
算法设计与分析
Lecture 11: NP Complete Theory

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

A Story

¡ Suppose you work in industry, and your boss gives you the task of
finding an efficient algorithm for some problem very important to
the company.

¡ After laboring long hours on the problem for over a month, you have
no idea at all toward an efficient algorithm.

¡ Giving up, you return to your boss and ashamedly announce that you
simply can’t find an efficient algorithm.
¡ Your boss: “I’m going to fire you and hire some smarter guys to solve this

problem!”

¡ You: “It is not because I’m stupid, but it is not possible to find an efficient
algorithm for this problem!”

¡ So, your boss gives you another month to prove that it is impossible.

1

A Story

¡ After a second month of hardworking, you fail again.
¡ At this point you’ve failed to obtain an efficient algorithm and you’ve

failed to prove that such an algorithm is not possible.

¡ You are on the edge of being fired.

¡ Suddenly, you discover that the company’s problem is similar to
the 0/1 knapsack problem, and if the company’s problem is
solved, it will lead to a more efficient algorithm for the 0/1
knapsack problem.

2

A Story

¡ However, no one has ever found a more efficient algorithm for
the 0/1 knapsack problem or proven that such an algorithm is
not possible.

¡ You see one last hope. If you could prove that an efficient
algorithm for the company’s problem would automatically yield
a more efficient algorithm for the 0/1 knapsack problem, it
would mean that your boss is asking you to accomplish
something that even the greatest computer scientists can’t
solve.

¡ You ask for a chance to prove this, and your boss agrees.

3

A Story

¡ After only a week of effort, you do indeed prove that an
efficient algorithm for the company’s problem would
automatically yield a more efficient algorithm for the 0/1
knapsack problem.

¡ Rather than being fired, you’re given a promotion because you
have saved the company a lot of money.

¡ Your boss now realizes that it would not be worthy to continue
to expend great effort looking for an exact algorithm for the
company’s problem and that other directions, such as looking
for an approximate solution, should be explored.

¡ Happy ending~

4

Computational Complexity

¡ What we have just described is exactly what computer
scientists have successfully done for the last 30 years.

¡ Given a problem, we can’t solve it, and we can’t prove it is
impossible either, so we show that are equally hard as other
similar problems.
¡ If we had an efficient algorithm for any one of them, we would have

efficient algorithms for all of them.
¡ Such an algorithm has never been found, but it’s never been proven that

one is not possible.

¡ These interesting problems are called NP-complete (NP完全)
and are the focus of this lecture.

5

DECISION PROBLEM

6

Polynomial-Time Algorithm

Definition

A polynomial-time algorithm (多项式时间算法) is one whose
worst-case time complexity is bounded above by a polynomial
function of its input size. That is, if 𝑛 is the input size, there exists
a polynomial function 𝑝(𝑛) such that

𝑊 𝑛 = 𝑂 𝑝 𝑛 .

where 𝑊 𝑛 is the worst-case time complexity.

7

Example

Algorithms with the following worst-case time complexities are
all polynomial-time.

2𝑛 3𝑛! + 4𝑛 5𝑛 + 𝑛"# 𝑛 lg 𝑛

Algorithms with the following worst-case time complexities are
not polynomial-time.

2$ 2#.#"$ 2 $ 𝑛!

8

Polynomial-Time Algorithm

¡ In computer science, we divide problems into “easy group” and
“difficult group” based on the boundary: can be solved in
polynomial-time or not.

¡ A problem is called intractable (难解的) if it is impossible to
solve it with a polynomial-time algorithm.

¡ A problem can be solved in Θ(𝑛"##) is also in “easy group”.
¡ Once we have a Θ(𝑛!"") algorithm, we may improve it to a Θ(𝑛#")

algorithm a few moments later.

9

The Three General Problem Categories

¡ There are three general categories of problems we concern:
1. Problems for which polynomial-time algorithms have been found.

2. Problems that have been proven to be intractable.

3. Problems that have not been proven to be intractable, but for which
polynomial-time algorithms have never been found.

¡ It is a surprising phenomenon that most problems in computer
science fall into either the first or third category.
¡ It’s extremely hard to prove the intractability of a problem (can’t find a

polynomial-time algorithm for it).

10

The Three General Problem Categories

1. Problems for which polynomial-time algorithms have been found.
¡ For example, we have found:

¡ Θ(𝑛 lg 𝑛) algorithms for sorting.
¡ Θ(lg 𝑛) algorithm for searching a sorted array.
¡ Θ(𝑛!.#$) algorithm for matrix multiplication.
¡ Θ(𝑛#) algorithm for chained matrix multiplication.

¡ There are some other problems for which we have developed
polynomial-time algorithms, but for which the obvious brute-force
algorithms are nonpolynomial (usually exponential).
¡ E.g. the shortest paths problem, the optimal BST problem, and the MST

problem.

11

The Three General Problem Categories

3. Problems that have not been proven to be intractable, but for
which polynomial-time algorithms have never been found.

¡ For example, the 0-1 knapsack problem, the traveling
salesperson problem, the sum-of-subsets problem, the 𝑚-
coloring problem for 𝑚 ≥ 3, and the Hamiltonian cycle
problem all fall into this category.

¡ We have found branch-and-bound algorithms, backtracking
algorithms, and other algorithms for these problems that are
efficient for many large instances. However, they are still not
polynomial-time.

12

Decision Problem

¡ It is more convenient to develop the theory if we restrict
ourselves to decision problems (判定问题).

¡ The output of a decision problem is a simple “yes” or “no”
answer.

¡ Yet when we introduced some of the problems mentioned
previously, we presented them as optimization problems.
¡ The output is an optimal solution.

¡ Each optimization problem has a corresponding decision
problem.

13

Example

¡ The 0-1 knapsack optimization problem is to determine the
maximum total profit of the items that can be placed in a
knapsack with capacity 𝑊.

¡ The corresponding 0-1 knapsack decision problem is to
determine, for a given profit 𝑃, whether it is possible to load
the knapsack so as to keep the total weight no greater than 𝑊,
while making the total profit at least equal to 𝑃.
¡ This problem has the same parameters as the 0-1 knapsack optimization

problem plus the additional parameter 𝑃.

14

Example

15

𝒊 𝒗𝒊 𝒘𝒊

1 $10 1kg
2 $12 1kg
3 $15 2kg
4 $20 3kg

Optimization problem

𝑊=5kg

What is the maximum total profit?

𝒊 𝒗𝒊 𝒘𝒊

1 $10 1kg
2 $12 1kg
3 $15 2kg
4 $20 3kg

Decision problem

𝑊=5kg

Can we make maximum total
profit not less than 40?

Example

¡ The shortest path optimization problem is to find the shortest
path from vertex 𝑢 to vertex 𝑣 in an unweighted graph 𝐺 =
(𝑉, 𝐸).

¡ The corresponding shortest path decision problem is to
determine whether it is possible to find a path from vertex 𝑢 to
vertex 𝑣 in an unweighted graph 𝐺 = (𝑉, 𝐸), though at most 𝑘
edges.
¡ This problem has the same parameters as the shortest path optimization

problem plus the additional parameter 𝑘.

16

Decision Problem

¡ A polynomial-time algorithm for an optimization problem
automatically solves the corresponding decision problem.
¡ E.g., find the shortest path and compare it with 𝑘.

¡ For many decision problems, it’s been shown that a
polynomial-time algorithm for the decision problem would also
yield a polynomial-time algorithm for the corresponding
optimization problem.
¡ Therefore, we can initially develop our theory considering only decision

problems.

¡ They are equivalent!

17

Example

¡ Considering the minimum vertex coloring problem.

¡ If we have a polynomial-time algorithm for the corresponding
decision problem: ColorIsTrue(𝐺, 𝑘). It returns true if and only if
graph 𝐺 can be 𝑘-colored.

¡ The algorithm for minimum vertex coloring problem can be
constructed by:

¡ It can be easily verified thatMinColoring(𝐺) is also polynomial-time.

18

MinColoring(𝐺)
1 𝑘 ← 0
2 while ColorIsTrue(𝐺, 𝑘)≠ True do
3 𝑘 ← 𝑘 + 1
4 return 𝑘

P AND NP

19

Encoding

¡ If a computer program is to solve an abstract problem (抽象问
题), problem instances must be represented in a way that the
program understands.

¡ An encoding is a mapping 𝑒 from abstract objects to the set of
binary strings.

¡ Thus, a computer algorithm that "solves" some abstract
decision problem actually takes an encoding of a problem
instance as input.

20

Encoding

¡ Abstract problem: 0/1 knapsack problem.

¡ Problem instance: 0/1 knapsack problem with 𝑤" = 1, 𝑤1 = 1,
𝑤! = 2, 𝑣" = 10, 𝑣1 = 12, 𝑣! = 15, 𝑊 = 3.

¡ Encoding of this problem instance:
11001010101… .101010010101

21

Encoding

¡ We call a problem whose instance set is the set of binary
strings a concrete problem (具体问题).

¡ Given a problem instance 𝑖 of length 𝑛 = |𝑖|, we say that an
algorithm solves a concrete problem in time 𝑂 𝑇 𝑛 if the
algorithm can produce the solution in 𝑂 𝑇 𝑛 time.

¡ A concrete problem is polynomial-time solvable (多项式时间
可解的), therefore, if there exists an algorithm to solve it in
time 𝑂(𝑛2) for some constant 𝑘.

22

A Formal-Language Framework

¡ The formal-language framework allows us to express the
relation between decision problems and algorithms that solve
them concisely.

¡ An alphabet (字符集) Σ is a finite set of symbols.

¡ A language (语言) 𝐿 over Σ is a set of strings made up of
symbols from Σ.
¡ For example, if Σ = {0,1}, the language 𝐿 = {10, 11,101, 111, 1011,
1101, 10001,… } is the language of binary representations of prime
numbers.

23

A Formal-Language Framework

¡ Denote empty string by 𝜀, and the empty language by Ø.

¡ The language of all strings over Σ is denoted Σ∗.
¡ For example, if Σ = {0,1}, then Σ∗ = {𝜀, 0, 1, 00, 01, 10, 11, 000, … } is the

set of all binary strings.

¡ Every language 𝐿 over Σ is a subset of Σ∗.

24

A Formal-Language Framework

¡ As we encode every problem instance into binary representation, the
set of instances for any decision problem 𝑄 is simply a subset of Σ∗,
where Σ = {0,1}.

¡ Let 𝑥 be an instance of the decision problem 𝑄 and 𝑄 𝑥 = 1 if 𝑥 is
true.

¡ Since 𝑄 is entirely characterized by those problem instances that
produce a 1 (yes) answer, we can use language 𝐿 over Σ = {0,1} to
represent problem 𝑄, where

𝐿 =

10010010…1010010
10111010…1110100

⋮
11001001…1100011

= {𝑥 ∈ Σ∗: 𝑄(𝑥) = 1}.

25

A Formal-Language Framework

¡ Now, we can use language to represent problem.

¡ For example, the decision problem PATH has the corresponding
language:

26

PATH = {⟨𝐺, 𝑢, 𝑣, 𝑘⟩: 𝐺 = (𝑉, 𝐸) is an undirected graph, 𝑢, 𝑣 ∈
𝑉, 𝑘 ≥ 0 is an integer, and there exists a path from 𝑢 to 𝑣 in 𝐺

consisting of at most 𝑘 edges}.

A Formal-Language Framework

Definition 11.1
We say that an algorithm 𝐴 accepts (接受) a string 𝑥 ∈ 0,1 ∗ if,
given input 𝑥, the algorithm's output 𝐴(𝑥) is 1.
The language accepted by an algorithm 𝐴 is the set of strings:

𝐿 = {𝑥 ∈ 0, 1 ∗: 𝐴(𝑥) = 1}
that is, the set of strings that the algorithm accepts.
An algorithm 𝐴 rejects (拒绝) a string 𝑥 if 𝐴(𝑥) = 0.
¡ However, we can’t say that algorithm 𝐴 solves 𝐿, because we’re

not sure if 𝐴 will reject all 𝑥 ∉ 𝐿.
¡ 𝐴 may iterate forever for such 𝑥.

27

A Formal-Language Framework

Definition 11.2

A language 𝐿 is decided (判定) by an algorithm 𝐴 if ∀𝑥 ∈ 𝐿 is
accepted by 𝐴 and ∀𝑥 ∉ 𝐿 is rejected by 𝐴.

A language 𝐿 is accepted in polynomial time by an algorithm 𝐴 if
there is a constant 𝑘 such that for any length-𝑛 string 𝑥 ∈ 𝐿,
algorithm 𝐴 accepts 𝑥 in time 𝑂(𝑛2).
A language 𝐿 is decided in polynomial time by an algorithm 𝐴 if
there is a constant 𝑘 such that for any length-𝑛 string 𝑥 ∈ 0,1 ∗,
algorithm 𝐴 correctly decides whether 𝑥 ∈ 𝐿 in time 𝑂(𝑛2).

28

A Formal-Language Framework

¡ We can informally define a complexity class (复杂类) as a set of
languages, membership in which is determined by a complexity
measure, such as running time, of an algorithm that determines
whether a given string 𝑥 belongs to language 𝐿.

¡ Using this language-theoretic framework, we can provide an
alternative definition of the complexity class P:

Definition 11.3
P = {𝐿 ∈ 0, 1 ∗ : there exists an algorithm 𝐴 that decides 𝐿 in
polynomial time}.
Theorem 11.1
P = {𝐿 : 𝐿 is accepted by a polynomial-time algorithm}.

29

P and NP

¡ All decision problems for which we have found polynomial-
time algorithms are certainly in P.
¡ Searching, sorting, matrix multiplication…

¡ However, could some decision problem like 0/1 knapsack
decision problem for which we have not found a polynomial-
time algorithm also be in P?
¡ We don’t know! It could possibly be in P.

¡ No one finds a polynomial-time algorithm and no one proves that it is not
in P.

30

P and NP

¡ It seems that the research on this kind of hard problem gets
stuck.

¡ Instead, for this kind of decision problem like 0/1 knapsack
decision problem, we’d like to if we can verify an answer in
polynimial-time.

31

Hamiltonian Cycle Problem

¡ A Hamiltonian cycle (哈密顿回路) of an undirected graph 𝐺 =
(𝑉, 𝐸) is a simple cycle that contains each vertex in 𝑉.

¡ A graph that contains a Hamiltonian cycle is said to be
Hamiltonian; otherwise, it is non-Hamiltonian.

¡ The Hamiltonian cycle problem "Does a graph 𝐺 have a
Hamiltonian cycle?" can be defined as a formal language:

HamCycle = {𝐺: 𝐺 is a Hamiltonian graph}.

¡ Solving this problem can trace back to hundreds years ago. Now,
we still can’t find a polynomial-time algorithm that decides
HamCycle.

32

Hamiltonian Cycle Problem

¡ Now, if god tells you a cycle in 𝐺 and let you verify if this cycle is
a Hamiltonian cycle.

¡ Is this problem easy to solve?

¡ Of course! Simply check if it is a simple cycle and if every edge
in this cycle is in 𝐸.

¡ The verification can be done in 𝑂(𝑛1). It is obviously
polynomial time.

33

Verification Algorithms

¡ A verification algorithm (验证算法) can be defined as an algorithm 𝐴
with two arguments:
¡ An ordinary input string 𝑥, which is a problem instance;
¡ A string 𝑦 called a certificate (证书), which is a given answer of 𝑥.

¡ Verification algorithm 𝐴 verifies an problem instance string 𝑥 if there
exists a certificate 𝑦 such that 𝐴(𝑥, 𝑦) = 1.

¡ The language can be verified by a verification algorithm 𝐴 is
𝐿 = {𝑥 ∈ 0,1 ∗: there exists 𝑦 ∈ 0,1 ∗ such that 𝐴(𝑥, 𝑦) = 1}.

¡ Intuitively, an algorithm 𝐴 verifies a language 𝐿 if for any string 𝑥 ∈ 𝐿, there is
a certificate 𝑦 that 𝐴 can use to prove that 𝑥 ∈ 𝐿.

¡ Moreover, for any string 𝑥 ∉ 𝐿, there must be no certificate proving that 𝑥 ∈
𝐿.

34

NP

Definition 11.4

The complexity class NP is the class of languages that can be
verified by a polynomial-time algorithm.

¡ Notice that NP stands for “nondeterministic polynomial”, rather
than “non-polynomial”.
¡ What is nondeterministic???

35

Nondeterministic Algorithm

¡ To state the notion of polynomial-time verifiability more concretely,
we introduce the concept of a nondeterministic algorithm (非确定性
算法).

¡ We can think of such an algorithm as being composed of the
following two separate stages:
1. Guessing (Nondeterministic) Stage: Guess a solution to the given

instance. It is called nondeterministic because this stage is totally random.

2. Verification (Deterministic) Stage: Verify the answer: (1) the answer for
this instance is “yes”, (2) the answer for this instance is “no”, or (3) can’t
verify at all (that is, going into an infinite loop). It is called deterministic
because only “yes” or “no” can be produced in this stage.

36

Nondeterministic Algorithm

¡ For the Hamiltonian cycle problem, we can design a
nondeterministic algorithm:

37

NondeterministicHamCycle(𝐺)
1 𝑆 ← 𝑉
2 𝑝 ← ∅
3 for 𝑖 ← 1 to |𝑉| do
4 Randomly select one vertex 𝑣 from 𝑆
5 𝑝 ← 𝑝 ∪ {𝑣}
6 𝑆 ← 𝑆 − {𝑣}
7 if verify(𝐺, 𝑝)=1 then return True
8 else return False

Polynomial-Time Nondeterministic Algorithm

Definition
A polynomial-time nondeterministic algorithm is a
nondeterministic algorithm whose verification stage is a
polynomial-time algorithm.
Definition
NP is the set of all decision problems that can be solved by
polynomial-time nondeterministic algorithms.
¡ We are not sure if one can be solved in polynomial-time, but

we know that we can verify an answer of it in polynomial-time.
¡ This definition is equivalent to the previous definition.

38

P and NP

¡ There are thousands of problems that no one has been able to solve
with polynomial-time algorithms but that have been proven to be in
NP because polynomial-time nondeterministic algorithms have been
developed for them.
¡ The answers to them can be verified in polynomial-time.

¡ Every problem in P is also in NP.
¡ This is trivially true because any problem in P can be solved by a polynomial-

time algorithm.
¡ When it is solved, it is also verified.

¡ There are only few problems that have been proved not in NP.
¡ The intractable problems, e.g. the Halting problem and Presburger

Arithmetic.

39

P and NP

¡ Because P is in NP, it is easy to
think that NP contains P as a
proper subset.

¡ However, this may not be the
case. That is, no one has ever
proven that there is a problem
in NP that is not in P.

¡ No one knows if P=NP or not
yet.
¡ If P=NP, it means that once we

can verify answer of a problem in
polynomial-time, we can solve it
in polynomial-time!

40

Image source: Figure 9.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

P=NP?

¡ To prove P=NP or P≠NP is one of the Millennium Prize Problems (千禧年大
奖难题), which are seven problems in mathematics that were stated by the
Clay Mathematics Institute on May 24, 2000.
¡ A correct solution to any of the problems results in a US$1 million prize being awarded

by the institute to the discoverer(s).

¡ They are:
¡ P versus NP (P/NP问题)
¡ Birch and Swinnerton-Dyer conjecture (贝赫和斯维讷通-戴尔猜想)
¡ Hodge conjecture (霍奇猜想)
¡ Navier-Stokes existence and smoothness (纳维-斯托克斯存在性与光滑性)
¡ Poincaré conjecture (庞加莱猜想)
¡ Riemann hypothesis (黎曼猜想)
¡ Yang-Mills existence and mass gap (杨-米尔斯存在性与质量间隙)

41

Statistic source: http://www.cs.umd.edu/~gasarch/papers/poll.pdf

http://www.cs.umd.edu/~gasarch/papers/poll.pdf

P=NP?

42

Statistic source: http://www.cs.umd.edu/~gasarch/papers/poll.pdf

N≠NP
61%N=NP

9%

No idea
30%

A POLL OVER 100 COMPUTER SCIENTISTS
IN 2002

http://www.cs.umd.edu/~gasarch/papers/poll.pdf

Consequences of Solution

¡ Either P=NP or P≠NP is proved would advance theory enormously,
and perhaps have huge practical consequences as well.

¡ If P=NP is proved:
¡ Some cryptography encryption methods in NP will not be treated safe any

more.
¡ Researchers will be more confident to propose polynomial-time algorithms

for problems in NP.

¡ If P≠NP is proved:
¡ Some cryptography encryption methods in NP will be treated safe.
¡ It would allow one to show in a formal way that many common problems

cannot be solved efficiently, so that the attention of researchers can be
focused on partial solutions or solutions to other problems.

43

Classroom Exercise

Design a polynomial-time nondeterministic algorithm for the 0/1
knapsack problem.

44

NP COMPLETE

45

NP Complete

¡ There are a lot of problems:
¡ No polynomial-time algorithm is found;

¡ Can’t prove it is impossible to find a polynomial-time algorithm.

¡ There is a special group among these problems. If a
polynomial-time algorithm is developed for one of it, every
problem in this group can be solved in polynomial time.

¡ This group is called NP complete.
¡ There are more than 3000 known NP-complete problems. See here for

some typical ones.

46

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Reducibility

¡ Before formally define NP complete, we first introduce the concept
of reducibility (约简).

¡ If any instance of problem 𝑄 can be easily transformed into an
instance of problem 𝑄′, we say that problem 𝑄 reduces to problem
𝑄′, and the solution for the transformed instance of 𝑄′ is also the
solution for the instance of 𝑄.

¡ If we find such a transformation, 𝑄 will not be harder than 𝑄′.

47

Instance of 𝑄 Instance of 𝑄′

Solution for
instance of 𝑄′

Solution for
instance of 𝑄

transform

solve

transform

Example

¡ Problem 𝑄: solve linear equation 𝑎𝑥 + 𝑏 = 0.

¡ Problem 𝑄′: solve quadratic equation 𝑎𝑥1 + 𝑏𝑥 + 𝑐 = 0.

¡ Any instance of 𝑄 can be transformed into an instance of 𝑄′:
𝑎𝑥 + 𝑏 = 0 0𝑥1 + 𝑎𝑥 + 𝑏 = 0

48

Reducibility

Definition 11.6

A language 𝐿" is polynomial-time reducible to a language 𝐿1,
written 𝐿" ≤4 𝐿1, if there exists a polynomial-time computable
function 𝑓: 0, 1 ∗ → 0,1 ∗ such that for all 𝑥 ∈ 0,1 ∗,

𝑥 ∈ 𝐿" if and only if 𝑓(𝑥) ∈ 𝐿1
We call the function 𝑓 the reduction function (约简函数), and a
polynomial-time algorithm 𝐴 that computes 𝑓 is called a
reduction algorithm (约简算法).

¡ The symbol ≤4 means polynomial-time reducible. 𝐿" ≤4 𝐿1
indicates the difficulty of 𝐿" will not be higher than 𝐿1.

49

Reducibility

¡ The reduction function 𝑓 provides a polynomial-time mapping
such that if 𝑥 ∈ 𝐿", then 𝑓(𝑥) ∈ 𝐿1. Moreover, if 𝑥 ∉ 𝐿", then
𝑓(𝑥) ∉ 𝐿1.

50

𝑓

0, 1 ∗0, 1 ∗

𝐿"
𝐿#

Reducibility

Lemma 11.1

If 𝐿", 𝐿1 ∈ 0,1 ∗ are languages such that 𝐿" ≤4 𝐿1, then 𝐿1 ∈ 𝑃
implies 𝐿" ∈ 𝑃.

Proof:

¡ Let 𝐴1 be a polynomial-time algorithm that decides 𝐿1, and let
𝐹 be a polynomial-time reduction algorithm that computes the
reduction function 𝑓.

¡ We can construct a polynomial time algorithm 𝐴" that decides
𝐿".

51

Reducibility

52

𝐹 𝐴D

yes, 𝑓(𝑥) ∈ 𝐿#

no, 𝑓(𝑥) ∉ 𝐿#

yes, 𝑥 ∈ 𝐿"

no, 𝑥 ∉ 𝐿"
𝐴E

𝑥 𝑓(𝑥)

Polynomial time

Polynomial time

Polynomial time

NP-Completeness

¡ Polynomial-time reductions provide a formal means for showing that
one problem is at least as hard as another, to within a polynomial-
time factor.

Definition 11.7
A language 𝐿 ∈ 0,1 ∗ is NP-complete (NPC, NP完全) if
1. 𝐿 ∈ NP, and
2. 𝐿" ≤# 𝐿 for every 𝐿′ ∈ NP.
If a language 𝐿 satisfies property 2, but not necessarily property 1, we
say that 𝐿 is NP-hard (NP难).
¡ Usually, the optimization problem of an NPC decision problem is NP-

hard, because verifying an optimization problem is not in NP.

53

NP-Completeness

54

¡ A problem is NP-complete if it is both in NP and NP-hard.

¡ The NP-complete problems represent the hardest problems in
NP.

¡ If any NP-complete problem has a polynomial time algorithm,
all problems in NP do.

Theorem 11.2

If any NP-complete problem is polynomial-time solvable, then
P=NP. Equivalently, if any problem in NP is not polynomial-time
solvable, then no NP-complete problem is polynomial time
solvable.

NP-Completeness

55

Image source: https://en.wikipedia.org/wiki/NP-completeness

https://en.wikipedia.org/wiki/NP-completeness

NP-Completeness Proofs

¡ By Definition 11.7, if we want to prove language 𝐿 be NPC, we
should prove:

1. 𝐿 ∈ 𝑁𝑃, and

2. 𝐿A ≤4 𝐿 for every 𝐿′ ∈ 𝑁𝑃.

¡ Property 1 is easy to prove by constructing a polynomial-time
verification algorithm.

¡ How to prove property 2? Find all 𝐿′ ∈ NP in the university and
show 𝐿A ≤4 𝐿?

56

NP-Completeness Proofs

Lemma 11.4
If 𝐿 is a language such that 𝐿A ≤4 𝐿 for some 𝐿′ ∈ NPC, then 𝐿 is
NP-hard. Moreover, if 𝐿 ∈ NP, then 𝐿 ∈ NPC.
¡ This Lemma tells you: you don’t need to prove 𝐿A ≤4 𝐿 for all
𝐿′ ∈ NP, just prove 𝐿A ≤4 𝐿 for one 𝐿′ ∈ NPC.

Proof:
¡ Since 𝐿′ is NPC, for all 𝐿′′ ∈ NP, we have 𝐿′′ ≤4 𝐿′.
¡ By supposition, 𝐿′ ≤4 𝐿, and thus by transitivity, we have
𝐿′′ ≤4 𝐿′ ≤4 𝐿 for all 𝐿′′ ∈ NP, which shows that 𝐿 is NP-hard.

¡ If 𝐿 ∈ NP, we also have 𝐿 ∈ NPC.

57

NP-Completeness Proofs

Method to prove that a language 𝐿 is NP-complete:

1. Prove 𝐿 ∈ NP.

2. Select a known NP-complete language 𝐿′.
3. Describe an algorithm that computes a function 𝑓 mapping

every instance 𝑥 ∈ 0,1 ∗ of 𝐿′ to an instance 𝑓(𝑥) of 𝐿.

4. Prove that the function 𝑓 satisfies 𝑥 ∈ 𝐿′ if and only if 𝑓(𝑥) ∈
𝐿 for all 𝑥 ∈ 0,1 ∗.

5. Prove that the algorithm computing 𝑓 runs in polynomial
time.

58

NP-Completeness Proofs

¡ Things seem to be easy now, we can use an NPC problem to
prove more NPC problems.

¡ However, where is the first NPC problem?

59

Satisfiability Problem

¡ A Boolean formula 𝜑 composed of:
¡ 𝑛 Boolean variables: 𝑥!, 𝑥&, … , 𝑥';

¡ 𝑚 Boolean connectives (连接符): such as ∧ (AND), ∨ (OR), ¬ (NOT), →
(implication), ↔ (if and only if);

¡ Parentheses.

¡ If we can find a set of values for the variables of 𝜑 that causes
it to evaluate to 1, we call this formula 𝜑 is satisfiable (可满足
的).

¡ The satisfiability problem (SAT,可满足性问题) is to determine
if a formula is satisfiable.

60

Example

¡ Given a Boolean formula:

𝜑 = 𝑥" → 𝑥1 ∨ ¬ ¬𝑥" ↔ 𝑥! ∨ 𝑥B ∧ ¬𝑥1

is this formula satisfiable?

¡ Yes, assign 𝑥" = 0, 𝑥1 = 0, 𝑥! = 1, 𝑥B = 1, we get:

0 → 0 ∨ ¬ ¬0↔ 1 ∨ 1 ∧ ¬0
= 1 ∨ ¬ 1 ∨ 1 ∧ 1
= 1

61

Satisfiability Problem

Theorem 11.4

SAT is NP-complete.

¡ In 1971, Stephen Cook proves the first
NPC problem.

¡ This problem itself is not interesting at
all.

¡ However, we can use it to prove NP-
completeness of other problems.

62

Image source: https://en.wikipedia.org/wiki/Stephen_Cook

Stephen Cook
Turing Award in 1982

https://en.wikipedia.org/wiki/Stephen_Cook

Satisfiability Problem

Proof:

¡ Show that SAT is in NP.
¡ The verifying algorithm simply replaces each variable in the formula with

its corresponding value and then evaluates the expression.

¡ This task is easily done in polynomial time.

¡ If the expression evaluates to 1, the formula is satisfiable.

¡ Show that SAT is NP-hard.
¡ Not that easy to prove.

63

Satisfiability Problem

¡ It can be shown that:
¡ SAT ≤(Hamiltonian cycle decision problem.

¡ Hamiltonian cycle decision problem ≤(undirected traveling salesperson
decision problem.

¡ Undirected traveling Salesperson decision problem ≤(traveling
salesperson decision problem.

¡ …

¡ Now, we don’t need to use the definition to prove the NP-
completeness of a problem. Instead, simply find another NP-
complete problem and show the reducibility.

64

3-CNF Satisfiability

¡ A literal in a Boolean formula is an occurrence of a variable 𝑥C
or its negation ¬𝑥C.

¡ A Boolean formula is in conjunctive normal form (CNF,合取范
式), if it is expressed as an AND of clauses, each of which is the
OR of one or more literals.

¡ A Boolean formula is in 3-CNF, if each clause has exactly three
distinct literals. For example:
𝑥" ∨ ¬𝑥" ∨ ¬𝑥1 ∧ (𝑥! ∨ 𝑥1 ∨ 𝑥B) ∧ (¬𝑥" ∨ ¬𝑥! ∨ ¬𝑥B)

¡ In 3-CNF-SAT problem, we are asked whether a given Boolean
formula 𝜑 in 3-CNF is satisfiable.

65

NP-Completeness of 3-CNF Satisfiability

Theorem 11.5

3-CNF-SAT is NP-complete.

Proof:

¡ Step 1: 3-CNF-SAT in NP is obvious, just like SAT problem.

¡ Step 2: Prove SAT≤43-CNF-SAT.

¡ Therefore, we need to construct a reduction algorithm to
transform any formula into 3-CNF.
¡ We have learned how to transform any formula into CNF in discrete math.

¡ The reduction algorithm has three steps.

66

NP-Completeness of 3-CNF Satisfiability

Proof (cont’d):

¡ The first step is to construct a binary "parse" tree for the input
formula 𝜑.

¡ The literals are leaves and connectives are internal nodes.

¡ Introduce a variable 𝑦C for the output of each internal node.

¡ Then, we rewrite the original formula 𝜑 as the AND of the root
variable and a conjunction of clauses describing the operation
of each node.

67

NP-Completeness of 3-CNF Satisfiability

𝜑 = 𝑥" → 𝑥1 ∨ ¬ ¬𝑥" ↔ 𝑥! ∨ 𝑥B ∧ ¬𝑥1

68

∧

∨

→ ¬

∨

↔

𝑦$

𝑥" 𝑥#

¬𝑥#

𝑥%

𝑥$¬𝑥"

𝑦#

𝑦%

𝑦&

𝑦'

𝑦"

𝜑A = 𝑦" ∧ 𝑦" ↔ 𝑦1 ∧ ¬𝑥1
∧ 𝑦1 ↔ 𝑦! ∨ 𝑦B
∧ 𝑦! ↔ 𝑥" → 𝑥1
∧ 𝑦B ↔ ¬𝑦I
∧ 𝑦I ↔ 𝑦J ∨ 𝑥B
∧ 𝑦J ↔ ¬𝑥" ↔ 𝑥!

𝜑A is conjunction of clause 𝜑CA. Each
clause 𝜑CA has at most 3 literals.

NP-Completeness of 3-CNF Satisfiability

Proof (cont’d):

¡ The second step converts each clause 𝜑C into CNF.

¡ Construct a truth table for 𝜑C by evaluating all possible
assignments to its variables.

¡ Build a formula in disjunctive normal form (DNF,析取范式)
that is equivalent to ¬𝜑C.

¡ Convert ¬𝜑C into CNF 𝜑C by using DeMorgan’s laws (德・摩根
法则) to complement all literals and switch OR and AND.

69

NP-Completeness of 3-CNF Satisfiability

¡ For example:
𝜑$" = 𝑦% ↔ 𝑦$ ∧ ¬𝑥$

¡ The DNF formula equivalent to ¬𝜑$′ is
𝑦% ∧ 𝑦$ ∧ 𝑥$ ∨ (𝑦% ∧ ¬𝑦$ ∧ 𝑥$) ∨ (𝑦%
∧ ¬𝑦$ ∧ ¬𝑥$) ∨ (¬𝑦% ∧ 𝑦$ ∧ ¬𝑥$)

¡ Applying DeMorgan’s laws, we get 𝜑$"":
(¬ 𝑦% ∨ ¬ 𝑦$ ∨ ¬ 𝑥$) ∧ (¬ 𝑦% ∨ 𝑦$
∨ ¬ 𝑥$) ∧ (¬ 𝑦% ∨ 𝑦$ ∨ 𝑥$) ∧ (𝑦% ∨ ¬ 𝑦$
∨ 𝑥$)

70

𝒚𝟏 𝒚𝟐 𝒙𝟐 (𝒚𝟏 ↔ (𝒚𝟐 ∧ ¬𝒙𝟐))
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

NP-Completeness of 3-CNF Satisfiability

Proof (cont’d):

¡ The final step further transforms the formula so that each
clause has exactly 3 distinct literals.
¡ If 𝜑)′′ has 3 distinct literals, then simply include 𝜑)′′ as clauses of 𝜑′′′.

¡ If 𝜑)′′ has 2 distinct literals 𝑙! and 𝑙&, that is, if 𝜑)′′ = (𝑙! ∨ 𝑙&), then
include 𝑙! ∨ 𝑙& ∨ 𝑝 ∧ (𝑙! ∨ 𝑙& ∨ ¬𝑝) as clauses of 𝜑′′′.

¡ If 𝜑)′′ has just 1 distinct literal 𝑙, then include 𝑙 ∨ 𝑝 ∨ 𝑞 ∧ (𝑙 ∨ 𝑝 ∨ ¬𝑞) ∧
(𝑙 ∨ ¬𝑝 ∨ 𝑞) ∧ (𝑙 ∨ ¬𝑝 ∨ ¬𝑞) as clauses of 𝜑′′′.

¡ 𝑝 and 𝑞 can be arbitrary literal.

71

NP-Completeness of 3-CNF Satisfiability

Proof (cont’d):

¡ Thus, every formular can be transformed into 3-CNF 𝜑′′′, and
𝜑′′′ is satisfiable if and only if 𝜑 is satisfiable.

¡ This reduction algorithm is polynomial time.

¡ Therefore, 3-CNF is NPC.

72

Clique Problem

¡ Now, we have known two NPC problem: SAT and 3-CNF-SAT.
We can use them to prove more NPC problems.

¡ A clique (团) is a complete subgraph of an undirected graph
𝐺 = (𝑉, 𝐸).
¡ Each pair of vertex in 𝑉* ⊆ 𝑉 is connected by an edge in 𝐸.

¡ The size of a clique is the number of vertices it contains.

¡ The clique problem is the optimization problem of finding a
clique of maximum size in a graph.

¡ As a decision problem, we ask simply whether a clique of a
given size 𝑘 exists in the graph.

73

Clique Problem

74

Image source: https://en.wikipedia.org/wiki/Clique_problem

¡ The brute force algorithm
finds a 4-clique in this 7-
vertex graph.

¡ Systematically check all
𝐶(7,4) = 35 4-vertex
subgraphs for completeness.

https://en.wikipedia.org/wiki/Clique_problem

Clique Problem

Theorem 11.6

Clique is NP-complete.

Proof:

¡ Step 1: We first prove clique is in NP.

¡ For a given graph 𝐺 = (𝑉, 𝐸), we use the set 𝑉A ⊆ 𝑉 of vertices
in the clique as a certificate for 𝐺.

¡ Checking whether 𝑉′ is a clique can be accomplished in
polynomial time by checking whether 𝑢, 𝑣 ∈ 𝐸, ∀𝑢, 𝑣 ∈ 𝑉′.

¡ Then, we use 3-CNF-SAT to prove clique problem.

75

Clique Problem

Proof (cont’d):

¡ Step 2: We next prove that 3-CNF-SAT ≤4 Clique, which shows
that the clique problem is NP-hard.

¡ That we should be able to prove this result is somewhat
surprising, since logical formulas seem to have little to do with
graphs.

¡ We need to construct a reduction algorithm that transforms
any instance of 3-CNF-SAT into an instance of clique.

76

Clique Problem

Proof (cont’d):

¡ Let 𝜑 be a Boolean formula in 3-CNF with 𝑘 clauses:
𝜑 = 𝐶" ∧ 𝐶1 ∧ ⋯∧ 𝐶2

¡ For 𝑟 = 1,2, … , 𝑘, each clause 𝐶M has exactly three distinct
literals 𝑙"M, 𝑙1M and 𝑙!M:

𝐶M = 𝑙"M ∨ 𝑙1M ∨ 𝑙!M

¡ We shall construct a graph 𝐺 such that 𝜑 is satisfiable if and
only if 𝐺 has a clique of size 𝑘.

77

Clique Problem

Proof (cont’d):

¡ The graph 𝐺 = (𝑉, 𝐸) is
constructed as follows.

¡ For each clause 𝐶M = 𝑙"M ∨ 𝑙1M ∨ 𝑙!M in
𝜑, we place a triple of vertices 𝑙"M,
𝑙1M and 𝑙!M into 𝑉.

¡ For example:
𝜑 = 𝑥" ∨ ¬𝑥1 ∨ ¬𝑥!
∧ ¬𝑥" ∨ 𝑥1 ∨ 𝑥!
∧ 𝑥" ∨ 𝑥1 ∨ 𝑥!

78

𝑥" ¬𝑥# ¬𝑥$

¬𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥" ∨ ¬𝑥# ∨ ¬𝑥$

¬𝑥" ∨ 𝑥# ∨ 𝑥$ 𝑥" ∨ 𝑥# ∨ 𝑥$

Clique Problem

Proof (cont’d):

¡ We put an edge between two
vertices 𝑙CM and 𝑙NO if both of the
following hold:
¡ 𝑙)+ and 𝑙,- are in different triples, that

is, 𝑟 ≠ 𝑠.

¡ 𝑙)+ is not the negation of 𝑙,-.

¡ This graph can easily be
computed from 𝜑 in polynomial
time.

79

𝑥" ¬𝑥# ¬𝑥$

¬𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥" ∨ ¬𝑥# ∨ ¬𝑥$

¬𝑥" ∨ 𝑥# ∨ 𝑥$ 𝑥" ∨ 𝑥# ∨ 𝑥$

Clique Problem

Proof (cont’d):
¡ A satisfiable assignment is:

𝑥$ = 0, 𝑥& = 1
and 𝑥% cam be either 0 or 1. The
corresponding 3-clique is:

{¬𝑥$, 𝑥&, 𝑥&}
¡ Another satisfiable assignment is:

𝑥% = 1, 𝑥$ = 1
and 𝑥& cam be either 0 or 1. The
corresponding 3-clique is:

{𝑥%, 𝑥$, 𝑥$}

80

𝑥" ¬𝑥# ¬𝑥$

¬𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥" ∨ ¬𝑥# ∨ ¬𝑥$

¬𝑥" ∨ 𝑥# ∨ 𝑥$ 𝑥" ∨ 𝑥# ∨ 𝑥$

Clique Problem

Proof (cont’d):

¡ We must show that this transformation of 𝜑 into 𝐺 is a reduction, i.e.
𝜑 is satisfiable if and only if 𝐺 has 𝑘-clique.

¡ We first prove ⟹. Suppose that 𝜑 has a satisfying assignment.

¡ Then each clause 𝐶' contains at least one literal that is assigned 1.

𝜑 = 𝑥% ∨ ¬𝑥$ ∨ ¬𝑥& ∧ ¬𝑥% ∨ 𝑥$ ∨ 𝑥& ∧ 𝑥% ∨ 𝑥$ ∨ 𝑥&
¡ Picking one such "true" literal from each clause yields a set 𝑉′ of 𝑘

vertices.

¡ It is easy to show that 𝑉′ is a clique by the construction of 𝐺.

81

1 1 1

Clique Problem

Proof (cont’d):

¡ Then we prove ⟸. Suppose that 𝐺 has a clique 𝑉′ of size 𝑘.

¡ No edges in 𝐺 connect vertices in the same triple, and so 𝑉′
contains exactly one vertex per triple.

¡ Assigning 1 to each literal is safe, because 𝐺 contains no edges
between complementary literals.

¡ Each clause is satisfied, and so 𝜑 is satisfied.

82

Vertex Cover Problem

¡ A vertex cover (顶点覆盖) of an
undirected graph 𝐺 = (𝑉, 𝐸) is a subset
𝑉’ ⊆ 𝑉 such that if (𝑢, 𝑣) is an edge of 𝐺 ,
then either 𝑢 ∈ 𝑉’ or 𝑣 ∈ 𝑉’ (or both).

¡ The size of a vertex cover is the number
of vertices in it.

¡ The vertex-cover problem is to find a
vertex cover of minimum size in a given
undirected graph.

¡ We can prove the completeness of
vertex cover problem by showing Clique
≤# VertexCover.

83

Image source: https://en.wikipedia.org/wiki/Vertex_cover

A vertex cover

An minimum vertex cover

https://en.wikipedia.org/wiki/Vertex_cover

Vertex Cover Problem

¡ We first introduce the notion of
complement graph (补图).

¡ Given an undirected graph 𝐺 =
(𝑉, 𝐸), we define the complement of
𝐺 as �̅� = (𝑉, t𝐸) , where t𝐸 =
{ 𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝑉 𝑎𝑛𝑑 𝑢, 𝑣 ∉ 𝐸}.

84

𝑢

𝑧

𝑣

𝑤

𝑦 𝑥

𝑢

𝑧

𝑣

𝑤

𝑦 𝑥

𝐺

�̅�

Vertex Cover Problem

Proof:

¡ We first show that VertexCover ∈ NP.

¡ Suppose we are given a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘.

¡ The certificate we choose is the vertex cover 𝑉A ⊆ 𝑉 itself.

¡ The verification algorithm affirms that |𝑉′| = 𝑘, and then it
checks:

𝑢 ∈ 𝑉’ or 𝑣 ∈ 𝑉’, ∀ 𝑢, 𝑣 ∈ 𝐸

¡ This verification can be performed straightforwardly in
polynomial time.

85

Vertex Cover Problem

Proof (cont’d):
¡ The reduction algorithm takes as input an instance ⟨𝐺, 𝑘⟩ of the

clique problem.
¡ It computes the complement �̅�, which is easily done in polynomial

time.
¡ The output of the reduction algorithm is the instance ⟨�̅�, 𝑉 − 𝑘⟩ of

the vertex-cover problem.
¡ To complete the proof, we show that this transformation is indeed a

reduction:
⟨𝐺,𝑘⟩ of the clique problem

⟨�̅�, 𝑉 − 𝑘⟩ of the vertex-cover problem

86

Vertex Cover Problem

Proof (cont’d):

87

𝑧 𝑤

𝑢 𝑣

𝑦 𝑥

𝐺 �̅�

𝑢 𝑣

𝑦 𝑥

𝑧 𝑤

Clique size = 4 Vertex cover = 6 – 4 = 2

Vertex Cover Problem

Proof (cont’d):

¡ We first prove ⟹. Suppose that 𝐺
has a clique 𝑉’ ⊆ 𝑉 with |𝑉′| = 𝑘.

¡ Since every pair of vertices in 𝑉′ is
connected by an edge of 𝐸, if
(𝑢, 𝑣) ∉ 𝐸, which implies that at
least one of 𝑢 or 𝑣 does not belong
to 𝑉′.

88

𝑧 𝑤

𝐺

𝑢 𝑣

𝑦 𝑥

𝑢 𝑣

𝑦 𝑥

�̅�

𝑧 𝑤

𝑉* = {𝑢, 𝑣, 𝑥, 𝑦}

𝑉 − 𝑉* = {𝑧, 𝑤}

Vertex Cover Problem

Proof (cont’d):

¡ We get: 𝑢, 𝑣 ∈ t𝐸 ⇒ 𝑢 ∈ 𝑉 − 𝑉′ or
𝑣 ∈ 𝑉 − 𝑉′

¡ It means that every edge (𝑢, 𝑣) ∈ t𝐸is
covered by 𝑉 − 𝑉′.

¡ Hence, the set 𝑉 − 𝑉′,which has size
|𝑉| − 𝑘, forms a vertex cover for �̅�.

89

𝑧 𝑤

𝐺

𝑢 𝑣

𝑦 𝑥

𝑢 𝑣

𝑦 𝑥

�̅�

𝑧 𝑤

𝑉* = {𝑢, 𝑣, 𝑥, 𝑦}

𝑉 − 𝑉* = {𝑧, 𝑤}

Vertex Cover Problem

Proof (cont’d):

¡ Then we prove ⟸. Suppose that �̅�
has a vertex cover 𝑉A ⊆ 𝑉, where
|𝑉′| = |𝑉| − 𝑘.

¡ Then, ∀𝑢, 𝑣 ∈ 𝑉:

𝑢, 𝑣 ∈ t𝐸 ⇒ 𝑢 ∈ 𝑉A or 𝑣 ∈ 𝑉′
¡ The contrapositive of this implication

is:

𝑢, 𝑣 ∉ t𝐸 ⇐ 𝑢 ∉ 𝑉A and 𝑣 ∉ 𝑉′

90

𝑧 𝑤

𝐺

𝑢 𝑣

𝑦 𝑥

𝑢 𝑣

𝑦 𝑥

�̅�

𝑧 𝑤

𝑉 − 𝑉* = {𝑢, 𝑣, 𝑥, 𝑦}

𝑉* = {𝑧, 𝑤}

Vertex Cover Problem

Proof (cont’d):

𝑢, 𝑣 ∉ t𝐸 ⇐ 𝑢 ∉ 𝑉A and 𝑣 ∉ 𝑉′

𝑢, 𝑣 ∈ 𝐸 ⇐ 𝑢 ∈ 𝑉 − 𝑉A and 𝑣 ∈ 𝑉 − 𝑉A

¡ In other words, 𝑉 − 𝑉′ is a clique, and
it has size 𝑉 − 𝑉 − 𝑘 = 𝑘.

91

𝑧 𝑤

𝐺

𝑢 𝑣

𝑦 𝑥

𝑢 𝑣

𝑦 𝑥

�̅�

𝑧 𝑤

𝑉 − 𝑉* = {𝑢, 𝑣, 𝑥, 𝑦}

𝑉* = {𝑧, 𝑤}

NP-Completeness Proof Graph

92

SAT

3-CNF-SAT

Clique

VertexCover

SubsetSumHamCycleTSP

GraphColoring

SetCover

Partition BinPackingParallelScheduling

Knapsack

StripPacking

Classroom Exercise

¡ The subset-sum problem (子集和问题) is defined as follows:
¡ Given a sequence of integers 𝐴 = {𝑎%, … , 𝑎&, 𝑡}, determine whether there is a

subset of the integers such that the sum is equal to 𝑡.
¡ For example, given {𝑎%, 𝑎!, 𝑎#, 𝑎', 𝑎(, 𝑡} = {1, 6, 4, 3, 2, 8}, we have 𝑎% +
𝑎# + 𝑎(= 8.

¡ The partition problem (划分问题) is defined as follows:
¡ Given a sequence of integers 𝐴 = {𝑎%, … , 𝑎&}, determine whether there is a

partition into two subsets such that their sums are equal.
¡ For example, given {𝑎%, 𝑎!, 𝑎#, 𝑎', 𝑎(} = {1, 6, 4, 3, 2}, we have 𝑎% + 𝑎# +
𝑎' = 𝑎! + 𝑎(= 8.

¡ If we know that subset-sum problem is NPC, prove that partition
problem is NPC.

93

Classroom Exercise

Proof:

¡ Step 1: Show that partition decision problem is in NP by
checking its verification stage in polynomial-time or not.
¡ Input: A set of index 𝑆.

¡ Output: Yes or No.
¡ 𝑠𝑢𝑚! = ∑"∈$ 𝑎",	𝑠𝑢𝑚% = ∑"&!' 𝑎" − 𝑠𝑢𝑚!.

¡ If 𝑠𝑢𝑚! == 𝑠𝑢𝑚%, return Yes; else return No.

¡ It is obviously polynomial-time.

94

Classroom Exercise

Proof (cont’d):

¡ Step 2: Prove that subset-sum ≤4 partition.

¡ Compare the two problems:
¡ Subset-Sum: Given (𝑎!, … , 𝑎', 𝑡), where 𝑡 and all 𝑎) are integers, whether

there exists an answer 𝑆 ⊆ {1,… , 𝑛} such that ∑)∈/ 𝑎) = 𝑡.
¡ Partition: Given (𝑎!, … , 𝑎'), where all 𝑎) are integers, whether there

exists an answer 𝑆 ⊆ {1,… , 𝑛} such that ∑)∈/ 𝑎) = ∑,∉/ 𝑎,.

95

Classroom Exercise

Proof (cont’d):
¡ Transform every instance of subset-sum to an instance of partition.
¡ Let 𝑥 = (𝑎%, … , 𝑎1, 𝑡) be an instance of subset-sum and 𝑎 = ∑23%1 𝑎2.

We define the transformation algorithm as
𝑓(𝑥) = (𝑎%, 𝑎$, … , 𝑎1, 𝑎14%)

where 𝑎14% = 2𝑡 − 𝑎.
¡ It is clear that this transform can be done in polynomial time.
¡ Then, we want to show that:

The answer 𝑆 to subset-sum problem is “yes” for 𝑥
⟺ The answer 𝑆 to partition problem is “yes” for 𝑓(𝑥).

96

Classroom Exercise

Proof (cont’d):

¡ Prove ⟹:
¡ Let the answer 𝑆 ⊆ {1,2, … , 𝑛} to subset-sum problem is “yes” for 𝑥 such

that ∑)∈/ 𝑎) = 𝑡 and ∑)1!' 𝑎) = 𝑎.

¡ Let 𝑇 = 1,2, … , 𝑛 + 1 − 𝑆, we have

Y
,∈2

𝑎, = 𝑎 + 𝑎'3! − 𝑡 = 𝑎 + 2𝑡 − 𝑎 − 𝑡 = 𝑡 =Y
)∈/
𝑎) .

¡ Because ∑)∈/ 𝑎) = ∑,∈2 𝑎, = ∑,∉/ 𝑎,, the answer 𝑆 to partition problem
is also “yes” for 𝑓(𝑥).

97

Classroom Exercise

Proof (cont’d):

¡ Prove ⟸:
¡ If there exists the solution 𝑆 ⊆ {1,2, … , 𝑛} to partition problem is also

“yes” for 𝑓(𝑥), such that letting 𝑇 = 1,2, … , 𝑛 + 1 − 𝑆 we have

Y
)∈/
𝑎) =Y

,∈2
𝑎, =

𝑎 + 2𝑡 − 𝑎
2

= 𝑡.

¡ Without loss of generality, assume that 𝑛 + 1 ∈ 𝑇, then we have 𝑆 ⊆
{1,2, … , 𝑛} and ∑)∈/ 𝑎) = 𝑡.

¡ Because ∑)∈/ 𝑎) = 𝑡, the answer 𝑆 to subset-sum problem is also “yes”
for 𝑓(𝑥).

98

Conclusion

After this lecture, you should know:

¡ What is a polynomial-time algorithm.

¡ What is a decision problem.

¡ What are P and NP.

¡ How a problem can be reduced to another problem.

¡ What is an NP-complete problem.

¡ What is an NP-hard problem.

¡ How to prove NP-completeness of a problem.

99

Homework

Page 215-217

11.2

11.3

11.4

11.7

11.16

100

谢谢

有问题欢迎随时跟我讨论

101

