算法设计与分析

Lecture 10: Linear Programming

卢杨 厦门大学信息学院计算机科学系 luyang@xmu.edu.cn

[2015年陕西卷文-11]

某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示:

	甲	Z	原料限额
A (吨)	3	2	12
B (吨)	1	2	8

如果生产1吨甲乙产品可分别获利3万元,4万元,则该企业每天可获得最大利润为():

A. 12万元

B. 16万元

C. 17万元

D. 18万元

解:

设该企业每天生产甲乙两种产品分别为x, y吨, 则每天利润为z = 3x + 4y万元, 由题意可列不等式组:

$$\begin{cases} x \ge 0, y \ge 0 \\ 3x + 2y \le 12 \\ x + 2y \le 8 \end{cases}$$

其表示如图阴影部分区域. 当直线 3x + 4y - z = 0过点(2,3)时, z取 得最大值 $z = 3 \times 2 + 4 \times 3 = 18$, 故答案选D.

[命题意图] 本题主要考察线性规划在实际问题中的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.

[方法, 技巧, 规律] 在解决线性规划的应用题时, 可依据以下几个步骤:

- (1) 分析题目中相关量的关系,列出不等式组,即约束条件和目标函数;
- (2) 由约束条件画出可行域;
- (3) 分析目标函数z与直线截距之间的关系;
- (4) 使用平移直线法求出最优解;
- (5) 将最优解还原到现实问题中.

General Linear Programming

• Given a set of real numbers $a_1, a_2, ..., a_n$ and a set of variables $x_1, x_2, ..., x_n$, a linear function f on those variables is defined by:

$$f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n = \sum_{j=1}^n a_j x_j$$

- Formally a linear programming (线性规划) problem is the problem of either minimizing or maximizing the linear function f subject to a finite set of linear constraints (线性约束):
 - Linear equality: $f(x_1, ..., x_n) = b$.
 - Linear inequalities: $f(x_1, ..., x_n) \le b$, $f(x_1, ..., x_n) \ge b$.

General Linear Programming

Example 10.1

- We have learned how to solve it in high school. Why do we study here?
- How many variables here? How many constraints here?
 - Can we use high school method to solve linear programming with three variables x_1, x_2, x_3 ?

Terms for Linear Programming

- Feasible solution (可行解): A solution satisfying all the constraints.
- Infeasible solution (不可行解): A solution not satisfying at least one constraint.
- Objective value (目标值): The goal to maximize or minimize.
- Optimal solution (最优解): The feasible solution to maximize or minimize the objective value.
- Optimal objective value (最优目标值): The objective value calculated by the optimal solution.
- Unbounded (无界的): A linear programming problem with feasible solution but infinite objective value.

Terms for Linear Programming

Standard Form of Linear Programming

- If we want to use computer to solve linear programming problem, we should first convert this problem into a formatted input.
 - We want to build a standard form for this kind of problem.
- Given n real numbers $c_1, c_2, ..., c_n$; m real numbers $b_1, b_2, ..., b_m$; and mn real numbers a_{ij} for i=1,2,...,m and j=1,2,...,n. We wish to find n real numbers $x_1, x_2, ..., x_n$ that

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
 number of constrains s. t. $a_{ij}x_{j} \leq b_{i}$ for $i=1,\ldots,m$ $x_{j} \geq 0$ for $j=1,\ldots,n$ number of variables

Standard Form of Linear Programming

Given the standard form of a linear programming problem:

max
$$\sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \text{for } i = 1, ..., m$$

$$x_j \ge 0 \quad \text{for } j = 1, ..., n$$

We can extract its coefficients to form an input:

$$\boldsymbol{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Standard Form of Linear Programming

Using vectors and matrices

$$\boldsymbol{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

we can represent the standard form as:

$$\max c^{T}x$$
s.t. $Ax \le b$

$$x \ge 0$$

A n-dim vector with all 0

If we have an algorithm to solve the standard form, and convert any problem to the standard form, we can use this algorithm to solve any problem.

min not max

$$\min_{s.\ t} -2x_1 + 3x_2 \\ s.\ t \quad x_1 + x_2 = 7 = \mathsf{not} \leq \sum_{j=1}^n c_j x_j$$

$$x_1 - 2x_2 \leq 4 \\ x_1 \geq 0 \\ \text{where is } x_2 \geq 0?$$

$$x_j \geq 0 \quad \text{for } j = 1, \dots, n$$
Given problem
$$\sum_{j=1}^n c_j x_j \leq b_i \quad \text{for } i = 1, \dots, m$$

$$x_j \geq 0 \quad \text{for } j = 1, \dots, n$$
Standard form

厦门大学信息学院 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

1. Convert minimization problem to maximization problem.

$$\min \ f(x_1, \dots, x_n)$$

$$\min \ f(x_1, \dots, x_n) \qquad \Longrightarrow \qquad \max \ -f(x_1, \dots, x_n)$$

min
$$-2x_1 + 3x_2$$

s.t $x_1 + x_2 = 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

max
$$2x_1 - 3x_2$$

s.t $x_1 + x_2 = 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

2. Convert equality constraint to two inequality constraints.

$$f(x_1, \dots, x_n) = b$$

$$f(x_1, ..., x_n) \le b$$
$$f(x_1, ..., x_n) \ge b$$

min
$$-2x_1 + 3x_2$$

s.t $x_1 + x_2 = 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

max
$$2x_1 - 3x_2$$

s.t $x_1 + x_2 \le 7$
 $x_1 + x_2 \ge 7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

3. Convert greater-than-or-equal-to constraint to less-than-orequal-to constraint.

$$f(x_1, \dots, x_n) \ge b$$

$$-f(x_1, \dots, x_n) \le -b$$

$$\max 2x_{1} - 3x_{2}$$
s. t $x_{1} + x_{2} \le 7$

$$x_{1} + x_{2} \ge 7$$

$$x_{1} - 2x_{2} \le 4$$

$$x_{1} \ge 0$$

max
$$2x_1 - 3x_2$$

s.t $x_1 + x_2 \le 7$
 $-x_1 - x_2 \le -7$
 $x_1 - 2x_2 \le 4$
 $x_1 \ge 0$

4. If x_j does not have constraint $x_j \ge 0$, introduce two new variables x_i' and x_i'' , and let:

$$x_j = x_j' - x_j''$$

Non-negative x_j' and x_j'' can make up x_j with any value

with two more constraints: $x'_j \ge 0$ and $x''_j \ge 0$.

max
$$2x_1 - 3x_2$$

s.t $x_1 + x_2 \le 7$ $x_2 = x_2' - x_2''$ s.t $x_1 + x_2' - x_2'' \le 7$
 $-x_1 - x_2$ $-x_1 - x_2' + x_2'' \le -7$
 $x_1 - 2x_2 \le 4$ $x_1 - 2x_2' + 2x_2'' \le 4$
 $x_1 \ge 0$ $x_1, x_2', x_2'' \ge 0$

Slack Form of Linear Programming

- Standard form is good enough to represent every linear programming problem as c, A and b.
- However, it is still not good enough for a computer algorithm to solve. We want the constraints to be either equality or nonnegative.
- This form is called slack form (松弛形式).

Slack Form Conversion

1. Convert each inequality constraint into a equality constraint and a non-negative constraint with a new slack variable (松弛变元):

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$$

$$x_{n+i} \ge 0$$

Slack Form Conversion

- Slack means difference, to measure how much we can still increase.
- We call the variables in the constraints as basic variables (基本变元), and the variables in the objective function as nonbasic variables (非基本变元).
 - Use B and N to store the index of basic and nonbasic variables.
- Example:

max
$$2x_1 - 3x_2 + 3x_3$$

s.t $x_4 = 7 - (x_1 + x_2 - x_3)$
 $x_5 = -7 - (-x_1 - x_2 + x_3)$
 $x_6 = 4 - (x_1 - 2x_2 + 2x_3)$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$
 $B = \{4,5,6\}$
 $N = \{1,2,3\}$

Slack Form Conversion

2. Ignore maximization and introduce a new variable z and a constant v to represent the objective value.

$$\max \sum_{j \in N} c_j x_j \qquad \Longrightarrow \qquad z = v + \sum_{j \in N} c_j x_j$$

max
$$2x_1 - 3x_2 + 3x_3$$

s.t $x_4 = 7 - (x_1 + x_2 - x_3)$
 $x_5 = -7 - (-x_1 - x_2 + x_3)$
 $x_6 = 4 - (x_1 - 2x_2 + 2x_3)$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

$$z = 0 + 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - (x_1 + x_2 - x_3)$$

$$x_5 = -7 - (-x_1 - x_2 + x_3)$$

$$x_6 = 4 - (x_1 - 2x_2 + 2x_3)$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Slack Form of Linear Programming

Given the slack form of a linear programming problem:

$$z = 0 + 2x_1 - 3x_2 + 3x_3$$

$$x_4 = 7 - (x_1 + x_2 - x_3)$$

$$x_5 = -7 - (-x_1 - x_2 + x_3)$$

$$x_6 = 4 - (x_1 - 2x_2 + 2x_3)$$

All variables have non-negative constraint and we can ignore here.

We can extract its coefficients to form an input:

$$B = \{4,5,6\}, N = \{1,2,3\}, v = 0$$

$$c = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}, b = \begin{bmatrix} 7 \\ -7 \\ 4 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

Convert the following linear programming problem into slack form and extract the input vectors and matrix.

min
$$-x_1 - 2x_2$$

s.t $x_1 + 2x_2 \le 6$
 $-3x_1 - 2x_2 \ge -12$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

Solution:

$$z = 0 + x_1 + 2x_2$$

$$x_3 = 6 - (x_1 + 2x_2)$$

$$x_4 = 12 - (3x_1 + 2x_2)$$

$$x_5 = 2 - x_2$$

$$B = \{3,4,5\}, N = \{1,2\}, v = 0$$

$$c = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 12 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 0 & 1 \end{bmatrix}$$

- Simplex algorithm (单纯形法) is an efficient algorithm to solve linear programming in polynomial time.
- It follows several steps to iteratively increase the objective value:
 - Set each nonbasic variable to 0, and compute the values of the basic variables from the equality constraints.
 - Choose a nonbasic variable such that if we were to increase that variable's value from 0, then the objective value would increase too.
 - The slack variables help to determine how much we can increase values of nonbasic values without violating any constraints.

Given the slack form of a linear programming problem:

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- In simplex algorithm, we always set nonbasic variables at 0. Therefore, the initial solution is (0,0,0,30,24,36) with z=0.
- How to increase the value of z?

Choose a non-negative nonbasic variable and increase it as much as possible.

Given the slack form of a linear programming problem:

$$z = 3x_{1} + x_{2} + 2x_{3}$$

$$x_{4} = 30 - x_{1} - x_{2} - 3x_{3}$$

$$x_{5} = 24 - 2x_{1} - 2x_{2} - 5x_{3}$$

$$x_{6} = 36 - 4x_{1} - x_{2} - 2x_{3}$$

Calculate b_i/a_{ie} for selected nonbasic variable e and every basic variable i.

• If we select x_1 to increase and remain $x_2 = x_3 = 0$, how much as most we can increase x_1 ?

Compare 30/1, 24/2 and 36/4 and select the minimum one, which can increase x_1 without violating nonnegative constraints.

- We select x_1 and increase it up to 9, x_1 is not a nonbasic variable any more.
 - We set all nonbasic variables at 0 at each iteration.

$$x_{6} = 36 - 4x_{1} - x_{2} - 2x_{3}$$

$$x_{1} = 9 - \frac{x_{2}}{4} - \frac{x_{3}}{2} - \frac{x_{6}}{4}$$

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{4} - 4x_3 + \frac{x_6}{2}$$

- Replace $x_1 = 9 \frac{x_2}{4} \frac{x_3}{2} \frac{x_6}{4}$ into objective value and other equality constraints.
- x_1 becomes basic variable and x_6 becomes nonbasic variable. The solution in this step is (9,0,0,21,6,0) with z=27.

Given the slack form of a linear programming problem:

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 + \frac{x_2}{4} - \frac{x_3}{2} + \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} + \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 + \frac{3x_2}{4} - 4x_3 + \frac{x_6}{2}$$

- Select x_3 to increase. Compare $9/(\frac{1}{2})$, $21/(\frac{5}{2})$, $\frac{6}{4}$ and select the minimum one: $\frac{3}{2}$.
- We get $x_3 = \frac{3}{2} \frac{3x_2}{8} \frac{x_5}{4} + \frac{x_6}{8}$.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{4} - 4x_3 + \frac{x_6}{2}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{4} - 4x_3 + \frac{x_6}{2}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

- Replace $x_3 = \frac{3}{2} \frac{3x_2}{8} \frac{x_5}{4} + \frac{x_6}{8}$ into objective value and other equality constraints.
- x_3 becomes basic variable and x_5 becomes nonbasic variable. The solution in this step is $(\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with $z = \frac{111}{4}$.

Given the slack form of a linear programming problem:

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} + \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} + \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

We don't calculate here because increase x_2 always satisfy the constraint of x_4 .

- Select x_2 to increase. Compare $(\frac{33}{4})/(\frac{1}{16})$, $(\frac{3}{2})/(\frac{3}{8})$ and select the minimum one: 4.
- We get $x_2 = 4 \frac{8x_3}{3} \frac{2x_5}{3} + \frac{x_6}{3}$.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{5x_5}{2}$$

- Replace $x_2 = 4 \frac{8x_3}{3} \frac{2x_5}{3} + \frac{x_6}{3}$ into objective value and other equality constraints.
- x_2 becomes basic variable and x_3 becomes nonbasic variable. The solution in this step is (8,4,0,18,0,0) with z=28.

Given the slack form of a linear programming problem:

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{5x_5}{2}$$

Now, there's no nonbasic variable that we add increase to increase the objective value. The algorithm terminates with solution $x_1 = 8$, $x_2 = 4$ and optimal objective value 28.

Pseudocode

```
Simplex(A, b, c)
    (N, B, A, b, c, v) \leftarrow \text{InitializeSimplex}(A, b, c)
    while some index j \in N has c_j > 0 do
        choose an index e \in N for which c_e > 0
3
        for each index i \in B do
5
           if a_{i\rho} > 0 then \Delta_i \leftarrow b_i/a_{i\rho}
            else \Delta_i \leftarrow \infty
6
        choose an index l \in B that minimizes \Delta_i
        if \Delta_i = \infty then return "unbounded"
9
        else (N, B, A, b, c, v) \leftarrow Pivot(N, B, A, v)
                 b, c, v, l, e
10 for i \leftarrow 1 to n do
11
        if i \in B then \overline{x_i} \leftarrow b_i
12
        else \bar{x_i} \leftarrow 0
13 return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
Pivot(N, B, A, b, c, v, l, e)

1 \hat{b} \leftarrow b_l/a_{le}

2 for each j \in N - \{e\} do \hat{a}_{el} \leftarrow a_{lj}/a_{le}

3 \hat{a}_{el} \leftarrow 1/a_{le}

4 for each i \in B - \{l\} do \hat{b}_i \leftarrow b_i - a_{ie}\hat{b}_e

5 for each j \in N - \{e\} do \hat{a}_{ij} \leftarrow a_{ij} - a_{ie}\hat{a}_{ej}

6 \hat{a}_{il} \leftarrow -a_{ie}\hat{a}_{el}

7 \hat{v} \leftarrow v + c_e\hat{b}_e

8 for each j \in N - \{e\} do \hat{c}_j \leftarrow c_j - c_e\hat{a}_{ej}

9 \hat{c}_l \leftarrow -c_e\hat{a}_{el}

10 \hat{N} \leftarrow N - \{e\} \cup \{l\}

11 \hat{B} \leftarrow B - \{l\} \cup \{e\}

12 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```


What the hell is simplex?

Let's go back to the first Gaokao example:

max
$$3x_1 + 4x_2$$

s.t $3x_1 + 2x_2 \le 12$
 $x_1 + 2x_2 \le 8$
 $x_1 \ge 0$
 $x_2 \ge 0$

Convert it into slack form:

$$z = 3x_1 + 4x_2$$

$$x_3 = 12 - (3x_1 + 2x_2)$$

$$x_4 = 8 - (x_1 + 2x_2)$$

Slack form represents each constraint with a variable.

Given the slack form of a linear programming problem:

$$z = 3x_1 + 4x_2$$

$$x_3 = 12 - (3x_1 + 2x_2)$$

$$x_4 = 8 - (x_1 + 2x_2)$$

• We start from the solution (0,0,12,8) with z=0.

Given the slack form of a linear programming problem:

$$z = 3x_1 + 4x_2$$

$$x_3 = 12 - (3x_1 + 2x_2)$$

$$x_4 = 8 - (x_1 + 2x_2)$$

- Select x_1 to increase. Compare 12/3, 8/1 and select the minimum one: 4.
- We get $x_1 = 4 \frac{2x_2}{3} \frac{x_3}{3}$.

We get a new slack form:

$$z = 12 + 2x_2 - x_3$$

$$x_1 = 4 - \frac{2x_2}{3} - \frac{x_3}{3}$$

$$x_4 = 4 - \frac{4x_2}{3} + \frac{x_3}{3}$$

- The objective value increases along x_1 .
- Now, x_1 becomes basic variable and x_3 becomes nonbasic variable.

Previous solution (0,0,12,8) Current solution (4,0,0,4)

We get a new slack form:

$$z = 12 + 2x_2 - x_3$$

$$x_1 = 4 - \frac{2x_2}{3} - \frac{x_3}{3}$$

$$x_4 = 4 - \frac{4x_2}{3} + \frac{x_3}{3}$$

- Now, we can figure out:
 - Nonbasic variable means that the constraint boundary is reached.
 They are equal to 0.
 - Basic variable means that they the constraint boundary is not reached. There are still spaces to improve.

Previous solution (0,0,12,8) Current solution (4,0,0,4)

Given the slack form of a linear programming problem:

$$z = 12 + 2x_2 - x_3$$

$$x_1 = 4 - \frac{2x_2}{3} - \frac{x_3}{3}$$

$$x_4 = 4 - \frac{4x_2}{3} + \frac{x_3}{3}$$

• We can reconstruct the figure using nonbasic variables x_2 and x_3 as the new axis.

Given the slack form of a linear programming problem:

$$z = 12 + 2x_2 - x_3$$

$$x_1 = 4 - \frac{2x_2}{3} - \frac{x_3}{3}$$

$$x_4 = 4 - \frac{4x_2}{3} + \frac{x_3}{3}$$

- Select x_2 to increase. Compare $4/(\frac{2}{3})$, $4/(\frac{4}{3})$ and select the minimum one: 3.
- We get $x_2 = 3 + \frac{x_3}{4} \frac{3x_4}{4}$.

We get a new slack form:

$$z = 18 - \frac{x_3}{2} - \frac{x_4}{2}$$

$$x_1 = 2 - \frac{x_3}{2} + \frac{x_4}{2}$$

$$x_2 = 3 + \frac{x_3}{4} - \frac{3x_4}{4}$$

- The current solution is (2,3,0,0) with z=18.
- The objective value increases along x_2 .

Current solution (2,3,0,0)

Simplex

- In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron (四面体) to arbitrary dimensions.
 - a 0-simplex is a point,
 - a 1-simplex is a line segment,
 - a 2-simplex is a triangle,
 - a 3-simplex is a tetrahedron,
 - a 4-simplex is a 5-cell.

Polyhedron of simplex algorithm in 3D

Use simplex algorithm to solve the following slack form linear programming problem:

$$z = 0 + x_1 + 2x_2$$

$$x_3 = 6 - (x_1 + 2x_2)$$

$$x_4 = 12 - (3x_1 + 2x_2)$$

$$x_5 = 2 - x_2$$

Given the slack form:

$$z = 0 + x_1 + 2x_2$$

$$x_3 = 6 - (x_1 + 2x_2)$$

$$x_4 = 12 - (3x_1 + 2x_2)$$

$$x_5 = 2 - x_2$$

- Select x_1 and compare 6/1 and 12/3.
- We get: $x_1 = 4 \frac{2x_2}{3} \frac{x_4}{3}$.

■ Replace $x_1 = 4 - \frac{2x_2}{3} - \frac{x_4}{3}$ in and update the slack form:

$$z = 4 + \frac{4x_2}{3} - \frac{x_4}{3}$$

$$x_1 = 4 - \frac{2x_2}{3} - \frac{x_4}{3}$$

$$x_3 = 2 - \frac{4x_2}{3} + \frac{x_4}{3}$$

$$x_5 = 2 - x_2$$

- Select x_2 and compare $2/(\frac{4}{3})$ and 2/1.
- We get: $x_2 = \frac{3}{2} \frac{3x_3}{4} + \frac{x_4}{4}$.

■ Replace $x_2 = \frac{3}{2} - \frac{3x_3}{4} + \frac{x_4}{4}$ in and update the slack form:

$$z = 6 - x_3$$

$$x_1 = 3 + \frac{x_3}{2} - \frac{x_4}{2}$$

$$x_2 = \frac{3}{2} - \frac{3x_3}{4} + \frac{x_4}{4}$$

$$x_5 = \frac{1}{2} + \frac{3x_3}{4} - \frac{x_4}{4}$$

■ Final solution: $x_1 = 3$, $x_2 = \frac{3}{2}$ with optimal objective value 6.

Conclusion

After this lecture, you should know:

- What is linear programming problem.
- How to convert it into standard form and slack form.
- How to use simplex algorithm to solve linear programming.

Homework

P192-193

10.1

10.3

10.6

10.7

谢谢

有问题欢迎随时跟我讨论

