
When Heterogeneous Federated Learning Meets Noisy Label

Yijie Liu*AI, Shu Chen*AI, Yizhou Chen*AI, Hezhao Liu*Info, Shanshan Yan*AI,
Xiamen University, Xiamen 361005, China

{23020231154211, 23020231154170, 36920231153184, 23020231154209, 36920231153252}@stu.xmu.edu.cn

Abstract

Federated learning has gained popularity for distributed
learning without aggregating sensitive data from clients. But
the distributed and isolated nature of data isolation may be
complicated by data quality, making it more vulnerable to
noisy labels. Meanwhile, each client may independently de-
sign its own model based on its hardware conditions. We at-
tempt to study a challenging and trustworthy federated learn-
ing framework in the next to months during the Deep Learn-
ing course project to simultaneously handle label-noise and
model-heterogeneity. (1) For the aggregation between het-
erogeneous models, we plan to align the models feedback
by utilizing public data (such as CIFAR-100), which does
not require additional shared global models for collabora-
tion. (2) To tackle internal noise, we design a noise-resistant
loss which combines CE loss and RCE loss to reduce the im-
pact. (3) To tackle the noise from other participants, propose
a new weighting approach to reduce the impact from noisy
clients during federated communication. We conduct exper-
iments on CIFAR-10 and CIFAR-100, and the results show
that our method reduces the impact of noise and improves
classification accuracy in the setting of model-heterogeneous
federated learning.

Introduction
Local clients such as mobile devices or whole organizations
generally have limited private data and limited generalizabil-
ity. However, due to the existence of data silos and data pri-
vacy, we cannot use traditional centralized learning in prac-
tical applications (Kairouz et al. 2021). To address these
challenges, Federated Learning (FL) has been proposed by
McMahan et al. (McMahan et al. 2017). Federated learn-
ing is a distributed machine learning framework that enables
multiple clients to collaboratively train models with decen-
tralized data. The clients never share private data with server
ensuring basic privacy. Recently, the widely used federated
learning algorithms, e.g., FedAvg (McMahan et al. 2017)
and FedProx (Li et al. 2020), are based on averaging the
model parameters of the participating clients. Most of these
federated learning methods are developed based on the as-
sumption that participating client models have the same neu-
ral architecture.
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Figure 1: Illustration of federated learning with noisy and
heterogeneous clients, where clients have different local
models and noisy datasets with different noise.

However, In real-world scenarios, due to the differences
in the personalized requirements, each client might expect to
design its own model independently (Shen et al. 2020; Sun
and Lyu 2020; He, Annavaram, and Avestimehr 2020), re-
sulting in the model heterogeneous federated learning prob-
lem, as illustrated in Fig.1. Therefore, to perform federated
learning with heterogeneous models, a number of heteroge-
neous federated learning methods have been proposed (Li
and Wang 2019; Lin et al. 2020; Liang et al. 2020). FedMD
(Li and Wang 2019) is a framework based on knowledge
distillation, which is implemented through the class scores
by client models on the public dataset. FedDF (Lin et al.
2020) leverage unlabeled data to perform ensemble distilla-
tion for each different model architecture. These strategies
mainly rely on a unified global consensus or shared models.
However, learning a global consensus has a major limita-
tion in that the clients cannot individually adjust their learn-
ing direction to accommodate the differences among clients.
Therefore, how to perform federated learning with hetero-
geneous clients without relying on a global consensus or
shared models is challenging.

In addition, when the clients contain inevitable noisy sam-
ples, existing federated learning methods cannot eliminate
the negative effect caused by label noise, suffering from a
significant performance drop (Tam et al. 2021). Generally,



in practical applications, the label noise is caused by the fol-
lowing two aspects: 1) Due to the limitation and scarcity of
human expertise, the quality of labeled data will be affected
by human subjective factors, thus inevitably results in some
wrong annotation. 2) In the federated learning framework,
considering the user fairness issue, there may be some par-
ticipants in the system who want to learn from the global
model, but do not want to provide useful information. There-
fore, some users are reluctant to share their real informa-
tion with other users and deliberately generate some wrong
labels. Under the federated learning framework, we expect
that each class of samples will be learned sufficiently while
avoiding overfitting to noisy samples. Therefore, how to re-
duce the negative impact of the internal label noise on the
local model convergence during the local update phase is an
important issue.

Furthermore, the above mentioned two problems lead to
a new issue, i.e., how to reduce the negative and noisy in-
fluence from other clients while collaborative learning in the
federated learning framework. Due to model heterogeneity,
the participating clients will have different decision bound-
aries and varying noisy patterns. As a result, besides local
noise, we also need to pay attention to the noise from other
clients, and then it is crucial to reduce the contribution of
noisy clients in the whole federated system.

In this report, we provide the framework for the problem
with noisy and heterogeneous clients: 1) Utilizing the public
dataset CIFAR-10 to align the output distributions in hetero-
geneous model architecture. We update the models by the
feedback on public dataset rather than upload local mod-
els to handle the model-heterogeneous problem. 2) Intro-
ducing Reverse cross-entropy (RCE) loss combinating with
cross-entropy (CE) loss to reduce overfitting to the noise. 3)
Proposing a new weighting approach to reduce the impact
from noisy clients during federated communation. We first
quantifies the label quality among clients, and then align the
client weight adaptively.

Related work
Federated Learning
The concept of federated learning was first proposed in 2017
by McMahan et al. (McMahan et al. 2017). It is a machine
learning setting that allows clients to collaboratively train
models while protecting data privacy. McMahan et al. pro-
pose FedAvg, in which the client uses private data to reduce
the local gradient of the local model, and the server uses
the averaged model parameters to aggregate the local model.
Li et al. (Li et al. 2020) build a framework similar to Fe-
dAvg, but it can adaptively set the local calculations accord-
ing to different devices and iterations. Wang et al. (Wang
et al. 2020) propose to collect the weight of each layer of the
client and performs one-layer matching to obtain the weight
of each layer of the federated model.

For learning with model heterogeneous clients, Li et al.
(Li and Wang 2019) implement communication between
models through knowledge distillation. The server collects
the class scores of the public data set on each client model
and calculates the average value as the updated consensus.

Lin et al. (Lin et al. 2020) leverage ensemble distillation for
model fusion, and it can be carried out through unlabeled
data. Diao et al. (Diao, Ding, and Tarokh 2020) propose to
adaptively allocate a subset of global model parameters as
local model parameters according to the corresponding ca-
pabilities of the local client. Liang et al. (Liang et al. 2020)
introduce an algorithm to jointly train the compact local rep-
resentation and global model of the client.

In summary, existing methods are usually developed un-
der the assumption that all clients possess clean data without
noise, dedicated to making federated learning more efficient,
and preserving the privacy of user data.

Label Noise Learning
In machine learning, many methods have been proposed to
handle label noise. They can be divided into four main cate-
gories:

• Label transition matrix (Sukhbaatar et al. 2014; Patrini
et al. 2017; Yao et al. 2019). The main idea is to esti-
mate the probability of each label class flipping to an-
other class. Sukhbaatar et al. (Sukhbaatar et al. 2014) add
a noise layer to the network to make the network output
match the noisy label distribution. Patrini et al. (Patrini
et al. 2017) design an end-to-end loss correction frame-
work that makes recent noise estimation techniques ap-
plicable to the multi-class setting. Yao et al. (Yao et al.
2019) transform the noise into a Dirichlet-distributed
space, use the dynamic label regression method itera-
tively infer the potential real labels, and jointly train the
classifier and noise modeling.

• Robust regularization (Zhang et al. 2017; Arpit et al.
2017; Miyato et al. 2018; Laine and Aila 2016). Robust
regularization can effectively prevent the model from
overfitting to noisy labels. Zhang et al. (Zhang et al.
2017) propose Mixup, which trains the convex combi-
nation of pairs of samples and their labels to regular-
ize the hybrid neural network. Arpit et al. (Arpit et al.
2017) demonstrate regularization can reduce the mem-
ory speed of noise without affecting the learning of real
data. Miyato et al. (Miyato et al. 2018) introduce a reg-
ularization method based on virtual adversarial loss, and
defined the adversarial direction without label informa-
tion, which makes it suitable for label noise setting.

• Robust loss function (Van Rooyen, Menon, and
Williamson 2015a; Ghosh, Kumar, and Sastry 2017).
Some methods achieve robust learning by using noise-
tolerant loss functions. Rooyen et al. (Van Rooyen,
Menon, and Williamson 2015a) propose a convex classi-
fication calibration loss, which is robust on symmetric la-
bel noise. Ghosh et al. (Ghosh, Kumar, and Sastry 2017)
analyze some loss functions that are widely used in deep
learning and proved that MAE is robust to noise.

• Selecting possibly clean samples (Han et al. 2018a;
Wei et al. 2020; Jiang et al. 2018). The methods se-
lect clean samples from the noisy training dataset for
learning, or re-weighting for each sample. The core idea
is to reduce the attention to noisy-labeled samples in
each iteration for training. Han et al. (Han et al. 2018a)



propose Co-teaching, which trains two deep neural net-
works at the same time and selects data with potentially
clean labels for cross-trains. Wei et al. (Wei et al. 2020)
present JoCoR, which calculates the joint loss with Co-
Regularization, and then select small loss samples to up-
date network parameters. Jiang et al. (Jiang et al. 2018)
introduce MentorNet, which provides a sample weight-
ing scheme for StudentNet, and MentorNet learns a data-
driven curriculum dynamically with StudentNet.

Previous methods for solving label noise are mainly under
the centralized setting. However, in the federated setting, the
server cannot directly access the private datasets of clients.
In the model heterogeneous setting, different model archi-
tectures will lead to different noisy patterns.

Proposed Solution
Problem Definition. We consider K clients under the fed-
erated learning scenario.We define C as the collection of all
clients, where C = K and the k-th client ck ∈ C has a pri-
vate dataset Dk = {(xk

i , y
k
i )

Nk
i=1} with ∥xk∥ = Nk. In the

model-heterogeneous scenario, each client ck has the local
model θk, and f(xk, θk) denotes the logits output of xk cal-
culated by θk. The server cannot access the clients’ private
datasets, and it has a public datasetD0 = {x0

i }
N0
i=1.

Heterogeneous Model Alignment
During the aggregating phase, since the clients have differ-
ent networks, we cannot use FedAvg algorithm to get the
global model. We use the public dataset D0 to complete the
communication betwween clients. In the tc ∈ Tc commu-
nication rounds, each active client ck uses the local model
θtck to calculate the logits on the public dataset D0. Then we
can get the knowledge distribution Rtc

k = f(D0, θ
tc
k ) on the

client ck. In this way, we use Kullback-Leibler (KL) diver-
gence to measure the difference of probability distributions
from other clients:

KL(Rtc
k1
∥Rtc

k2
) =

∑
Rtc

k1
log(

Rtc
k1

Rtc
k2

), (1)

It’s obvious that the greater the knowledge distribution
difference between Rtc

k1
and Rtc

k2
, the more ck1 and ck2 can

learn from each other. Therefore, minimizing the KL differ-
ence between probability distribution Rtc

k1
and Rtc

k2
can be

considered as a process in which ck1
learns knowledge from

ck2
.

Then we define the aggregation loss as follow:

Lk,tc
kl =

K∑
k0=1,k0 ̸=k

KL(Rtc
k1
∥Rtc

k2
), (2)

where k0 denotes the clients other thanck. In this way, the
clients can update their own model parameters from the
knowledge distribution difference:

θtck ← θtc−1
k − α∇θ(

1

K − 1
· Lk,tc−1

kl ), (3)

where α represents the learning rate.

Local Model Loss
To reduce the negative impact of local noise, we learn the
Symmetric Cross Entropy (Wang et al. 2019). In the pres-
ence of label noise, CE loss shows several limitations. Due
to the different levels of difficulties among classes, CE loss
can not make all classes be sufficiently learned or cor-
rectly classify all categories. In order to fully converge the
difficult-to-learn classes, more rounds of learning will be
performed. At this time, the easy-to-learn classes will tend
to overfitting the noisy labels, and the overall performance
of the model will begin to decline. if we denote p and q as
the label class distribution and the predicted distribution re-
spectively, we can see that p might not be the true class dis-
tribution due to the presence of label noise, on the contrary,
q reflects the true class distribution to a degree. Then the CE
loss and RCE loss can be expressed as:

Lce = −
N∑
i=1

p(xi) log(q(xi)), (4)

Lrce = −
N∑
i=1

q(xi) log(p(xi)). (5)

We can combine the CE loss and the RCE loss to fully
learn the difficult-to-learn classes while preventing overfit-
ting noisy labels on the easy-to-learn classes. Then we for-
mulated the Combinational Learning(CL) loss as:

Lcl = λLce + Lrce, (6)

where λ is the hyper-parameter controlling the proportion of
two loss. With Lcl, we can expand local update as:

θtlk ← θtl−1
k − α∇θ(f(x

k, θtl−1k), ỹk), (7)

where tl ∈ Tl represents the tl-th communication round, ỹk
represents the noisy labels on k-th client.

Client Weighting Scheme
We propose the new Re-weighting scheme to reduce the ad-
verse impact of label noise from other clients during the
aggregation phase. This scheme can pay more attention to
clients with clean datasets and efficient models while re-
duce the contribution of noisy clients. To estimate the la-
bel quality, we use CL loss to calculate the loss between
the predictive output of the local model θk on the private
noisy dataset D̃k and the given label ỹk. A small CL loss
Lcl(f(x

k, θk), ỹ
k) indicates that the predicted pseudo-label

has a similar distribution to the given labels, which means
that the private dataset D̃k of the client k has accurate labels.
On the contrary, a large loss signifies that the distribution of
predicted predicted pseudo-labels and the given labels are
different, i.e., the private dataset D̃k of the client ck might
possess many noisy labels. In this way, the label quality of
the dataset D̃k can be formulated as:

Qtc(D̃k) =
1

1
Nk

∑Nk

i=1 L
k,tc
cl (f(xk

i , θk), ỹ
k
i )

. (8)



Figure 2: The pipeline of our method.

At the same time, the CL drop rate of the client ck in the
Tc round can reflect the learning efficiency of the model to
some extent. To quantify that, we calculate the CL drop rate
∆Lk,tc

cl . Then we simply quantify the learning efficiency of
the client ck with:

P(θtck ) = ∆Lk,tc
cl = Lk,tc−1

cl − Lk,tc
cl , (9)

where tc ∈ Tc represents the tc-th communication round.
By both label quality and learning efficiency, we can define
the k-th client confidence as:

F tc
k = Qtc(D̃k) · P(θtck ). (10)

It measure the confidence for each client respectively. We
then determines the weight by F tc

k as:

wtc
k =

1

K − 1
+ η

F tc
k∑K

k=1 F
tc
k

, (11)

where η is a hyper-parameter to control the impact of client
confidence F . Then perform softmax normalization:

Wtc
k =

exp(wtc)k∑K
k=1 exp(w

tc
k )

. (12)

The above weighted regularization can minimize the
knowledge of the noisy client from being learned. We dy-
namically weight the knowledge distribution learned by the
client in each round as:

θtck ← θtc−1
k − α∇θ(Wtc · Lk,tc−1

cl ). (13)

with the training iteration, each model will be updated in the
direction of the clean and efficient clients.

Summary
The entire pipeline of our method is summarized in Figure.2.
First, each client ck updates the local model θk with the pri-
vate noisy dataset D̃k to get a set of pre-trained models.
Then in aggregation phase, the clientck aligns the logit dis-
tribution of other clients to learn the knowledge from others.
Therefore, in order to reduce the impact of intre-client noise,
we use CL loss to update the local model in Eq.6. In order
to reduce the impact of inter-client noise, we use label qual-
ity and learning efficiency in Eq.8 and Eq.9 to get the client
confidence in Eq.12. Thus we align the involvement of the
noisy client in the federated learning scenario and reduce the
impact of noise during communication.

Experiments
Experimental Setting
Datasets and Models. Our experiments are conducted on
CIFAR-10 and CIFAR-100 (Krizhevsky, Hinton et al. 2009).
We set public dataset on the server as a subset of CIFAR-
100, and we randomly divide CIFAR-10 to all clients as pri-
vate datasets. The size of private dataset and public dataset
are specified as Nk = 10000 and N0 = 5000 respectively.

In our model-heterogeneous scenario, we apply
ResNet10, ResNet12 (He et al. 2016), Mobilenet (Howard
et al. 2017) and Shufflenet (Zhang et al. 2018) to four clients
as local models.

Noise Type. We use the label transition matrix M to
add label noise to the dataset, where Mmn = flip(ỹ =
n|y = m) represents that label y is flipped from the clean
m,class to the noisy n class. We both use symmetric flip
(Van Rooyen, Menon, and Williamson 2015b) and pair flip
(Han et al. 2018b) as our noisy structures. Symmetric flip
flips the original class label to any wrong class labels with
equal probability, while pair flip flips the original class to a
very similar wrong category.

Implementation Details. We perform Tc = 40 commu-
nication rounds for the server and Tl = 2 local learning
epochs for all clients. Furthermore, we use the Adam opti-
mizer(Kingma and Ba 2014) with an initial learning rate of α
= 0.001 and the batch size of 256. For the hyper-parameters
in our method, we set λ = 0.1 and η = 0.5. For the noisy
rate in the label transition matrix, we set the noisy rate µ
as 0.1 under both symmetric flip and pair flip noise types.
To generate the noisy dataset D̃, we flip 20% of the labels
in the training dataset of CIFAR-10 to the wrong labels and
keep the test dataset of CIFAR-10 constant to observe the
model performance. The ck client randomly selects Nk sam-
ples from the shuffled CIFAR-10, so the client may have dif-
ferent proportions of noise.

Comparisons. We compare our method with the model-
heterogeneous FL algorithm FedMD(Li and Wang 2019)
and FedDF(Lin et al. 2020) under the same settings. FedMD
is based on knowledge distillation, in which each client com-
putes the class scores on public data and then approaches
the consensus. FedDF builds a distillation framework for ro-
bust federated model fusion, which allows for heterogeneous
models and data. To demonstrate the validity of our method
in the homogeneous model case, we compare it with Fe-
dAvg(McMahan et al. 2017), FedMD and FedDF. FedAvg
leverages the private dataset for local gradient descent, fol-
lowed by the server aggregating the updated model on aver-
age. Since our setting is not the same as theirs, we use the
key of these algorithms for our experiments.

Comparison Performance
Heterogeneous Federated Learning Methods. We first
compare with the state-of-the-art heterogeneous FL method
under the same setting. The baseline refers to the method in
which the client trains local model on private dataset with-
out FL. Therefore, the comparisons on two noise rates are
shown in Table 1&2 The experiments demonstrate that our
proposed method outperforms the existing strategies under



Method Pairflip Symflip
θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg

Baseline 77.98 76.75 66.89 74.33 73.99 76.20 76.05 64.96 74.31 72.88
FedMD 74.98 76.89 67.1 76.64 73.9 73.23 73.66 67.72 75.54 72.54
FedDF 76.26 75.51 68.41 76.04 74.06 72.07 75.18 67.38 74.47 72.28

Our Method 78.86 78.76 69.6 71.83 74.76 78.40 78.36 69.47 76.93 75.79

Table 1: Compare with the existing methods when the noise rate µ = 0.1, θk represents the local model of the client ck.

Method Pairflip Symflip
θ1 θ2 θ3 θ4 Avg θ1 θ2 θ3 θ4 Avg

Baseline 72.31 71.84 61.78 69.67 68.90 72.01 70.15 59.62 69.42 67.80
FedMD 68.00 67.81 65.67 74.02 68.88 67.31 68.54 64.48 71.75 68.02
FedDF 68.66 69.68 62.36 72.12 68.21 67.36 68.56 63.60 70.83 67.59

Our Method 77.81 76.09 66.61 72.78 73.32 78.14 76.77 64.23 73.90 73.26

Table 2: Compare with the existing methods when the noise rate µ = 0.2, θk represents the local model of the client ck

Components Pairflip SymflipHMA CL CWS
68.90 67.8

✓ 66.51 66.26
✓ 69.27 69.61

✓ ✓ 70.96 73.26
✓ ✓ ✓ 73.32 73.35

Table 3: Ablation study with the noise rate µ = 0.2, θk
means the local model of the client ck.

various noisy settings. As the noise rate rises from 0.1 to 0.2,
it can be seen that the average test accuracy of FedMD and
FedDF drops significantly, by 5.02% for FedMD and 5.85%
for FedDF on Pair-flip noise, and by 4.52% for FedMD and
4.69% for FedDF on Sym-flip noise, As for our method, it
drops 1.44% on Pair-flip noise and 2.53% on Sym-flip noise,
The above can prove that our proposed solution is robust
against different noise settings.

Ablation Study. We first evaluate the effect of each com-
ponent on noise rates µ = 0.2 with two noise types (pairflip
and symflip) in the heterogeneous model scenario to prove
the effectiveness of each component.

Effectiveness of Heterogeneous Model Alignment (HMA):
According to Table 3, we observe that the effect of adding
HMA will have some degree of degradation than without
FL. In our analysis, because HMA causes the clients to keep
communicating learning the wrong knowledge and updating
the model in the wrong direction.

Effectiveness of Combinational Learning Loss (CL): We
add teh CL loss to the baseline to avoid the influence of nosy
data during the local update phase. We can see in Table 3
that the performance of most models has been significantly
improved. It can be inferred that the higher the noise rate,
the better the performance of CL loss.

Effectiveness of Client Weighting Scheme (CWS): We add
the CWS component to improve the robustness against noisy
data from other clients in FL. As shown in Table 3, each
model has achieve better performance. We can see that when

the noise type is pairflip, the average test accuracy of models
has increased from 70.96% to 73.32%.

Conclusion
In our Deep Learning Project, we study a thorny problem
of how to perform the robustness with heterogeneous clients
with noise. To address this issue, We propose our method
with three components. We first align the feedback distribu-
tion on public dataset on the server to enable the aggrega-
tion between heterogeneous model on clients. Then to avoid
each model overfitting to noise on own private data, we com-
bine the CE loss and RCE loss to update the local model. Fi-
nally, for the noisy feedback from other participants, we pro-
pose a flexible re-weighting method to estimate the client la-
bel quality and learning efficiency, which effectively avoids
the impact from noisy clients and achieves robust federated
learning. We design experiments to prove the effectiveness
of each component included in our approach.
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