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Backtracking

= A simple and straightforward strategy to

escape from a maze is: La ek |_|:||-_l r
= Go as deep as possible until reach a dead end. TELIJ- -5 % -

- - -r1 I M

®m Go back to the last fork and choose another g '|_ :_-li
path. G'Ah 'Ij-r ST

_ ey =S

= |f we have a sign at the fork to show dead | RUNES —
ends, we can avoid that path to save time. =l

= This is the idea of backtracking ([a] ). It is
a refinement of the brute force approach A maze
by avoiding dead ends in advance.
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Image source: https://gfycat.com/ru/babyishtightjanenschia-mazesolving-backtracking
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Backtracking

® Given the an optimization problem, we usually make a
sequence of decisions. It can be represented as a tree.

= \We start from the root and the solutions are the leaves.

start

A

solution

a

ty) BITAZ(EREER

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Backtracking

0: don’t take
1: take

item 1

item 2

item 3
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DFS vs. Backtracking

If we know that going along this branch has no
hope, we don’t need to try! It will save a lot of time.
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Backtracking

® Backtracking is all about HOPE!

= We only continue to search solutions only if there is still hope!

There is still hope. 3=
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Backtracking

" In the backtracking method, the solutions are represented by
vectors (X1, X3, v, Xp).

" |Instep i + 1, we start from a partial solution (x4, x5, ..., X;) and
try to extend it by adding another element x; 4.

= After extending it, we will test whether (x4, x5, ..., Xj, Xj11) IS
still possible as a partial solution (check hope).
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Backtracking

The steps involved in the backtracking method are:

1. Define a solution space (ffi##%%0]) for the problem. This space
must include at least one (optimal) solution to the problem.

= |f §; is the domain of x;, then §; XS, X ---X§,, is the solution space of the
problem.

= Generally, the solution space is very huge, so the cost of searching a
objective solution are often unimaginable.

= For backtracking to be efficient, we must prune (BJ4) the search space.
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Backtracking

2. Organize the solution space so that it can be searched easily.
The typical organization is either a graph or a tree.

3. Searched the solution space in a DFS manner and avoid
moving into subspaces that cannot possibly lead to the
answetr.
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Solution Space Tree

= \WWe set up a tree structure
such that the leaves
represent members of the
solution space.

® So we organize solution space
as a solution space tree (f#%*

[ 1)).

® Backtracking can easily be
used to iterate through all
subsets or permutations of a
set.
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® When the problem asks for an n-element permutation that
optimizes some function, the solution space tree is a
permutation tree.

" How many permutations are there of an n-element set?
= There are n choices for x;.
= There are n — 1 choices for x,.

= There is only 1 choices for x,,.
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S;+1 depends on the choice of x;
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General Backtracking Template

Backtrack(i)
op ) Reaching leave means that
1 if i > n then Update(x) ) it is a feasible solution.
2 else
3 for eacha € S; do
4 Xi < a . —
Hope checking condition, key
5 if C(i) and B(i) then - of backtracking. Without it, it
] is just brute-force.
6 Backtrack(i + 1)

) BIIASHESSR

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 12




= |n backtracking, we have a constraint function (ZJ 5 pf4k) C (i) and a

bounding function (FRALpK %Y%) B(i), to prune invalid branches and to
focus the search on branches that appear most promising.

= Keep in mind, we don’t waste time on hopeless branches.

= |[n order to improve the performance of search, applying backtracking
requires specifying at least the following three points:

= How to choose an the constraint function.

= How to compute upper bounds (for maximum problem) and lower bounds
(for minimum problem).

= How to make use of the constraint function and the bounding function to
prune.
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Constraint Function

® Constraint function is to check the feasibility of the current
solution.

® Usually, it can be easily built by the problem requirement. For
example:

= 0/1 knapsack problem: check if adding the next item exceeds W.
® Permutation problem: check if the number has been selected.

= Hamiltonian cycle problem: check (1) if next vertex is connected to the
current vertex; (2) if the last vertex is connected to the first vertex; (3) if
there exist duplicated vertex in the path.

= Coloring problem: check if the color for the next vertex is same as its
neighbors.
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Bounding Function

® Bounding function is for optimization
problem.
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® For maximization problem, it calculates
the upper bound of this branch B (i)
and compare with the existing best
solution bestc.
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= If B(i) > bestc, there is still hope, keep JC
searching!

= If B(i) < bestc, all solutions along this S T
. . . ; i - v
branch will not better than the existingbest @ @ - @ ——
solution, stop! leaves
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B(i) > bestc, go ahead, B(i) < bestc, go back, it
there is still hope! is hopeless!
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CONTAINER LOADING PROBLEM




Container Loading Problem

= Given n containers (2354§), container i has weight w;. The ship can
hold containers of total weight up to ¥/

® Container Loading problem is to load as many containers as is
possible without sinking the ship.

= Assuming that the solutions are represented by vectors
(x4, X5, ..., X,,), Where x; € {0,1}. 1 denotes taking container i and 0
denotes not taking container i.

® The container loading problem can be formally stated as follows:

n n
maxz WiX; s.t. z wix; < W
i=1 i=1
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Container Loading Problem

= Each x; has two options to choose: take and not take.

= Therefore, |S;| = 2 and the size of the solution space is 2". It also
means that the solution space tree has 2" leaves.

Solution space tree withn = 3
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Container Loading Problem

= We first design the constraint

function.
= Let cw(i) denote the current Xi_1
weight up to level i, namely ' Current total
i weight: cw(i — 1)
cw(i) = Z Wi X; Xi
j=1

then the constraint function is
C)=cw(—1) +w;

= The pruning conditionis C(i) > W, _ _
which means there is no capacity Total weight after adding
to take container i. xipew(i —1) +w;
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‘ Unvisited internal nodes @ Live nodes
@ Unvisited leaf nodes 1 0 @ Dead nodes
1 0 1 0
1 0 1 0 1 0 1 0
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a @ Live nodes

@ Unvisited leaf nodes @ Dead nodes

‘ Unvisited internal nodes
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‘ Unvisited internal nodes

@ Unvisited leaf nodes 1

c(n)sw,
go ahead!

Backtracking forn = 4, w = [8,6,2,3
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@ Live nodes
@ Dead nodes
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a @ Live nodes

@ Unvisited leaf nodes 1 @ Dead nodes

(8)
@ C2) > W,

go back!

‘ Unvisited internal nodes

Backtracking forn =4, w = [8,6,2,3], W = 12
6y BIIKRERER

\) /
&5/  SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

24




e @ Live nodes

@ Unvisited leaf nodes 1 @ Dead nodes

B c=w | (&)

go ahead! 1

‘ Unvisited internal nodes

Backtracking forn =4, w = [8,6,2,3], W = 12
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a @ Live nodes

@ Unvisited leaf nodes 1 @ Dead nodes

IRy | C(4) > W, e

go back! 1

‘ Unvisited internal nodes

1
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e @ Live nodes

@ Unvisited leaf nodes 1 @ Dead nodes
e Get a feasible
solution: (1,0,1,0)

. O

1

- 10

Backtracking forn = 4, w
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‘ Unvisited internal nodes
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a @ Live nodes

@ Unvisited leaf nodes 1 0 @ Dead nodes

1 @ G 0

Optimal
solution: 11| @ @G 001000000

Backtracking forn =4, w = [8,6,2,3], W = 12

‘ Unvisited internal nodes
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BacktracklLoading(i) Note: we don’t actually build

1 ifi > n then a-tree structure. Ipstead, we
simply use recursion.

2 if cw > bestw then

3 bestw < W «Tsiore best $olution so far.

4 else

5 rifC() < W then

6 . cw — cw + wli] // Go ahead by taking container i.

7 BacktrackLoading(i + 1) Subtract the weight of

8 cw < cw — w|i] container i before we go back.

90 { BacktracklLLoading(i + 1)
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‘ Unvisited internal nodes 0 Time-wasting search @ Live nodes
@ Unvisited leaf nodes 1 0 @ Dead nedas
8 0
0 0
4 8 6 0
1 0 1 0 1 0

However, we have
found the optimal 10 8 8 6 2 0
solution before we 0o 1 0
search the right
subtree! 10 8 8 9 6 5 2 3

30
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° @ Live nodes

@ Unvisited leaf nodes 1 0 @ Dead nodes

In this step, we have decided

not to take container 1.

The remaining total weight is:
6+2+3=11

And, we have known the best

solution so faris 11. So we can

stop searching.

‘ Unvisited internal nodes

Upper bound: 11

0

- 10
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Container Loading Problem

= Now, as an improvement, we add
the bounding function:

Xi 1
B(i) =C() +r@) Current total
) . weight: C (i)
where, (i) denotes the weight
sum of the remaining containers, Xit1 1 0
namely,
n

j=i+1

= The pruning condition is B(i) < x
bestw, which means the continuing n
searching along this branch will not

give better solution.

Upper bound: (i)
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‘ Unvisited internal nodes bestw = 0 Live nodes
0
1
0
=12

@ Unvisited leaf nodes 1 0 Dead nodes
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@ bestw = 0 Live nodes

Dead nodes

‘ Unvisited internal nodes

@ Unvisited leaf nodes
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@ bestw = 0 Live nodes
@ Unvisited leaf nodes 1 @ Dead nodes
@ C(1) < W and

B(1) > 0, go ahead!

‘ Unvisited internal nodes

@) BITKHERER

\a 7
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

35




‘ Unvisited internal nodes

@ Unvisited leaf nodes

1
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c(2)>Ww,
go back!

Dead nodes

bestw = 0 Live nodes
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@ bestw = 0 Live nodes

Dead nodes
@ C(2) < W and
1 B(2) > 0, go ahead!

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1

o
Q
@)
A
—
=
Q
@)
o)
)
oQ
—h
)
=
S
|
-
I
|
oo
o
o
w
I‘_I
|
p—
(NS

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

37




@ bestw = 0 Live nodes

Dead nodes
@ C(3) < W, and
B(3) > 0, go ahead!

14/19 @

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1
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@ bestw = 0 Live nodes

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 Dead nodes
@ C(4) > W,
0 go back!
14/19 @
1
1

Backtracking forn =4, w = [8,6,2,3], W = 12
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@ bestw = 10 Live nodes

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 Dead nodes
Get a feasible
@ solution: (1,0,1,0),
0 bestw = 10
14/19 @
1

13/13 @

Backtracking forn =4, w = [8,6,2,3], W = 12
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@ bestw = 10 Live nodes

Dead nodes
@ C(3) < W, and
0 B(3) > 10, go ahead!

14/19 @
1 0
0
13/13 @

Backtracking forn = 4, w = [8,6,2,3
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‘ Unvisited internal nodes

@ Unvisited leaf nodes 1
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@ bestw = 10 Live nodes

Dead nodes
@ C(3) < W, and
0 B(3) > 10, go ahead!

14/19 @
1 0

0 1
& D

Backtracking forn = 4, w = [8,6,2,3
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‘ Unvisited internal nodes

@ Unvisited leaf nodes 1

-
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‘ Unvisited internal nodes

@ Unvisited leaf nodes

14/19
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N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

bestw = 11 Live nodes

Get a feasible solution:
(1,0,1,1), bestw = 11

Dead nodes
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@ bestw = 11 Live nodes

Dead nodes
@ C(4) < W,butB(4) <
0 11, go back!

14/19 @
B @

Backtracking forn = 4, w = [8,6,2,3
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‘ Unvisited internal nodes

@ Unvisited leaf nodes 1
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@ bestw = 11 Live nodes
@ Dead nodes
@ C(1) <W,butB(1) < @
11, go back!

0
14/19 @
1 0
0 1
13/13 @ @ 8/8

Backtracking forn = 4, w = [8,6,2,3

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1

-
<
|
p—
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bestw = 11 Live nodes

‘ Unvisited internal nodes

@ Unvisited leaf nodes Dead nodes

This is the final pruned
solution space tree.

Backtracking forn = 4, w = [8,6,2,3], W = 12
)) BIIXZEEEMR
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Pseudocode

ImprovedBacktrackl.oading(i)

I ifi > n then Record the best solution
2 if cw > bestw then

bestw <« cw
forj < 1tondo

3
4
5 bestx[j] < x[j]
6

Record the current solution

7 r <1 —wli]
7 is initialized as the total 8 ifC(i)<Wthen  x[i] <1
weight sum and reduced at cw <« cw + wli

the begging of each < 10 ImprovedBack#rackLoading(i + 1)
recursive call. After each 11 - cw — cw — i
recursive call, we add the 2 if B(i) > bestw then x[i] < 0

1 ImprovedBacktrackLoading(i + 1)

weight back for going back. 14\ <+ wli]

47
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Time Complexity

= Although backtracking seems very efficient. The time
complexity for this algorithm is 0 (n2").

= 2™ s the time for searching the solution space.

= nis the time to store the best solution.

® This is a sad story...
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Classroom Exercise

" Draw the pruned solution space tree for the following
container loading problem instance.

n=4w=[4753], W = 15
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Classroom Exercise

Live nodes

Dead nodes

@ @

@ 11/11 @ 12/12

Backtracking forn = 4,w = [4,7,5,3],W = 15
(ty) BIIRFERFR
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Classroom Exercise

" |In the Sum-of-Subsets problem, there are n positive integers
(weights) w; and a positive integer W.

" The goal is to find all subsets of the integers that sum to .

" Example:
= Supposethatn =4, W = 13,andw = [3,4,5,6].
= The solutionsis [1,1,0,1] becausew; + wy, +w, =3+ 4+ 6 = 13,

® Design the constraint function and bounding function, and the
corresponding condition.

® Draw the pruned solution space tree of the above example.
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Classroom Exercise

= The constraint function C (i) and its condition are same as the
container loading problem:

Cii)y>W

= The bounding function B(i) is same as the container loading
problem, but the condition is different:

B(i)) <W

= |nstead of comparing with bestw in the container loading problem.
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Classroom Exercise

@ Live nodes
1 0 @ Dead nodes

1 0 1

1 1
) Gy @ O
1

@ 7/7 Y 14/14% 8/8

Backtracking forn = 4, w = [3,4,5,6], W = 13
Gy BIIXEERER
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0/1 KNAPSACK PROBLEM




0/1 Knapsack Problem

= There are n items: the ith item is worth v; dollars and weights
w; kg. The capacity of knapsack is W kg.

" Assuming that the solutions are represented by vectors
(x1, %5, ..., Xn), Where x; € {0,1}. 1 denotes taking item i and 0
denotes not taking item i.

= The 0/1 knapsack problem can be formally stated as follows:
n

maxz ViXi S.t. z Wlxl =S

=1
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0/1 Knapsack Problem

® |t is nothing but a high-level container loading problem.

® The size of solution space and the solution space tree are exactly
same as the container loading problem.

Solution space tree withn = 3
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0/1 Knapsack Problem

® Constraint function: also exactly same as the container loading
problem!

= Let cw(i) denote the current weight up to level i, namely

l
cw(i) = z W;X;
j=1

then the constraint function is
CA)=cw(i—1) + w;

= The pruning condition is C(i) > W, which means there is no
capacity to take container i.

57
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0/1 Knapsack Problem

" The bounding function:
B(i) =C() +r(i)

However, different from the bounding function in the container
loading problem, (i) denotes the value sum of the remaining
items, namely,

n
r(i) = 2 v;
j=i+1
= The pruning condition is B(i) < bestv, which means the

continuing searching along this branch will not give better
solution.

58
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

Gy BIIXAERER T3 60
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

Gy BIIXAERER T3 61
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0

Dead nodes

1 0
0
1 0
11/30 @

0

@) BITAHESSR 7 65
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0

Dead nodes

1/ \0
0 0
11/30 @ 8/21

0

1
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0

Dead nodes

1 0
0
11/30@ 8/21 ] 3/11

o EITASERSE 73 67
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0
0
11/30@ 8/21 ] 3/11

)) BIIKZE2FMR 73 68
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

1/ \0 1 0
0

1/ \0

11/30@ 8/21 [ 3/11

)) BIIKZE2FMR 73 69
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1/ \0 1
0 0
11/30 @ 8/21 ] 3/11 | 9/23
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1
0
1
11/30@ 8/21] 3/11 | 9/23 ] 4/13
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

@) Gy ()
0

11/30@ 8/21] 3/11 | 9/23 ] 4/13
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

@) Gy ()
0

11/30@ 8/21] 3/11 | 9/23 ] 4/13
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

@) Gy ()
0

11/30@ 8/21] 3/11 | 9/23 ] 4/13

) BITAFESSR 7 7
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

@) Gy ()
0

11/30@ 8/21] 3/11 | 9/23 ] 4/13
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

@) Gy ()
0

11/30@ 8/21] 3/11 | 9/23 ] 4/13

Backtracking forn = 4, v = [4,7,9,10],
Gy BIIKZEERE5R
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1 0 1

() Gy ()
0

11/30@ 8/21 ] 3/11] 9/23 ] 4/13 10/26] 5/16

Backtracking forn = 4, v = [4,7,9,10],
Gy BIIKZEERE5R
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes

0

1/ \0 1
OEOEON.
0

11/30@ 8/21 ] 3/11] 9/23 ] 4/13 10/26] 5/16

Backtracking forn =4, v = [4,7,9,10],w = [1,2,3,5|, W =7
Gy BITRRERFR
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@ bestv = 20 Live nodes
0

‘ Unvisited internal nodes

Dead nodes

@ Unvisited leaf nodes 1 0

0/19

2/17

1 0 1
OO N
0 : .
Is this most efficient? Can

11/30 @ 8/21 } 3/11 [ 9/23 | 4/13 10/26] 5/16 we further prune the tree?

Backtracking forn = 4, v = [4,7,9,10], w
Gy BITRRERFR
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[1,2,35], W =7

‘o) AN AT HENHSR 79




0/1 Knapsack Problem

" Let’s look back at the bounding function
l n
BO =cv@+r()  cw®= ) vy D= ) v
j=1 j=i+1
with the condition B(i) < bestv.
" What can we do if we want to prune more branches?

Make the bound tighter by decreasing the value of B (i)
(actually (i), because C(i) is fixed at level i).

@) BIIRPERLR
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‘ Unvisited internal nodes

bestv = 20

@ Unvisited leaf nodes 1

@) BIIAREESR

3 2
=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Can you really
take the upper
bound values in
these branches?

Dead nodes

Live nodes
0

0/19

The weight is not
consider in the
bounding function!
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0/1 Knapsack Problem

" Now, we consider the weight limit in the bounding function.

= Given the remaining capacity W — cw(i), what is the
maximum value can we get?

® We can use the following greedy strategy:
= Take the most valuable remaining items until we can’t take any more.

= Take a fraction of the next item until fully loaded.

" |t does not mean we can really take fraction of item. It is just
the upper bound of the remaining value.

@) BITRHERER
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0/1 Knapsack Problem

= First, sort the objects in decreasing order of value/weight ahead of
time, namely

V1 /Wy = Uy /Wy = = v /Wy,

= Now, we are at level i, which means we have made decision for the
first i items.

= We continue to put from item i + 1 until item k. When put item k in,
the load exceeds V.

= Then we take a fraction of item k for the remaining capacity.

k-1
r(i) = z v+ (W —cw(i) — z w; (—)
\j:i;Ll | : | j=i+1
Total value from Value per unit

|tem i+1tok—1 Capacity available for item k

6y) BIIXRERFMKR
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weight for item k
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@ bestv =0 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0 Dead nodes
44749
+ (7 — 6)X2 = 22
1 0 1
1 0 1 0 1 0 0

@) BITKHERER
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0

@ 447+ (7 —3)x2

1 =19

Dead nodes

)
=

0

11/22 @

Backtracking forn = 4, v = [4,7,9,10],w = [1,2,3,5], W
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@ bestv = 20 Live nodes
0
1
0

‘ Unvisited internal nodes

@ Unvisited leaf nodes 1 0

@ 1/19

449+ (7 —4)X2
=19

Dead nodes

0

11/22 @

Backtracking forn = 4, v = [4,7,9,10],w = [1,2,3,5], W
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bestv = 20 Live nodes

Dead nodes

‘ Unvisited internal nodes

@ Unvisited leaf nodes

7+9+ (7—-5)x2
= 20

The pruned solution
space tree is much better!

6,y) BIIKFERER
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| compared with
ng problem. Just

BacktrackKnapsack(i)

1 ifi > n then We don’t record the remaining

2 if cv > bestv then | value here and leave it in B(7).

3 bestv « cv

4 Nothing specia
5 container loadi
6 els separate cw and cv.
7

8

9

10 cw «— cw — w[i]; cv « cv — v[i];
11 > pestv then x[i] < 0

12 BacktrackKnapsack(i + 1)

\) 5
« SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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1 rw <« W — cw | Remaining capacity

2 b « ¢V |Total value . ’

3 whilei+1<nandw|i+ 1] <rwdo tﬁgsvﬁgtlg ;:;C]ain; tlake
4 rw 1w —wl[i + 1]

5 b« b+v|i+1]

6 il—i+1 Take a fraction of item i + 1

7 ifi+1<nthen b < b+v[i+1]/w[i+ 1]Xrw

8 return b

@) BITRHERER
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Classroom Exercise

= Draw the pruned solution space tree of 0/1 knapsack problem
for the following problem instance:

n=3,v=[431],w=[255],W =6

6y BIIXFERFER
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Classroom Exercise

® First, rank the item by their value per unit weight:
n = 3,v =[40,30,20],w = [2,5,4], W = 6, v/w = [20,6,5]

91
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Classroom Exercise

@ uUnvisited internal nodes bestv = 60 Live nodes

@ Unvisited leaf nodes Dead nodes

6,y) BIIKFERER
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n QUEEN PROBLEM




n Queen Problem

a b

= The goal of n queen problem .@. . .
(n B J5 0] 48) is to position n
gueens on an nxXn . g . .
chessboard so that no two 5 . . . E
queens threaten each other. .@. . .
= No two queens may be in the . . . .@
. 3
same row, column, or diagonal.
a8 H H-B

(6y) ENRPERF R B X Tt RNHER 94

N/ 7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: https://medium.com/swlh/how-many-solutions-does-the-n-queens-problem-have-e8da5d45a34c



https://medium.com/swlh/how-many-solutions-does-the-n-queens-problem-have-e8da5d45a34c

n Queen Problem

" What is the size of solution space for the ith queen?

= n? — i+ 1? Itis too large. We can limit it by considering the
constraint.

= Because two queens can’t be put in the same row, we directly put each
qgueen in different row.

= Now, the solution space for the ith queen is n.

® Thus, the constraint function only needs to check if two queens are in the
same column or diagonal.

6y BIIXFERFER
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n Queen Problem

The solution space tree forn = 4
) BIIKRERER () ZnHrTdanuss 96
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Image source: Figure 5.2-5.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



n Queen Problem

What is the
constraint function?

by BIIKFEEER
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Image source: https://meetwithbudhi.wordpress.com/2019/09/16/n-queens-puzzle/



https://meetwithbudhi.wordpress.com/2019/09/16/n-queens-puzzle/

n Queen Problem

" The constraint function checks if the new added queen is in the
same column, or along the same diagonal.

= Now, we know that the ith queen is in the ith row. Let x; be
the column of the ith queen.
= |f the kth and jth queen are in the same column:
Xk = Xj
= |f the kth and jth queen are along the same diagonal:
Xk —Xj=k—j or xp—xj=j—k

Namely: |x, — x| = |k — j].

6y BIIXFERFER
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Live nodes

‘ Dead nodes

Backtracking forn = 4
) BIARESRER () ANrTs 5
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. O Live nodes
‘ Dead nodes

Backtracking forn = 4
Gy BIXFEEER () &AA7T e

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




X

X
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O Live nodes
‘ Dead nodes
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X

X

XX XX

Backtracking forn = 4

6y) EITASERSR
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O Live nodes
‘ Dead nodes
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3

4

4

Backtracking forn = 4
) BINXZEEF
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O Live nodes
‘ Dead nodes

103



. . O e nOdeS
‘ Dead nodes

@) BIIAREESR
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O Live nodes
‘ Dead nodes

) EITARERSR 105
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1 3 4
. ‘

4

y) BIIXZ(ERFR
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O Live nodes
‘ Dead nodes
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Start from O,

BacktrackNqueens() increment in the loop,

- so the condition only
; )li[}—] 1 0/ checks<n -1
3 whilek>0do __— Place(k)
4 while x[k] <n—1do 1 forj<1tok—1do
5 x[k] < x[k] +1 2 if |k —j| = |x[k] — x[j]|
6 if Place(k) = True then or x[j] = x[k] then
7 if k = n then SolNum < SolNum+1||3 return False
8 else \ 4 return True
9 k<k+1
10 x[k] < 0 Number of
11 ke<k-—1 valid solutions

No recursion is used here

@) BITRHERER
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Classroom Exercise

Write the pseudocode of the recursive version of n queen
problem.

6y BIIXFERFER
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Classroom Exercise

RecursiveBacktrackNqueens(k) —
3 if Place(k) = True then Start from 0
4 if k = nthen SolNum < SolNum + 1
5 else
for j <« 1tondo
5 x|k + 1] «j
6 RecursiveBacktrackNqueens(k + 1)
Place(k)

1 forj<1tok—1do

2 if |k — j| = |x[k] — x[j]| or x[j] = x[k] then
3 return False

4 return True

ty) BITAZ(EREER
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TRAVELING SALESPERSON PROBLEM




Traveling Salesperson Problem

® Given an n vertex network (undirected or
directed), traveling salesperson problem
(Ji€ 47 B a5, TSP) is to find a cycle of
minimum cost that includes all n vertices.

30
1 2
= Hamiltonian cycle with minimum cost. O 4 . /P
" Any cycle that includes all n vertices of a 6 10
network is called a tour. In TSP, we are to
find a least-cost tour. For example:
i 3 ®
20

= Tour (1,2,4,3,1) costs 66.
= Tour (1,4,3,2,1) costs 59.
= Tour (1,3,2,4,1) costs 25, optimal.

) BITAFESSR
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Traveling Salesperson Problem

TSPAERE : 234106

FE4Z - 31564.651km

@) BITKHERER
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Image source: https://www.programmersought.com/article/32324255027/



https://www.programmersought.com/article/32324255027/

Traveling Salesperson Problem

" Since a tour is a cycle that includes all vertices, we may pick any
vertex as the start (and hence the end).

= Usually we use vertex 1 as the start and end vertex.

® Each tour is then described by the vertex sequence:
(1,x5, ..., x5, 1)
where X, ..., X, is a permutation of (2, 3, ..., n).

" The possible tours may be described by a permutation tree in
which each root-to-leaf path defines a tour.

@) BITRHERER
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Traveling Salesperson Problem

‘ Unvisited internal nodes

@ Unvisited leaf nodes

114
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Traveling Salesperson Problem

= w[i, j] denotes the weight of vertex i and vertex j.
= w[i, j] = oo denotes no edge between vertex i and vertex j.
= x|i] denotes the vertex to be searched.

" What are the constraint function and bounding function?

6y BIIXFERFER
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Traveling Salesperson Problem

= Constraint function C (i) is to simply check if the next vertex is
connected to the current vertex:

C (D) = wlx[i], x[j]]
Check if C(i) # oo.
= Bounding function B(i) is the total weight if we connect x|[i]:
B(i) =cw(i—1) +wl[x[i— 1], x[i]]

w(i) = z wixlj — 11, x[/]]
=2

Check if B(i) < bestw.

AT [% M~ .}, HTREN#ESR 116
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Example

@ uUnvisited internal nodes bestw = o @ 50 /2>

@ Unvisited leaf nodes

) BIIKFERER
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‘ Unvisited internal nodes

@ Unvisited leaf nodes

ty) BITAZ(EREER
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a bestw = oo

30
(1)
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‘ Unvisited internal nodes

@ Unvisited leaf nodes

ty) BITAZ(EREER
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a bestw = oo

30
(1)
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‘ Unvisited internal nodes

@ Unvisited leaf nodes

ty) BITAZ(EREER
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a beStW = OO

30
(1)
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‘ Unvisited internal nodes

@ Unvisited leaf nodes

@) BITRHERER
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a bestw = 59

30
(1)
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a bestw = 59 @ 30 /2>

‘ Unvisited internal nodes

@ Unvisited leaf nodes

) 2 a 4 C
3 3

X3 3 4 2 4 2 3
X4 4 3 4 2 3 2
(1,2,3,4,1),59

6y BIIXFERFER
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a bestw = 59 @ 30 /2>

‘ Unvisited internal nodes

@ Unvisited leaf nodes

) 2 a 4 C
3 3

X3 3 4 2 4 2 3
3

60

(1,2,3,4,1),59
6y BIIXFERFER
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a bestw = 59 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

) 2 a 4
3 3 @
o (> )

X3 3 4 2 4 2 3
3

60

(1,234,1),59
o) EITASERSR
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a bestw = 59 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

) 2 a 4
3 3 @
o (> )

X3 3 4 2 4 2 3
Xs 4 3 4 2 3 2
© €
(1,2,3,4,1),59

o) BITARER SR
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a bestw = 25 @ 30 /2>

‘ Unvisited internal nodes

@ Unvisited leaf nodes

2

(1,2,3,4,1),59 (1,3,2,4,1), 25
O BITARERER
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

2
) @

(1,2,3,4,1),59 (1,3,2,4,1), 25
(ty) BIIRFERFR
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

2
) @

(1,2,3,4,1),59 (1,3,2,4,1), 25
(ty) BIIRFERFR
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

2
) @

(1,2,3,4,1),59 (1,3,2,4,1), 25
(ty) BIIRFERFR
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

2
) @

(1,2,3,4,1), 59 (1,3,2,4,1), 25 (1,4,2,3,1), 25
G BIIRKRHERER () A0 »Tdannes 130
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

I

2 2 3
) @ O &
3 2

(1,2,3,4,1),59 (1,3,2,4,1), 25 (1,4,2,3,1), 25
G BIIRKRHERER () A0 »Tdannes 131
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a bestw = 25 @ 30 /2)

‘ Unvisited internal nodes

@ Unvisited leaf nodes

I

A

2 2
) @
3

(1,2,3,4,1),59 (1,3,2,4,1), 25 (1,4,2,3,1), 25
G BIIRKRHERER () A0 »Tdannes 132
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Pseudocode Call BacktrackTSP(2) with initialization x[i] =

Connectivity between Connectivity between the
BacktrackTSP(i) the last two vertices last and the first vertex

1 if i = n then 7 -

2 if w[x[n — 1],x[n]] # o0 and w[x|n], 1] # oo then

3 if cw + w|x[n — 1], x|[n]] + w|x[n], 1] < bestw then

4 bestw « cw + w|x[n — 1], x[n]] + w[x[n], 1]

5 for j <« 1tondo

6 bestx|j]| < x|[j] We don't iterate to n because

7 elseforj < iton—1do the last vertex is the only choice

8 if wlx[i— 1],x][j]] # o0 and cw + w[x[i — 1], x[j]] < bestw then

9 x[i] « x[j]

10 cw —cw +wix[t= We don’t assign values
11 BacktrackTSP(i + 1) to x[i], instead we use
12 cw «— cw — w|x[i — permutation trick.

13 x[i] <> x[j]

@ BIIXFEEFR

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

133




Classroom Exercise

Consider the 3-coloring problem for the given graph. Design
constraint function and bounding function, and draw the pruned
solution space tree to find a solution.
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Classroom Exercise

® The constraint function is to
check duplicated color.

" There is no bounding function
for m-coloring problem.

. @

® ®

@) BITARERPR
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Image source: Figure 5.12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Conclusion

After this lecture, you should know:

" What is the difference between DFS and backtracking.
" What is a solution space tree.
® What is constraint function and bounding function.

= What kind of problems can be solved by backtracking.

136
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Homework

Page 238-240
12.7

12.8

12.10

" For these questions, you should describe the idea of how to
design constraint function and bounding function. And then
write down the pseudocode.

137
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Experiment 1

: 5|3 7
0 V.Vr.lte a program to solve a Sudoku puzzle by = ot
filling the empty cells. SEIEImS ol
= A sudoku solution must satisfy all of the =P
following rules: 6 2.9
4(119 5
= Each of the digits 1-9 must occur exactly once in 2 AL
each row.
. . . 5|13[4]16(7|8]9]|1]|2
= Each of the digits 1-9 must occur exactly once in sl7 211101513128
each column. 11918131412151617
8(5|1917|6(1]4|2]|3
= Each of the the digits 1-9 must occur exactly once in S RE
each of the 9 3x3 sub-boxes of the grid. 9l6[1|5|3|7[2]8][4
21817]14(1]|9]|6|3|5
= Empty cells are indicated by the character’.. 3]4]15]2[8]6]1]7]9
Gy BITRFEEEER HNHSR 138
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= |nput: 2l 2 1
[[ll5ll ll3ll mimnn Il7ll mimwmwimwmwin Il] [Il6ll miamn II1II II9II Il5 6 56 1]19]5 5
miimwiain ll Il] [ll ll II9II ll8l| Il Il ll ll mammnn ll6ll Il Il] [”8" n II " P 3 3
Il 1] ll ll6ll miaimnn Il n II3II] [Il4ll II ll Il Il ll8ll n Il ll3ll nmin ll II1 4 8 3 1
Il] [II7II mnn lI ll II II Il2ll mimmnimnn ll II6II] [ll ll I|6II " lI lI Il Il II " 7 2 6
n Il2l| I|8ll II ll] [Il Il " ll II ll Il4ll I|1Il ll9ll mn ll [l II5II] [ll II II Il 6 #1515 2|8 3
miin ll I|8II mimnn Il7ll II9II]] 8 719

8 Output:

[[nsu’||3n’||4n’||6u’u7n’||8n’||9u’n1u’u2||]’[n6u’n7u’u2||’u1n,|| SEFI R CIEIE
9||’||5n,n3u’||4n’u8n]’[n1u’||9||’||8||’||3u,n4u’||2||’||5u’n6u’u7|| sl7 211101513128
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