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Abstract

In the field of computer vision, traditional methods mainly
view images as grids or sequences. However, the potential of
representing images as graph structures has not been fully ex-
plored. Compared to traditional representation methods, rep-
resenting images in the form of graphs offers better flexibil-
ity, captures more non-local information, and reduces redun-
dant information. In this paper, we propose a method to rep-
resent graphics as graphs and construct the VGN model for
feature extraction from the graph structure. We first divide
the input image into patches using traditional methods, where
each patch is regarded as a node in the graph. Subsequently,
we train the KNeighborsClassifier to obtain the neighboring
nodes for each node. The VGN network consists of two basic
modules, GPM and FFN. The GPM module is used for infor-
mation aggregation and node update. The FFN module is for
feature mapping, reducing the over-smoothing phenomenon,
and preserving the diversity of node features. We represent
the VGN model using both pyramid and isotropic structures,
demonstrating excellent performance in image classification
and object detection, thereby validating the effectiveness of
our proposed model.

Introduction

Computer vision is a field that studies how to enable com-
puters to understand visual data like humans. It encompasses
tasks such as image classification, object detection, and in-
stance segmentation.With the development of deep learn-
ing, Lecun(LeCun et al. 1998) and others introduced con-
volutional neural networks. Kaiming and others proposed
ResNet(He et al. 2016a), introducing the concept of resid-
ual modules. In recent years, transformers have also been
extensively applied in the computer vision domain, achiev-
ing outstanding results in many tasks. VIT, DETP, and SETR
are among the representative achievements.

In convolutional neural networks, images are represented
as grids in Euclidean space based on pixels. For instance, in
vision transformers, images are split into fixed-size patches
and then linearized into vector sequences. In computer
vision tasks, it’s often necessary to recognize irregularly
shaped complex objects, which might also be occluded. In
such cases, viewing images as grids or sequences lacks flexi-
bility and struggles to capture this irregularity. Representing
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images with a graph structure can better capture non-local
and nonuniform information, reduce redundant information,
and is conducive to learning irregular structures and com-
plex patterns.

We first convolve the input image to obtain patches, with
each patch treated as a node in the graph structure. Subse-
quently, we train a KNeighborsClassifier to obtain the neigh-
boring nodes for each node. After constructing the graph, we
propose a graph-based computer vision model, VGN, which
includes two basic modules: GPM and FFN. The GPM mod-
ule uses Max-Relative GraphConv(Li et al. 2019b) to ag-
gregate node information. Node updates utilize Multi-head
to capture information from multiple subspaces. Consider-
ing that traditional GCNs experience over-smoothing as the
network depth increases, the FFN module uses feature map-
ping and borrows the skip connection structure from ResNet
to alleviate this issue. Based on the VGN model, we con-
struct both pyramid and isotropic structures and conduct
comparative experiments with computer vision models us-
ing both structures. Experimental results show that our pro-
posed model exhibits excellent performance in image clas-
sification and object detection tasks. Since our model com-
bines graph neural networks with computer vision, the lat-
est research results from both fields can be further improved
upon this foundation, promising a bright future.

Related Work

A graph is a fundamental concept in computer science, used
to represent relationships between objects. A graph con-
sists of a set of nodes and edges connecting them. Marco-
Gori(Scarselli et al. 2008) and others published a paper titled
”The Graph Neural Network Model” in 2009, introducing
the concept of graph neural networks for the first time, using
a recursive method to update node information. Influenced
by convolutional neural networks, Thomas Kipf and oth-
ers proposed Graph Convolutional Neural Networks(Kipf
and Welling 2016). Based on this, a series of variations
were developed. For example, Velivckovic(Velickovié et al.
2017) and others introduced the attention mechanism into
the graph structure, proposing Graph Attention Networks
(GATs). Simonovsky(Simonovsky and Komodakis 2017)
and others incorporated edge information into the graph con-
volution process, introducing Edge-Conditioned Convolu-
tions. Graph neural networks can predict missing parts in



knowledge graphs, aiding in the construction of knowledge
graphs. Through graph convolution, patterns and relation-
ships between nodes can be captured, enabling tasks such
as node classification, link prediction, recommendation sys-
tems, and more.

Convolutional neural networks mainly used for process-
ing grid-structured data. They extract local features by slid-
ing through convolutional blocks, eventually learning com-
plex patterns. In recent years, convolutional neural networks
have developed rapidly, with representative works including
ResNet and Nas(Zoph and Le 2016). CNNs in computer vi-
sion can be constructed using a pyramid structure, gradually
reducing the resolution of the image, which better represents
image features at multiple scales and enhances the network’s
ability to recognize objects of different sizes. Moreover, the
self-attention in the Transformer structure can capture long-
distance relationships in images, so it has been applied to
the computer vision field, achieving excellent performance
in various tasks. ViT and DETP are among the representative
achievements. Unlike CNNs, where images are represented
as grids, images in Transformer structures are represented as
sequences.

Proposed Solution

First, we select different datasets based on different com-
puter vision tasks. For classification tasks, we choose
the representative dataset ImageNet ILSVRC 2012(Rus-
sakovsky et al. 2015), which contains 1.2 million train-
ing images, 100,000 test images, and 50,000 validation im-
ages, totaling 1,000 categories. For object detection tasks,
we choose COCO 2017(Tsung-Yi Lin 2014), which includes
118k training images, Sk validation images, and about 41k
unlabeled test images, with a total of 80 categories.

We divided an image with size of H x W x 3 into N
patches. By transforming each patch into a feature vector
X; € RP, we have X = [71,29,...,2y] where D is the
feature dimension and 7 = 1,2,..., N. These features can
be viewed as a set of unordered nodes which are denoted as
V = vy,vs,...,vn. For each node v;, we find its K near-
est neighbors N (v;) and add an edge e;; directed from v;
to v; for all v; N (v;). Then we obtain a graph G = (V&)
where £ denote all the edges. We denote the graph construc-
tion process as G = G(X) in the following. We start from
the features X € RY*P . We construct a graph based on the
features: G = G(X). A graph convolutional layer can ex-
change information between nodes by aggregating features
from its neighbor nodes. Specifically, graph convolution op-
erates as follows:

g/:F(G,W):Update(Aggregate(g,Wagg),Wupdate)(l)

where W44 and W, p4qic are the learnable weights of the
aggregation and update operations, respectively.

We represent images with a graph structure and imple-
ment the GPM and FEN, two basic modules in the VGN
model. Figure 1 is the framework of the proposed VGN
model. GPM chooses Max-Relative of graph convolution
as the benchmark, performs feature mapping before and af-
ter input, and borrows the skip connection structure from

ResNet to alleviate the over-smoothing problem. To com-
pare with convolutional neural networks based on grid rep-
resentation and Transformers based on sequence representa-
tion, we construct pyramid structures and isotropic architec-
tures for VGN, respectively. These two structures also cor-
respond to the mainstream representations of convolutional
neural networks and Transformers in computer vision tasks.
Considering that different tasks have different requirements
for model size, we further subdivide the model based on the
number of model parameters. Then we evaluate the model
on various visual tasks to verify the effectiveness of our pro-
posed model.
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Figure 1: The framework of the proposed VGN model.

Considering that the GPM module is designed from the
graph convolution module, we can refer to various vari-
ants of graph convolution, such as Max-Relative Graph-
Conv, EdgeConv, and choose the most suitable graph con-
volution variant through experiments. Secondly, the neigh-
borsof each node are obtained through the k-Nearest Neigh-
bors algorithm, where k is a manually selected hyperparam-
eter. Therefore, we will select different values for ablation
experiments.

Finally, we will summarize the entire project, analyze the
application prospects of our proposed model, and discuss
where the model can be improved in the future.

Experiments

In this chapter, experiments are carried out to validate the
performance of the ViG models in visual computing tasks
such as image classification and object detection.

Datasets and Experimental Settings Datasets

For image classification, the standard ImageNet ILSVRC
2012 dataset is employed, which contains 1.2 million train-
ing images and 50,000 validation images across 1,000
different classes. The ImageNet dataset’s licensing infor-
mation is available at its official website: serves for ob-
ject detection experiments, featuring 80 categories with
118,000 training images and 5,000 validation images. Li-
censing details for COCO can be found on its website:
https://cocodataset.org/home. In terms of experimental con-
figuration, ViG models use dilated aggregation[30] in their
Grapher modules, with a dilation rate set as [1/4] for the 1-
th layer. The GELU(Hendrycks and Gimpel 2016) function
is the chosen non-linear activation for specific equations.
For ImageNet classification, the training strategy is derived
from the DeiT (Touvron et al. 2020) protocol, and includes a
suite of data augmentation techniques. For object detection



(Pyramid) ViG TiSMB
Epochs 300
Optimizer AdamW (Loshchilov and Hutter 2017)
Batch size 1024
Start learning rate (LR) 2e-3
Learning rate schedule Cosine
Warmup epochs 20
Weight decay 0.05
Label smoothing(Szegedy et al. 2015) 0.1
Stochastic path(Lin et al. 2014) 0.10.10.10.3
Repeated augment(Hoffer et al. 2019) v
RandAugment(Cubuk et al. 2020) v
Mixup prob.(Zhang et al. 2017) 0.8
Cutmix prob.(Yun et al. 2019) 1.0
Random erasing prob.(Zhong et al. 2017) 0.25
Exponential moving average 0.99996

Table 1: Training hyper-parameters for ImageNet

Model | Resolution | Params(M) | FLOPs(B) | Top-1 | Top-5
ViG-Ti | 224x224 7.1 1.3 73.9 92
ViG-S 224x224 22.7 4.5 80.4 95.2
ViG-B | 224x224 86.8 17.7 82.3 95.9
Table 2: Results of ViG on ImageNet
Model Resolution | Params(M) | FLOPs(B) | Top-1 | Top-5
ResNet-50(He et al. 2016b) 224x224 25.6 4.1 81.7 95
BoTNet-T3(Srinivas et al. 2021) 224x224 33.5 7.3 82.1 -
PVT-Small(Wang et al. 2022) 224%x224 24.5 3.8 79.8 -
CvT-13(Wu et al. 2021) 224%x224 20 4.5 81.6 -
Swin-T(Liu et al. 2021) 224x224 29 4.5 81.3 95.5
CycleMLP-B2(Chen et al. 2021) | 224x224 27 3.9 81.6 -
Poolformer-S12(Yu et al. 2021) 224%x224 12 2 77.2 93.5
Pyramid VGN-Ti (ours) 224x224 10.7 1.7 78.2 94.2
Pyramid VGN-S (ours) 224x224 27.3 4.6 82.1 96
Table 3: Results of Pyramid VGN and other pyramid networks on ImageNet
GraphConv Params(M) | FLOPs(B) | Top-1
EdgeConv(Wang et al. 2019) 7.2 24 74.3
GIN(Xu et al. 2018) 7.0 1.3 72.8
GraphSAGE(Hamilton, Ying, and Leskovec 2017) 7.3 1.6 74.0
Max-Relative GraphConv(Li et al. 2019a) 7.1 1.3 73.9

Table 4: ImageNet results of different types of graph convolution. The basic architecture is ViG-Ti

GraphConv | FC in Grapher module | FFN module | FLOPs(B) | FLOPs (B) | Top-1
v X X 5.8 1.4 67
v v X 4.4 1.4 734
v X v 7.7 1.3 73.6
v v v 7.1 1.3 73.9
Table 5: The effects of modules in ViG on ImageNet
K 3.00 | 6.00 | 9.00 | 12.00 | 15.00 | 20.00 | 9to 18
Top-1 | 72.20 | 73.40 | 73.60 | 73.60 | 73.50 | 73.30 | 73.90

Table 6: Top-1 accuracy vs. K on ImageNet



h 1 2

4 6 8

FLOPs / Top-1

1.6B/74.2 | 1.4B/74.0

1.3B/739 | 1.2B/73.7 | 1.2B/73.7

Table 7: Top-1 accuracy vs. h on ImageNet

on COCO, RetinaNet(Lin et al. 2017) and Mask R-CNN(He
et al. 2017) frameworks are employed with Pyramid ViG as
the backbone. Models are trained on NVIDIA 4080 GPUs
using a “1x” schedule, with implementation carried out in
both PyTorch and MindSpore.The details are shown in Ta-
ble 1.

Main Results on ImageNet

Isotropic Vision Graph (ViG) Architecture: The isotropic
design of the ViG maintains consistent feature dimensions
throughout its core processing stages, facilitating scalability
and hardware acceleration compatibility. Such design princi-
ples are frequently applied in the domain of NLP transform-
ers and are increasingly being utilized in vision-based neu-
ral networks like ConvMixer (Tolstikhin et al. 2021), Vision
Transformer (ViT)(Dosovitskiy et al. 2020), and ResMLP. In
Table 2, we list the performance of vig in each image with
better results.

Pyramidal Vision Graph (ViG) Structure: Adopting a
pyramidal shape, the ViG progressively condenses the spa-
tial dimensions of the feature maps as it delves deeper, which
is an effective approach for capturing multi-scale features
and exploiting the inherent scale invariance of images. This
kind of architecture is a hallmark of leading-edge networks
such as the ResNet, Swin Transformer(Liu et al. 2021), and
CycleMLP(Chen et al. 2021). In Table3, we draw a compar-
ison between our Pyramidal VGN models and these well-
known pyramidal frameworks. The results indicate that our
Pyramidal VGN lineup either surpasses or rivals the perfor-
mance of contemporary pyramid-structured networks across
CNNs, MLPs, and transformers. These findings suggest that
the graph neural network framework is not only effective for
image-related tasks but also has the potential to become an
integral element of future computer vision systems.

Evaluating the Variations

Our ablation studies are centered on the ImageNet classifi-
cation task utilizing the isotropic ViG-Ti as our foundational
design.

Graph Convolution Varieties. We explored several
prominent graph convolution techniques, such as Edge-
Conv(Wang et al. 2019), GIN(Xu et al. 2018), Graph-
SAGE(Hamilton, Ying, and Leskovec 2017), and Max-
Relative GraphConv(Li et al. 2019a). The results, shown in
Table 4, reveal that all tested graph convolution variants ex-
ceed the top-1 accuracy of the DeiT-Ti model. This illus-
trates the adaptability of the ViG framework. Notably, Max-
Relative GraphConv delivers the most balanced results in
terms of FLOPs and accuracy. Hence, we’ve made it the
default graph convolution method for the remainder of our
studies.

Impact of ViG Modules. In adapting graph neural net-
works for visual tasks, we’ve integrated FC layers within the
Grapher module and employed FFN blocks for feature trans-
formation. We assessed the influence of these components
through a series of ablation tests. We equalized the FLOPs
across models for a fair comparison by adjusting their fea-
ture dimensions. As delineated in Table 5, solely relying on
graph convolution for image classification yields suboptimal
results. However, incorporating FC and FFN enhances accu-
racy progressively.

Neighbor Count. When constructing the graph, the pa-
rameter K specifies the count of neighboring nodes for ag-
gregation. A low K hampers information flow, while a high
K can cause over-smoothing. We experimented with K val-
ues ranging from 3 to 20 and present our findings in Table
6. The optimal neighbor count for ImageNet classification
appears to be between 9 and 15.

Heads Count. The multi-head update mechanism within
the Grapher module allows for the processing of node fea-
tures across various subspaces. The number of heads, h, gov-
erns the diversity of transformations within these subspaces
and also affects the FLOPs. After testing head counts from 1
to 8, as detailed in Table 7, we found that the impact on both
FLOPs and top-1 ImageNet accuracy is marginal across dif-
ferent h values. Consequently, we have chosen h = 4 as the
standard setting to achieve the best balance between compu-
tational cost and performance.

Assessing ViG in Object Detection

To determine the adaptability of ViG, we extend its appli-
cation to object detection. Utilizing a Pyramid ViG-S ar-
chitecture pre-trained on ImageNet as a foundational com-
ponent, we integrate it within RetinaNet (Lin et al. 2017)
and Mask R-CNN(He et al. 2017) - two well-established de-
tection frameworks. We adhere to the standard ”1x” train-
ing schedule and calculate FLOPs based on an input size
of 1280x800. The outcomes, presented in Table 8, highlight
Pyramid VGN-S outperforming several benchmark back-
bones such as ResNet (He et al. 2016b), CycleMLP(Chen
et al. 2021), and Swin Transformer(Liu et al. 2021) in both
RetinaNet and Mask R-CNN frameworks. These promising
results underscore the robustness and versatility of the ViG
model.

Exploring ViG’s Graph Visualization

To gain insights into ViG’s operational mechanism, we ex-
amine its graph structure by visualizing the links it forms.
Figure 2 outlines the graphs from two sample images at
varying network depths (the Ist and the 12th blocks). In
these illustrations, the center node is marked by a penta-
gram, and nodes sharing the same color represent its first-
order neighbors. We focus on visualizing two center nodes



Backbone RetinaNet 1x
Param FLOPs | mAP AP50 AP75 APS APM APL
ResNet50(He et al. 2016b) 37.7M  2393B | 36.3 55.3 38.6 19.3 40 48.8
CycleMLP-B2(Chen et al. 2021) | 36.5M 230.9B | 40.6 61.4 43.2 22.9 44 .4 54.5
Swin-T(Liu et al. 2021) 38.5M 2448B | 41.5 62.1 442 25.1 449 55.5
Pyramid ViG-S (ours) 36.2M 240.0B | 41.8 63.1 44.7 28.5 45.4 53.4
Backbone Mask R-CNN 1x
Param FLOPs | AP(b) AP50(b) AP75(b) | AP(n) AP50(m) AP75(3)
ResNet50(He et al. 2016b) 442M 260.1B 38 58.6 41.4 34.4 55.1 36.7
CycleMLP-B2(Chen et al. 2021) | 46.5M 249.5B | 42.1 64 45.7 38.9 61.2 41.8
Swin-T(Liu et al. 2021) 47.8M 264.0B | 42.2 64.6 46.2 39.1 61.6 42
Pyramid ViG-S (ours) 45.8M 258.8B | 42.6 65.2 46 394 62.4 41.6

Table 8: Object detection and instance segmentation results on COCO val2017. Our Pyramid VGN is compared with other

backbones on RetinaNet and Mask R-CNN frameworks
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(a)Graph connection in the 1st block(b)Graph connection in the 12th block

Figure 2: Visualization of the constructed graph structure. The pentagram is the center node, and the nodes with the same color

are its neighbors in the graph.

to avoid clutter from displaying all connections. Initial ob-
servations suggest that the ViG model is adept at selecting
nodes related to content as its neighbors. At the initial stages,
neighboring nodes are chosen based on superficial attributes
like color and texture. As the network goes deeper, the con-
nections between the center node and its neighbors become
more semantically aligned, often within the same category.
This ability of the ViG to progressively form associations
between nodes based on content and semantic characteris-
tics contributes significantly to its object recognition capa-
bilities.

Conclusion

In this study, we explore algorithms such as VIG, which uses
graph data structures to represent images, and apply graph

neural networks (GNNG5) to a variety of visual tasks. By seg-
menting an image into patches and treating each patch as a
node, we are able to construct a graph that more accurately
captures the intricate irregular shapes of real-world objects.
However, the direct use of graph convolution on such image-
induced graphs tends to create an over-smoothing problem,
leading to suboptimal performance. To address this issue, the
algorithm incorporates enhanced feature transformations in
each node to promote rich diversity of information. With this
graph-based image representation and an improved graph
processing unit, we use the Visual GNN (ViG) framework
in both isotropic and pyramidal formats. The benefits of
ViG’s architecture have been clearly demonstrated through
rigorous testing on image classification and object detection
benchmarks.



References

Chen, S.; Xie, E.; Ge, C.; Liang, D.; and Luo, P. 2021. Cy-
cleMLP: A MLP-like Architecture for Dense Prediction.

Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. 2020. Ran-
dAugment: Practical Automated Data Augmentation with a
Reduced Search Space. In Neural Information Processing
Systems.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.;
and Houlsby, N. 2020. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale.

Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs.

He, K.; Gkioxari, G.; Dollar, P.; and Girshick, R. 2017. Mask
R-CNN. [EEE Transactions on Pattern Analysis Machine
Intelligence.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep resid-
val learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Deep Resid-
ual Learning for Image Recognition. /EEE.

Hendrycks, D.; and Gimpel, K. 2016. Gaussian Error Linear
Units (GELUs).

Hoffer, E.; Ben-Nun, T.; Hubara, I.; Giladi, N.; Hoefler, T.;
and Soudry, D. 2019. Augment your batch: better training
with larger batches.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haftner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278-2324.

Li, G.; Mueller, M.; Thabet, A.; and Ghanem, B. 2019a.
DeepGCNs: Can GCNs Go as Deep as CNNs?

Li, G.; Muller, M.; Thabet, A.; and Ghanem, B. 2019b.
Deepgcens: Can gens go as deep as cnns? In Proceedings of

the IEEE/CVF international conference on computer vision,
9267-9276.

Lin, T. Y.; Goyal, P; Girshick, R.; He, K.; and Dollér, P.
2017. Focal Loss for Dense Object Detection. IEEE Trans-
actions on Pattern Analysis Machine Intelligence, PP(99):
2999-3007.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollér, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part V 13, 740—
755. Springer.

Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.;
and Guo, B. 2021. Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows.

Loshchilov, I.; and Hutter, F. 2017. Decoupled Weight De-
cay Regularization.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-

lenge. International journal of computer vision, 115: 211—
252.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE transactions on neural networks, 20(1): 61-80.
Simonovsky, M.; and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3693-3702.

Srinivas, A.; Lin, T. Y.; Parmar, N.; Shlens, J.; and Vaswani,
A.2021. Bottleneck Transformers for Visual Recognition.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2015. Rethinking the Inception Architecture for Com-
puter Vision.

Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; and
Dosovitskiy, A. 2021. MLP-Mixer: An all-MLP Architec-
ture for Vision.

Touvron, H.; Cord, M.; Douze, M.; Massa, F.; and Jégou, H.
2020. Training data-efficient image transformers distillation
through attention.

Tsung-Yi Lin, S. J. B.L. D. B.R.B.G.J. H. . C. L. Z,,
Michael Maire. 2014. Microsoft COCO: Common Objects
in Context. CoRR, abs/1405.0312.

Veli¢kovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.

Wang, W.; Xie, E.; Li, X.; Fan, D. P,; Song, K.; Liang, D.;
Lu, T.; Luo, P.; and Shao, L. 2022. PVT v2: Improved base-
lines with Pyramid Vision Transformer. :, 8(3): 10.

Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic Graph CNN for Learn-
ing on Point Clouds. Association for Computing Machinery
(ACM), (5).

Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.;
and Zhang, L. 2021. CvT: Introducing Convolutions to Vi-
sion Transformers.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How
Powerful are Graph Neural Networks?

Yu, W.; Luo, M.; Zhou, P; Si, C.; Zhou, Y.; Wang, X.; Feng,
J.; and Yan, S. 2021. MetaFormer is Actually What You
Need for Vision.

Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo,
Y. 2019. CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond Empirical Risk Minimization.
Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; and Yang, Y. 2017.
Random Erasing Data Augmentation. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(7).

Zoph, B.; and Le, Q. V. 2016. Neural architec-
ture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.



