validating images are used for evaluation.

• DAVIS (Perazzi et al. 2016) contains 345 frames ran-
domly sampled from 50 videos. Each frame is provided
with high-quality masks.

Experimental Setting. We choose segformerB0 or seg-
formerB3 (Xie et al. 2021) as the backbone of the seg-
mentation model. During the training phase, in accordance
with the approach described in (Chen et al. 2022), 30,000
images are randomly selected as the training dataset for
each epoch. Initially, the images are downsampled using ei-
ther bilinear interpolation or TAIZ. Data augmentation is
subsequently applied, encompassing random flipping, re-
sizing with a scale factor constrained within the interval
[0.75, 1.40], and randomized adjustments to brightness, con-
trast, and RGB coloration. σ is set to 11. The network param-
eters are optimized through the Adam algorithm, parameter-
ized with β1 = 0.9 and β2 = 0.999. The model undergoes a
training regimen of 230 epochs, with an initial learning rate
of 5 × 10−4. This learning rate is subsequently attenuated
by a factor of 0.1 at the 190th and 220th epochs. Training is
executed with a batch size of 24, using PyTorch as the im-
plementation framework. All computational experiments are
performed on a system equipped with two NVIDIA GeForce
RTX 3090 GPUs, and the training duration for the proposed
method is approximately 48 hours.
Evaluation Metrics. In assessing IIS methods, we adhere
to the evaluation mechanism delineated in (Sofiiuk, Petrov,
and Konushin 2022a; Chen et al. 2022). The maximum click
number T is set to 20. The performance is quantitatively
gauged through five specific metrics:

1. NoC@IoU: Reflects the average number of clicks neces-
sary to attain the specified IoU threshold.

2. NoF@IoU: Quantifies the number of instances where the
model fails to reach the prescribed IoU threshold within
the maximum allowable number of clicks.

3. IoU@N : Denotes the mean IoU achieved for testing im-
ages after N clicks.

4. BIoU@N : Signifies the mean boundary IoU of the test-
ing images after N clicks.

5. SPC: Represents the mean computational time required
for inference following each click.

These metrics collectively provide a comprehensive and
robust evaluation of the model’s efficacy and efficiency.

Comparison with Other Methods
In our comparative analysis presented in Table 1, our method
is benchmarked against existing techniques, including RIS-
Net (Liew et al. 2017), LD (Li, Chen, and Koltun 2018),
CAG (Majumder and Yao 2019), BRS (Jang and Kim 2019),
FCA (Lin et al. 2020), f-BRS (Sofiiuk et al. 2020), CD-
Net (Chen et al. 2021), RITM (Sofiiuk, Petrov, and Konushin
2022a), EdgeFlow (Hao et al. 2021b), FICI (Wei, Zhang, and
Yong 2023), and FocalClick, using the NoC metrics. Ow-
ing to the incorporation of the mask matching regularization
and TAIZ operation, our proposed algorithm consistently
necessitates fewer clicks to achieve IoU thresholds of 85%
and 90%. This establishes its superiority over contemporary
state-of-the-art methods. Notably, the Berkeley and DAVIS
datasets manifest significant enhancements when processed
by our method. For instance, based on the segformerB3, we
achieve reductions of 0.11 and 0.35 in NoC@85 for Berke-
ley and DAVIS, respectively, relative to the prevailing state-
of-the-art methods. Correspondingly, NoC@90 witnesses
declines of 0.2 and 0.08 on these datasets.

Complementary metrics, encompassing NoF@90,
IoU@5, BIoU@5, and SPC on the Berkeley and DAVIS
datasets, are cataloged in Table 2. Our approach consistently
achieves superior values in segmentation quality metrics like
IoU@5 and BIoU@5, without imposing significant time
overheads. Specifically, compared to the second-ranking
FocalClick, our approach enhances the BIoU@5 metric by
0.007 on DAVIS when using segformerB3 as the backbone.
The SPC for our approach based on segformerB3 is 0.054s
for Berkeley and 0.067s for DAVIS, indicating a compu-
tation time that is congruent with real-time applications.
Fig. 5 offers a visual depiction of the results. Relative to
competitive techniques, our method yields more refined
segmentations with enhanced boundary fidelity.
Robustness against Fluctuation in Initial Mask. To assess
the resilience of our approach to fluctuation in the initial
mask, we introduce perturbations to the GT mask of each
test image ten times, guided by a threshold of 0.8 IoU. The
capability of FocalClick and our method to rectify errors on
these perturbed masks is detailed in Table 3. A visual rep-
resentation comparing the outcomes of FocalClick and our
approach for two initial masks is depicted in Fig. 6. Both
quantitative and qualitative evaluations corroborate that our
technique consistently delivers more stable and refined seg-
mentation results irrespective of mask initialization.

Ablation Study
We conduct ablation studies on the Berkeley (Martin et al.
2001) and DAVIS (Perazzi et al. 2016) datasets, employing
segformerB3 as the backbone for the segmentation model.



Table 1: Performance of interactive image segmenation methods evaluated with NoC metrics on GrabCut, Berkeley, SBD, and
DAVIS. Lower metric values indate better performance, and the best results are indicated by bold digits.

,

Method GrabCut Berkeley SBD DAVIS
NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

RIS-Net - 5.00 - 6.03 - - - -
LD-vgg19 3.20 4.79 - - - - 5.95 9.57
CAG-fcn8s - 3.58 - 5.60 - - - -
BRS-densenet 2.60 3.60 - 5.08 6.59 9.78 5.58 8.24
FCA-resnet101 - 2.24 - 4.23 - - - 7.90
FCA-res2net - 2.08 - 3.92 - - - 7.57
f-BRS-resnet101 2.30 2.78 - 4.57 4.81 7.73 5.04 7.81
CDNet-resnet101 2.42 2.76 - 3.65 4.73 7.66 5.33 6.97
RITM-hrnet18s 1.54 1.68 - 2.6 4.04 6.48 4.7 5.98
RITM-hrnet18 1.42 1.54 - 2.26 3.80 6.06 4.36 5.74
RITM-hrnet32 1.46 1.56 - 2.10 3.59 5.71 4.11 5.34
EdgeFlow-hrnet18 1.60 1.72 - 2.40 - - 4.54 5.77
FICI-hrnet18s 1.50 1.56 - 2.05 3.88 6.24 3.7 5.16
FICI-hrnet18 1.38 1.46 - 1.96 3.63 5.83 3.97 5.16
FocalClick-hrnet18s 1.48 1.62 1.60 2.23 4.43 6.79 3.90 5.23
FocalClick-segformerB0 1.40 1.66 1.59 2.27 4.56 6.86 5.04 5.49
FocalClick-segformerB3 1.44 1.50 1.55 1.92 3.53 5.59 3.61 4.90
Ours-segformerB0 1.42 1.54 1.64 2.18 4.43 6.75 3.81 5.39
Ours-segformerB3 1.38 1.42 1.44 1.72 3.55 5.53 3.26 4.82

Table 2: Performance of IIS methods evaluated with segmentation quality and efficiency metrics on Berkeley and DAVIS
datasets. ‘↓’ (‘↑’) means lower (higher) metric values indicate better performance.

Method Berkeley DAVIS
NoF@90 ↓ IoU@5 ↑ BIoU@5 ↑ SPC ↓ NoF@90 ↓ IoU@5 ↑ BIoU@5 ↑ SPC ↓

f-BRS-B-resnet101 6 0.875 0.73 0.072 77 0.826 0.717 0.102
FCA-Net-resnet101 7 0.923 0.793 0.059 74 0.867 0.771 0.075
CDNet-resnet101 4 0.921 0.803 0.079 60 0.876 0.783 0.108
FICI-hrnet18s 0 0.958 0.883 0.044 51 0.907 0.830 0.069
FocalClick-segformerB0 2 0.957 0.798 0.017 54 0.903 0.724 0.024
FocalClick-segformerB3 0 0.962 0.896 0.037 50 0.912 0.841 0.048
Ours-segformerB0 0 0.961 0.810 0.027 51 0.912 0.748 0.040
Ours-segformerB3 0 0.963 0.897 0.054 50 0.916 0.848 0.067

Table 3: Average performance on correcting initial masks.
,

Method Berkeley DAVIS
NoC@85 NoC@90 NoC@85 NoC@90

FocalClick 1.98 2.50 3.97 5.46
Ours 1.86 2.38 3.82 5.31

Core Component Analysis. Table 4 delineates the out-
comes from diverse configurations of our approach. The
baseline configuration excludes both the MaskMatch and
TAIZ modules. Introducing either the MaskMatch or TAIZ
modules distinctly enhances the NoC metrics on both
datasets. Integrating both modules accentuates this improve-
ment. Specifically, the integration of MaskMatch and TAIZ
reduces the NoC@85 metric by 0.07 and 0.13, respectively,
on the DAVIS dataset. When employed in tandem, the de-
crease in NoC@85 is 0.22 on DAVIS, in comparison to em-
ploying only MaskMatch with standard bilinear interpola-
tion for image downsampling. This substantiates the sup-
plementary benefit of TAIZ over standard bilinear interpola-
tion. Fig. 7 illustrates the segmentation outcomes from two

Table 4: Ablation study for core components of our method.
,

Method Berkeley DAVIS
NoC@85 NoC@90 NoC@85 NoC@90

baseline 1.55 1.92 3.61 4.90
TAIZ 1.53 1.90 3.54 4.90
MaskMatch 1.43 1.84 3.48 4.89
Replace Lmr with Lsup 1.51 1.78 3.49 4.88
Ours 1.44 1.72 3.26 4.82

method variations: one incorporating TAIZ (denoted as w/
TAIZ) and the other excluding it (denoted as w/o TAIZ). Vi-
sual assessments indicate that TAIZ brings a more compre-
hensive target extraction.

Moreover, we try to substitute the matching regulariza-
tion term in Eq. (1) with the supervised learning term from
Eq. (2), denoted by “Replace Lmr with Lsup”. This alter-
ation underperforms compared to our finalized model, un-
derscoring the efficacy of MaskMatch.
Choice of Threshold Value for Activating MaskMatch.
Table 5 analyzes the threshold, α, for MaskMatch activation.
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Figure 5: Qualitative comparisons of CDNet, RITM, FocalClick, and our method.

Figure 6: Comparison of the results obtained from the Fo-
calClick and our method with different initial masks. In the
4th and 6th columns, white, red, and green indicate true pos-
itives (TP), FP, and FN, respectively.

Table 5: Performance of our method using different thresh-
olds to activate the mask matching regularization.

,

Threshold Berkeley DAVIS
NoC@85 NoC@90 NoC@85 NoC@90

0.7 1.74 2.02 3.58 5.00
0.8 1.44 1.72 3.26 4.82
0.9 1.55 1.90 3.49 4.97

We find 0.8 as the optimal value. Lower thresholds may pro-
duce masks far from the GT, while higher ones may limit
training samples in the MaskMatch process.
Comparison of Different Guidance Strategies in TAIZ.
Table 6 assesses three guidance map strategies for the TAIZ
module: 1) using the click map, 2) using the prior mask, and
3) combining both. The third strategy proves most effective,
capturing the target’s comprehensive representation and lo-
cal click details.

Conclusion
In this paper, we introduce a cutting-edge approach termed
Variance-insensitive and Target-preserving Mask Refine-
ment for the point-based interactive image segmentation

Figure 7: Qualitative comparison between method variations
using or not using TAIZ algorithm.

Table 6: Averaged NoC obtained with different choices of
guidance map.

,

Variants Berkeley DAVIS
NoC@85 NoC@90 NoC@85 NoC@90

Prev. Mask 1.38 1.75 3.32 4.88
Points 1.46 1.81 3.34 4.91
Prev. Mask & Points 1.44 1.72 3.26 4.82

task. Our methodology encompasses a mask matching regu-
larization, fortifying consistency in predictions arising from
diverse initial masks. Such regularization substantially alle-
viates the prediction sensitivity to initial mask discrepancies.
To obviate target information dilution during input image
downsampling, we deploy a target-aware image zooming
mechanism, complementing traditional interpolation tech-
niques. Comprehensive evaluations on datasets—GrabCut,
Berkeley, SBD, and DAVIS—confirm our model’s superior-
ity over existing methods.
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