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void insertionSort(int arr[], int n) void insert(int A[]), int n)
n E - YpR < <
= ':I int i, key, j; int i, temp, j;
for (i = 1; i < n; i++) for (i = 1; i < n; i++) {
{ temp = A[i);
Kb —a ) Y a) key = arr([i]; j=ia-1;
= B T IRZIRAENLO 5y 111
— while (j >= 0 && A[j] > temp) {
/* Move elements of arr([0..i-1), that are A[j + 1) = A[]]);
greater than key, to one position ahead j j-1;
] /“k h— ‘b of their current position */ }
Erj. ‘{A... while (j >= 0 && arr(j] > key) A[j + 1) = temp;
{ }
arr(j + 1) = arr(j); }
3= 3=
arr(j + 1) = key;
}
}
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Why Study Algorithms?

® |nternet = Multimedia
= Web search, packet routing, distributed = MP3, JPG, DivX, HDTV, face recognition,
file sharing, ...
= Artificial Intelligence = Social networks
= Autopilot vehicle, computer vision, ® Recommendations, news feeds,
machine translations, ... advertisements, ...
= Computers = Physics
= Circuit layout, file system, compilers, ... " Aerodynamics simulation, particle

. collision simulation, ...
= Computer graphics

= Biology

® Movies, video games, virtual reality, ...

) ® Human genome project, protein folding,
= Security & Project, &

® Cell phones, e-commerce, voting m
machines, ...
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Why Study Algorithms?

= Algorithm engineer is rich!

Algorithm Engineer $135,272
Database Engineer $119,281
Software Engineer $108,058
System Engineer $102,266
Network Engineer $96,220
IT Project Manager $95,712
Web Developer $75,671

& SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Data source: https://www.indeed.com/salaries?from=gnav-title-webapp



What is An Algorithm

" Example: Find the name “Lisa Barber” in
the phone book.

= Strategy 1
® Starting with the first name “Anderson Aaron”.
= If it is not matched, check the next one.
= Until find “Lisa Barber”.

= Strategy 2
= Slide your finger along the Alphabet bar to “B”.

= Check the current surname is before or after “Ba” in
alphabetical order.

® Find surname “Barber”.

= Look for the first name “Lisa”.
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What is An Algorithm

" An algorithm is a sequence of computational steps that
transform the input into the output to solve a given problem.
" Example: The sorting problem.
= |nput: A sequence of n numbers A = (a4, a,, ..., a,).

= Qutput: A permutation (reordering) A" = (a{’,a,, ..., a,;') of the input
sequence suchthata; < a, < - < a,’.
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= Problem (Ji]/8i): A question to = Parameters (Z:4[): Variables that
which we seek an answer. are not assigned specific values in

= Find the non-decreasing order of a the statement of the problem.

sequence of n numbers A. A

= Algorithm (%.y%): A step-by-step = |nstance (SZ471]): Specific

procedure applying a technique for assignment of values to the
solving the problem. parameters.

= |nsertion sort = A=(361,72).

" Quicksort = Solution (& %<): The answer to the
= Mergesort problem in that instance.

. = A'=(1,2,3,6,7).
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Properties of Algorithm

= Finite (49 %5 [k): An algorithm consists of finite number of
operations.

= Feasible (A]47%): Every operation is executable.

= Deterministic (fiffi %€ Jtk): Every operation must not be
ambiguous (generate random results).

= Input (% A\): 0 or more, describe the initial state.

= Qutput (%1 H): 1 or more, describe the result process from the
input.

11
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= Pseudocode (f8AY) is a plain language description of the steps in
an algorithm, irrelevant to specific programming language.

= \We have the following conventions:
= “«” represents variable assignment (25 & Ii{1H).
= |ndentation (4fi£) indicates block structure. “{}” is not needed.

= While, for, repeat, if, then, and else have the same interpretation as in most
programming language.

// indicates comments.

= Composite data type (& &J55) are typically organized into objects, which
are comprised of attributes or fields, e.g. T.Lchild.

= Array elements (%{2H) are accessed by specifying the array name followed by
the index in square brackets, e.g. A[i].

= Most of the time, we start the index i from 1, instead of 0.
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Insertion Sort for the Sorting Problem

= [nsertion sort (ffj A HEf¥) is | InsertSort(A)
one of the simplest sorting | forj « 2 tondo
algorithms. > key < A[j]
= We use it all the time whenwe | 3 i—j—1
are playing cards.
4 while i > 0 and A[i] > key do
5 Ali + 1] « A[{]
23 Ips 2 6 i1
vy .f,p‘ 7 A[i+1] « key
! ‘ J 8 return A
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Classroom Practice

= Write every step of insertion sort for the input array A =
(3,6,1,7,2,4)
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Algorithm Design Techniques and Strategies

® |n this course, you are going to learn:
= Recursive algorithms (& 5 &.7%)
= Divide-and-conquer algorithms (4378 &.3:)
= Dynamic programming (ZhZ&H X))
= Greedy algorithms (%570 E.3E)
= Graph algorithms ([&] %)
= Backtracking (7] 3#])
= Branch and bound (43 % FRA)

® They are not specific algorithms, but algorithm families.

® The algorithms in the same family share the same general idea to
solve problems.
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Important Problem Types

= Sorting: Rearrange the items of a given list in nondecreasing order.

= Searching: Finding a given value, called a search key, in a given set or
multiset.

= String processing: e.g., matching of text strings, find subsequences.

= Graph problems: e.g., modelling transportation, communication, social and
economic networks (graph traversal algorithms, shortest path algorithms).

= Combinatorial problems: e.g., resource scheduling for wireless
communications.

= Geometric problems: e.g., closest-pair problem, convex-hull problem for
computer graphics and robotic vision.

= Numerical problems: Solving equations and systems of equations,
computing definite integrals, evaluating functions.
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Process of Analysis and Design of Algorithm

Understand

the problem

4

Decide on:
computational means,
exact vs. approximate solving,
algorithm design technique

4

Design an

algorithm

4

Prove correctness

Analyze the algorithm

y

Code the

algorithm
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The Correctness of Algorithms

® Before we discuss the efficiency of an algorithm, we should
make sure one thing: Correctness (1F #fi/k).

= For every input instance, the algorithm halts with the correct output.

= How to prove the correctness? Try every input instance and
verify the output?

= Can we obtain all input instances for the sorting problem?

= We can theoretically prove the correctness.

) BIIASHESSR
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Loop Invariants

® At the start of each iteration of the for loop, the subarray
A[1l ...j — 1] consists of the elements originally in A[1...j — 1]
but in sorted order.

= \We state these properties of A1 ...j — 1] formally as a loop
invariants ({EIAANAD &).

" We can use loop invariants to prove why an algorithm is correct.

20
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The Correctness of Insertion Sort

The loop invariants are:

A|1...j — 1] is sorted before each iteration.
The proof is similar to mathematical induction (£f 5215 4432):

= |nitialization (base case): It is true prior to the first iteration of
the loop.

= Maintenance (inductive step): If it is true before an iteration of
the loop, it remains true before the next iteration.

® Termination: When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is correct.

21
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The Correctness of Insertion Sort

Initialization

= \We start by showing that the loop invariant holds before the
first loop iteration, when j = 2.

= The subarray A[1 ...j — 1], therefore, consists of just the single
element A[1], which is in fact the original element in A[1].

= Obviously, the subarray with only one element is sorted, which
shows that the loop invariant holds at the start of the first
iteration of the loop.

22

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI




The Correctness of Insertion Sort

Maintenance

= At the start of the jth iteration of loop, we assume A[1 ...j — 1]
is sorted and then prove A[1 ...j] is sorted after this iteration.

= The body of the while loop (lines 4-7) works by moving A[j —

1], Alj — 2], A[j — 3],... by one position to the right until the
proper position for the key A[j] is found.

= We insert the key at the point when Ali] < key < A[i + 2].

= Therefore, A[1 ...j] is sorted before next iteration, which shows

that the loop invariant holds at the start of the (j + 1)th
iteration of loop.

\ E»-igv [% M~ .}, HTREN#ESR
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The Correctness of Insertion Sort

Termination

= For insertion sort, the outer for loop ends when j exceeds n,
i.e.whenj =n+ 1.

" By loop invariant of maintenance step, we have that the
subarray A[1 ...n] consists of the elements originally in
Al1 ...n], but in sorted order.

= The subarray A[1 ...n] is the entire array! Hence, the entire
array is sorted, which means that loop invariant holds at every
iteration and the algorithm is correct.

24
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Efficiency of Algorithm

" |s correctness of an algorithm enough? How good is an
algorithm?

= Time complexity (B [a] & 24 &)

= |ndicates how fast an algorithm runs.

= How many CPU cycles needed.
m Space complexity (55 |a] & 44 &)
= Amount of memory units required by an algorithm.

" Does there exist a better algorithm?

" How to compare algorithms?

) BITAFESSR
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Time Complexity

® Running time of an algorithm on a particular input generally be
the number of primitive operations or "steps" executed.

® Define the notion of step so that it is as machine independent
as possible.

®= Compare one algorithm running on i3 CPU with another algorithm on i9
CPU is meaningless.

" The comparison should be instance independent.

= \We are not comparing two algorithms on a specific input instance, but in
a general case.

@) BITRHERER
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Time Complexity

= Consider insertion sort, let A = (1,2,3,4, ...nn) and consider all
n! permutations of the elements in A. Each permutation
corresponds to one possible input.

® Consider three permutations:

= Case 1: The elements in A are sorted in decreasing order.
= Case 2: The elements in A are sorted in increasing order.

= Case 3: The elements in A are randomly ordered.

= Will insertion sort have the same running time on these three
cases?

) BIIASHESSR
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Time Complexity

= The worst-case time complexity (IR ETEN 0] 5 244 &) of an
algorithm is the function defined by the maximum number of
steps taken on any instance of size n.

® The best-case time complexity (&5 JE ) 8] & 2% FF) of an
algorithm is the function defined by the minimum number of

steps taken on any instance of size n.

m The average-case time complexity (SF31E JE I} 8] & 2% ) of
an algorithm is the function defined by an average number of
steps taken on any instance of size n.

= Which of these is the best to use?

28
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Time Complexity

We use the following convention to analyze an algorithm:

® A constant amount of time is required to execute each line
(operation) of our pseudocode.

® Each line may take a different amount of time than another
line, so we shall assume that each execution of the ith line
takes time c; , which is a constant.

" For a loop, we calculate how many times the loop iterates and
then multiply with the total time within this loop.

29
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Analysis of Insertion Sort

InsertSort(A) Cost Times

1 forj < 2tondo C1 n

2 key « Alj] Coy n—1

3 [<—j—1 C3 n—1

4 while i > 0 and A[i] > key do Ca i=2 b

5 Ali + 1] « Ali] Cs ?zz(tj —1)
6 [—i—1 Cq Z?:z(tj —1)
7 Ali + 1] « key Cy n—1

8 return A Cg 1

= |[n each for loop, we run different times of while loop. Therefore, we
use t; as the number of condition tested of the jth while loop.

6,y) BIIKFERER AT HBENHER 30
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Analysis of Insertion Sort

® Generally, the running time increases with n.

= Sorting 5 numbers is obviously faster than sorting 10,000 numbers.

" Therefore, it is natural to represent the total running time

T'(n) as a function of n:
n

T(n)=cin+c,(n—1)+c3(n—1) +c4z t

J=2

n n
+cs Z(tj — 1) + ¢4 E(tj — 1D +c,(n—1) +cg
j=2 J=2

6y BIIXFERFER
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Best Case of Insertion Sort

® For inputs of a given size, an algorithm's running time may
depend on which input of problem.

" The best case occurs for insertion sort if the array is already
sorted. In this case:

= The while loop condition fails in the beginning, i.e. t; = 1 for all j.
= Line 5-6 in the while loop are not executed.

= Then, T(n) becomes:

Tm)=cn+c,(n—1)+cs(n—1)+c,(n—1)+c;,(n—1) +c4
=(c;+c,+c3+c,+co)n—(c, +c3+c4 + ¢y —cg)

® This running time is a linear function of n.

@) BITRHERER
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Worst Case of Insertion Sort

= The worst case occurs if the array is in reverse sorted order. In this case:

= The key is always moving to the front in the while loop and thus t; = j.

= Then, T(n) becomes:

n
T(n) = cn + cy(n— 1) + ca(n — 1) + c42j
j=2

+c G—1+c G—D+c,(n—1)+c
SJZZ 6; 7 8

€4 C5  Ce\ > €4 C5 Cg
=(F+2+ )+ (a+etaroy—— -2 +o)n
(2 2 2 R R
—(C2+C3+C4+C7—C8)

= This running time is a quadratic function of n.
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Average Case of Insertion Sort

" The average-case or expected running time is taken to be the
average time over all inputs of size n.

® The average-case analysis needs know the probabilities of all
input occurrences, i.e., it requires prior knowledge of the input
distribution.

" The analysis is complex and lengthy in many cases.

= \We will discuss it with probabilistic analysis in Lecture 3.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

34




Best-, Worst-, and Average-Case

" Best-case analysis is not used in practice, as it does not give
useful information about the behavior of an algorithm in
general.

= We will not bet our algorithm on luck.

= Generally, we concentrate on the worst-case analysis.

= The worst-case running time of an algorithm is an upper bound on the
running time for any input instance.

= For some algorithms, the worst case occurs fairly often.

= The average-case is often roughly as bad as the worst case.

) BIIASHESSR
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Best-, Worst-, and Average-Case
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Comparison of Time Complexity

= Given two algorithms, we obtain two T (n) and each of them
has a lot of ¢;. How to compare them?

= Consider the best-case of insertion sort T(n) = cn — b, where
c=ci+cy+c3+ca+c;andb =cy, +c3+ ¢4+ ¢y —cgare
constants.

® As the problem size n increases, the running time is dominated
by n and does not matter much by constants c;.

@) BITRHERER
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Comparison of Time Complexity

= Consider two sorting algorithms:

= |nsertion sort takes time roughly equal to c;n? to sort n items.

= Mergesort takes time roughly equal to ¢,n lgn to sort n items.

= Assume Mergesort has larger constant: ¢c; = 1 and ¢, = 100.

® For a small problem withn = 10:
= |Insertion sort takes 1x10% = 100 operations.

= Mergesort takes 100x101g 10 =~ 3322 operations.
= However, for a big problem with n = 10°:

= |nsertion sort takes 1x101% = 1014 operations.
= Mergesort takes 100x10°1g 10°® ~ 1.99x10° operations.

@) BITRHERER
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Comparison of Time Complexity

" In the theoretical analysis of an algorithm, we are interested in
the eventual behavior.

= \WWe compare algorithms for sufficiently large n.

= \WWe can show that, no matter how large ¢, is, we can always
find an > ng such that ¢;n? > c,nlgn.

= This is because the term n* has higher order than nlgn.

" Therefore, when we compare the efficiency of algorithms, we
concentrate on the order and ignore constants.

@) BITRHERER
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Asymptotic Running Time

= We are actually interested in the rate of growth, or order of
growth. Intuitively, just look at the dominant term.

T(n) = 0n3 + TOM=+5n—+=25
= Drop lower-order terms 10n? + 5n + 25.

® |gnore constant 0.1.

= But we can’t say that T (n) equals to n3.

= |t grows like n3. But it doesn’t equal to n3.

= We will define asymptotic notations in Lecture 2 to formally
describe the time complexity of an algorithm.

@) BITKHERER
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Lower Bound of A Problem

® Given a problem, how can we know if we still have chance to
improve an algorithm?

" The lower bound of a problem characterizes the complexity of
a problem, informally as “the best you can do.” Namely, the
minimum time needed by any algorithm to solve the problem.

= |[f we have an algorithm whose worst-case is equal to the lower
bound of the problem, we can claim that this algorithmis
optimal to the problem and the problem is solved.

= Then, we don’t have to waste time on this problem and focus on other
interesting problems.

@) BIIKSERER
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Find the Maximum Value

FindMax()

1 max « A[1]

2 forj < 2tondo

3 if A|j] > max then
4 max < AlJ]

5 return max

" Lower bound of the problemisn — 1.

" The worst-case of this algorithmisn — 1.

0 BIIAREREE
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Conclusion

® “Program = Data structure + Algorithm” - Niklaus Wirth, 1984 Turing Award Laureate
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Jupyter Notebook

m Jupyter Notebook is a web-based interactive
computational environment for creating Jupyter
notebook documents.

® |t can execute code and show results, figures, O

markdown documents in one browser page. .A

= You can go through a quick tutorial from

https://www.dataquest.io/blog/jupyter- J u pyte I
notebook-tutorial/
= You can install Jupyter kernel for C++, or simply ’v

use Online Jupyter Notebook for C++.

® For all experiment assignment, the report should
be represented by the notebook file .ipynb.

6y BIIXHERF5R
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https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://github.com/jupyter-xeus/xeus-cling
https://mybinder.org/v2/gh/QuantStack/xeus-cling/stable?filepath=notebooks/xcpp.ipynb

Jupyter Notebook

#include <iostream>
using namespace std;

void insertionSort(int arr[], int n)
{
int i, key, 3j;
for (i = 1; i < n; i++)
{
key = arr[i];
j=1i=-1;
/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && arr[j] > key)
{
arr[j + 1] = arr[j];
o e g
}
arr[j + 1] = key;
}
}

void printArray(int arr[], int n)

{

int i;
for (1 = 0: 1 < n; 1+%)
cout e arrl{ | e =t

cout << endl;

intrarelihs {12 011 213 8506 )¢

int n = sizeof(arr) / sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

5 6 Il 12 13

EITARERER (7

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

45




Conclusion

After this lecture, you should know:

" What is a problem and an algorithm?

= Why do we need to study algorithm?

" How to write pseudocode for an algorithm?

= Why do we need to study the efficiency of an algorithm?
® What are the three cases of time complexity?

"= What is the lower bound of a problem?

46
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Homework

= Page 11-12
1.2 1.5

1.6 1.7
1.8 1.9
1.101.11
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