算法设计与分析

Lecture 13: Branch-and-Bound

卢杨 厦门大学信息学院计算机科学系 luyang@xmu.edu.cn

Limitation of Backtracking

- Backtracking works better if we can improve over the bounding function.
- However, there is still a mechanism that limits backtracking to be more efficient:

DFS

- No matter how you improve the bounding function, the traversal is still based on DFS.
 - Can we based on other methods to explore the solution space?

Limitation of Backtracking

Limitation of Backtracking

- Can we try BFS?
- No, it is very inefficient.
 - No solution is reached until level 1 to level n-1 of the tree is built.
 - No solution means bounding function is useless.
- Branch-and-bound (分支限界) is the techniques to improve BFS for solution space tree traversal.
 - FIFO branch-and-bound.
 - Max-profit branch-and-bound.

Branch-and-Bound

- Different from backtracking, the branch-and-bound method
 - 1. does not limit us to any particular way of traversing the tree;
 - is used only for optimization problems.
- A branch-and-bound algorithm computes a upper bound and lower bound at a node.
- For maximization problem:
 - Upper bound is calculated by the bounding function.
 - Lower bound is recorded by the best solution so far.
- We increase the lower bound and decrease the upper bound until they are equal.

Branch-and-Bound

- Branch-and-bound is based on BFS, but does not exactly follow its FIFO machanism.
- We select the next node to branch based on some rule. Namely, we branch a node with the highest hope.
- All nodes can be separated into:
 - Live nodes: Visited but waiting for branching.
 - Dead nodes: Visited.
 - Extend node: Selected to branch in the next step.
 - Unvisited nodes: Unvisited.

Definition of live and dead nodes are slightly different from backtracking.

Branch-and-Bound

Extend node is selected among all live nodes based on designed rules.

CONTAINER LOADING PROBLEM

Container Loading Problem

- Given n containers (集装箱), container i has weight w_i . The ship can hold containers of total weight up to W.
- Container Loading problem is to load as many containers as is possible without sinking the ship.
- Assuming that the solutions are represented by vectors $(x_1, x_2, ..., x_n)$, where $x_i \in \{0,1\}$. 1 denotes taking container i and 0 denotes not taking container i.
- The container loading problem can be formally stated as follows:

$$\max \sum_{i=1}^{n} w_i x_i \qquad s. t. \sum_{i=1}^{n} w_i x_i \le W$$

Container Loading Problem

In this example, we go though three versions of branch-and-bound.

- FIFO branch-and-bound with only constraint function.
- FIFO branch-and-bound.
- Max-profit branch-and-bound.

Container Loading Problem

- The constraint function is same as backtracking.
- Let cw(i) denote the current weight up to level i, namely

$$cw(i) = \sum_{j=1}^{i} w_j x_j$$

then the constraint function is

$$C(i) = cw(i-1) + w_i$$

■ The pruning condition is C(i) > W, which means there is no capacity to take container i.

FIFO with Only Constraint Function

Level *i* is used to check solution.

```
SaveQueue (0, wt, bestw, i)
FIFOMaxLoading(w, W, n)
                                     We insert -1 in the
                                                               1 if i = n then
    i \leftarrow 1
                                     queue to show the
   Enqueue(Q, -1)
                                                                       if wt > bestw then
                                     separation between
   cw \leftarrow 0; bestw \leftarrow 0
                                                                             bestw \leftarrow wt
                                     different levels.
   while Q \neq \emptyset do
                                                                4 else
     if C(i) \leq W then
                                                                   Enqueue(Q, wt)
         SaveQueue(Q, C(i), bestw, i),
6
      SaveQueue(Q, cw, bestw, i)
                                                   Enqueue left and right child.
      cw \leftarrow \text{Dequeue}(Q)
      if cw = -1 then
                                              The current level is fully explored.
       if Q \neq \emptyset then return bestw
10
                                                No live node to branch, terminate.
11
         Enqueue(Q, -1)
         cw \leftarrow \text{Dequeue}(Q)
12
                                    Continue to explore the next level.
13
         i \leftarrow i + 1
    return bestw
```


FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for n = 3, w = [8,6,2], W = 12

 $Q: \boxed{0 -1} \qquad i = 2$

Move to the next level and dequeue, cw = 8 (Line 9-13)

FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for n = 3, w = [8,6,2], W = 12

FIFO for
$$n = 3$$
, $w = [8,6,2]$, $W = 12$

FIFO for n = 3, w = [8,6,2], W = 12

FIFO Branch-and-Bound

- This version is obviously inefficient, because we didn't add the bounding function yet.
- We add the bounding function:

$$B(i) = C(i) + r(i)$$

where, r(i) denotes the weight sum of the remaining containers, namely,

$$r(i) = \sum_{j=i+1}^{n} w_j$$

■ The pruning condition is $B(i) \le bestw$

FIFO Branch-and-Bound

```
ImprovedFIFOMaxLoading(w, W, n)
1 i \leftarrow 1
2 Enqueue(Q, -1)
3 cw \leftarrow 0; bestw \leftarrow 0; r \leftarrow 0
                                                Upper bound is calculated from the second
4 for j \leftarrow 2 to n do r \leftarrow r + w[j] \leftarrow
                                                item, and reduced when level increased
5 while Q \neq \emptyset do
         if C(i) \leq W then
6
              if C(i) > bestw then bestw \leftarrow C(i)
                                                                     We don't enqueue leaf node
              if i < n then Enqueue(Q, C(i))
         if B(i) > bestw and i < n then Enqueue(Q, cw)
         cw \leftarrow \text{Dequeue}(Q)
10
                                                                      Enqueue live node with
         if cw = -1 then
11
                                                                      bounding condition
              if Q = \emptyset then return bestw
12
13
              Enqueue(Q, -1)
              cw \leftarrow \text{Dequeue}(\mathbf{k})
14
             i \leftarrow i + 1
15
         r \leftarrow r - w[i]
16
17 return bestw
```


FIFO Branch-and-Bound

```
6 if C(i) \le W then
7 if C(i) > bestw then bestw \leftarrow C(i)
8 if i < n then Enqueue(Q, C(i))
9 if B(i) > bestw and i < n then Enqueue(Q, cw)
```

- Let's take a deep look into this part.
- Why can we update bestw without checking it is a solution or not?
 - In backtracking, it is not necessary because the bounding function works only after a feasible solution is obtained.
 - However, using FIFO, we can update bestw first to kill more nodes at the same level.
- This is the key factor that makes FIFO branch-and-bound efficient.

i = 1

C(i)/B(i) Dead nodes C(i)/B(i)

Live nodes

Initialization (Line 1-4)

C(i)/B(i) Extend node

Unvisited nodes

Q: $\boxed{-1}$

i = 1

Initialization (Line 1-4)

C(i)/B(i) Dead nodes C(i)/B(i) Live nodes

C(i)/B(i) Extend node

Unvisited nodes

 $Q: \boxed{8}$ i = 1

C(i)/B(i) Dead nodes C(i)/B(i) Live nodes

Dequeue, cw = -1 (Line 10)

C(i)/B(i) Extend node Unvisited nodes

Q: -1

i = 2

C(i)/B(i) Dead nodes C(i)/B(i) Live nodes

C(i)/B(i) Extend node

Unvisited nodes

Move to the next level and dequeue, cw = 8 (Line 11-16)

Q: 8

i = 2

C(i)/B(i) Dead nodes C(i)/B(i)

des C(i)/B(i) Live nodes

Dequeue, cw = -1 (Line 10)

C(i)/B(i) Extend node

Unvisited nodes

FIFO with bounding for n = 3, w = [8,6,2], W = 12

i = 3

C(i)/B(i) Dead nodes C(i)/B(i)

C(i)/B(i) Live nodes

Move to the next level and cw = 8 (Line 11-16)

C(i)/B(i) Extend node

Unvisited nodes

FIFO with bounding for n = 3, w = [8,6,2], W = 12

Record the Solution

```
SolutionFIFOMaxLoading()
1 i \leftarrow 1
   Enqueue(Q, -1)
   cw \leftarrow 0; bestw \leftarrow 0; r \leftarrow 0
      for j \leftarrow 2 to n do r \leftarrow r + w[j]
      while Q \neq \emptyset do
             if C(i) \leq W then
6
                    SaveQueue(Q, C(i), i, bestw, E, bestE, bestx, 1)
             if B(i) > bestw then
9
                    SaveQueue(Q, cw, i, bestw, E, bestE, bestx, 0)
             E \leftarrow \text{Dequeue}(Q)
10
11
             if E = -1 then
12
                    if Q = \emptyset then return bestw
13
                    Enqueue(Q, -1); E \leftarrow \text{Dequeue}(Q); i \leftarrow i + 1; r \leftarrow r - w[i]
14
             cw \leftarrow E.weight
15 for j \leftarrow n-1 downto 1 do
                                                 bestx[i] records the
16
       bestx[j] \leftarrow bestE.Lchild
                                                 decision made on step i.
       bestE \leftarrow bestE.parent
18 return bestw
```

Use data structure:

E. weight: Current weightE. parent: Parent nodeE. Lchild: Decision (0/1)

```
SaveQueue(Q, wt, i, bestw, E, bestE, bestx, ch)

1 if i = n then

2 if wt > bestw then

3 bestE \leftarrow E

4 bestw \leftarrow wt

5 bestx[n] \leftarrow ch

6 else

7 b.weight \leftarrow wt

8 b.parent \leftarrow E

9 b.Lchild \leftarrow ch

10 Enqueue(Q, b)
```


FIFO Using Constraint Function and Bounding Function

- It seems as good as backtracking. Can we further improve?
- The current version of branch-and-bound uses FIFO, just like backtracking using FILO.
 - It is still limited by FIFO when we are branching.
- Can we choose the node to branch out of the order determined by FIFO or FILO?

Max-Profit Branch-and-Bound

- Instead, we use max-priority queue. Select node with maximum upper bound!
- Live nodes become E-nodes in decreasing order of B(i).
 - Notice that if x is a node with an upper bound, then no node in its subtree has weight more than this upper bound.
- When do we stop? The node with maximum upper bound is a leaf, which means no remaining live node can lead to a leaf with more weight.

Max-Profit Branch-and-Bound

```
In FIFO, the level is always increasing, so we don't
MaxCostLoading()
                                        need to store it. Now, we need to store level.
1 i \leftarrow 1
  r[n] \leftarrow 0
                                                                        Use data structure in
   for j \leftarrow n-1 downto 1 do r[j] \leftarrow r[j+1] + w[j+1]
                                                                        max-priority queue:
   while i \neq n + 1 do Stop if extracted node is a leaf.
                                                                         N. weight: Node upper bound
       if C(i) \leq W then
5
                                                                         N. level: Node level
                                                                         N. ptr: Pointer to node E
6
            AddLiveNode(Q, E, C(i) + r[i], 1, i + 1)
                                                                         E. parent: Parent node
       AddLiveNode(Q, E, cw + r[i], 0, i + 1)
                                                                         E. Lchild: Decision (0/1)
       N \leftarrow \text{ExtractMax}(Q) \mid \text{No bounding}
       i \leftarrow N, level
                                 condition here.
                                                             AddLiveNode(Q, E, wt, ch, lev)
10
    E \leftarrow N.ptr
                                You can also add it.
                                                             1 b.parent \leftarrow E
11
       cw \leftarrow N.weight - r[i-1]
                                                             2 b. Lchild \leftarrow ch
12 for j \leftarrow n downto 1 do
                                                             3 N. weight \leftarrow wt
13
       bestx[j] \leftarrow E.Lchild
                                                             4 N. level \leftarrow lev
       E \leftarrow E.parent
14
                                                             5 N.ptr \leftarrow b
15 return cw
                                                             6 Insert(Q, N)
```


Max-Profit Branch-and-Bound

We store upper bounds, rather than current weight

```
5 if C(i) \leq W then
6 AddLiveNode(Q, E, C(i) + r[i], 1, i + 1)
7 AddLiveNode(Q, E, cw + r[i], 0, i + 1)
8 N \leftarrow \text{ExtractMax}(Q)
9 i \leftarrow N. level
10 E \leftarrow N. ptr
11 cw \leftarrow N. weight - r[i - 1]
```

The current weight is calculated by upper bound – remaining weight.

Since we store level, we don't need -1 any more.

Branch-and-Bound

- Now, we look back the name of branch-and-bound:
- Branch: We explore all of candidate branches.
 - That's why branch-and-bound is based on BFS.
- Bound: We select a branch based on its bound.
 - Bound represents the degree of hope.

Classroom Exercise

Draw the pruned solution space tree for the following container loading problem instance by FIFO branch-and-bound and max-profit branch-and-bound.

$$n = 4, w = [4,7,5,3], W = 15$$

Compare these two results with the one solved by backtracking.

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Max-profit branch-and-bound for n = 4, w = [4,7,5,3], W = 15

Classroom Exercise

Saved Backtracking for n = 4, w = [4,7,5,3], W = 15

0/1 KNAPSACK PROBLEM

0/1 Knapsack Problem

- Constraint function and bounding function are same as the ones used in backtracking.
- Now, we use max-profit branch-and-bound to solve.

Pseudocode

Add
bounding
condition.
It is also ok
it we don't
add it.

```
MaxProfitKnapsack()
                             uv: upper value calculated by B(i)
     i \leftarrow 1
1
     uv \leftarrow B(1); bestv \leftarrow 0
     while i \neq n+1 do
           if C(i) \leq W then
                 if cv + v[i] > bestv then bestv \leftarrow cv + v[i]
                 AddLiveNode(uv, cv + v[i], C(i), 1, i + 1)
6
                 uv \leftarrow B(i)
           if B(i) \geq bestv then
                 AddLiveNode(B(i), cv, cw, 0, i + 1)
           N \leftarrow \text{ExtractMax}(Q); E \leftarrow N.ptr; cw \leftarrow N.weight
10
11
           cv \leftarrow N.value; uv \leftarrow N.upvalue; i \leftarrow N.level
12
     for j \leftarrow n to 1 do
           bestx[j] \leftarrow E.LChild; E \leftarrow E.parent
13
                                                                 Key of max-priority queue
     return bestv
14
```


Initialization (Line 1-2)

bestv = 0

C(i)/B(i) Dead nodes C(i)/B(i)

Live nodes

C(i)/B(i) Extend node

Unvisited nodes

n = 3, w = [20,15,15], v = [40,25,25], W = 30

Q: 56.6 50

bestv = 40

C(i)/B(i) Dead nodes C(i)/B(i)

C(i)/B(i) Live nodes

AddLiveNode (Line 4-9)

C(i)/B(i) Extend node

Unvisited nodes

$$n = 3, w = [20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30$$

n = 3, w = [20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30

n = 3, w = [20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30

 Draw the pruned solution space tree for the following container loading problem instance by max-profit branch-andbound.

$$n = 3, v = [20,40,20], w = [2,5,4], W = 5$$

Compare the result with the one solved by backtracking.

C(i)/B(i) Dead nodes C(i)/B(i)Live nodes bestv = 0C(i)/B(i) Extend node Unvisited nodes Initialization (Line 1-2)

n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5

40

bestv = 20

C(i)/B(i) Dead nodes C(i)/B(i)

Live nodes

AddLiveNode (Line 4-9)

C(i)/B(i) Extend node

Unvisited nodes

$$n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5$$

35 40

bestv = 20

C(i)/B(i) Dead nodes C(i)/B(i)

Live nodes

AddLiveNode (Line 4-9)

C(i)/B(i) Extend node

Unvisited nodes

n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5

C(i)/B(i) Dead nodes C(i)/B(i)Live nodes bestv = 4040 35 20 C(i)/B(i) Extend node Unvisited nodes AddLiveNode (Line 4-9) 0/40 2/44 0/20 5/40 7/44 2/35

n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5

35 40 20

bestv = 40

C(i)/B(i) Dead nodes C(i)/B(i)

Live nodes

AddLiveNode (Line 4-9)

C(i)/B(i) Extend node

Unvisited nodes

$$n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5$$

C(t)/B(t) Dead nodes

Backtracking for n = 3, v = [20,40,20], w = [2,5,4], v/w = [10,8,5], W = 5

SAT PROBLEM

We have seen the 3-CNF-SAT problem. Now we consider a more general k-CNF-SAT problem:

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$$

where each C_i has the following form:

$$C_i = l_{i1} \vee l_{i2} \vee \cdots \vee l_{ik}$$

and the literal l_{ij} could be one of variables in $\{x_1, x_2, \dots, x_m\}$ or its negation.

For example, a 3-CNF-SAT with 4 variables could be:

$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4)$$

• Notice three different parameters: n, k and m.

Solution Space Tree for SAT Problem

A k-CNF-SAT problem with 4 variable.

- This is a decision problem, rather than optimization problem.
- It seems that we don't have bounding function.
- What is the constraint function?

There's no constraint function. At any node, we still have hope before we assign the value to the last variable x_m .

- Remember that any decision problem can also be converted to optimization problem.
- What is the optimization version for k-CNF-SAT?
- Find an assignment that satisfies the maximum number of clauses.

- Now, we can design the bounding function.
- We can calculate the lower bound cv for each node, by counting the number of satisfied clauses.
- For example, $x_1 = 1$:

$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4)$$

- We get cv = 2.
- No matter how we assign values to x_2 , x_3 and x_4 , the final solution will not be lower than 2.

- Again, by the idea of branch-and-bound, we put cv in a maxpriority queue.
- However, the different is that cv is the lower bound, rather than upper bound in 0/1 knapsack problem.
- It still works. Higher lower bound also means higher hope.

Pseudocode

```
MaxProfitSAT()
     i \leftarrow 1
     while i \neq m+1 do
         cv \leftarrow ok(i, N, 1)
         if cv > 0 then
              AddLiveNode(cv, 1, i + 1)
         cv \leftarrow ok(i, N, 0)
         if cv > 0 then
              AddLiveNode(cv, 0, i + 1)
         N \leftarrow \text{ExtractMax}(Q); i \leftarrow N. level
     for j \leftarrow m downto 1 do
         bestx[j] \leftarrow E.LChild; E \leftarrow E.parent
11
```

```
ok(i, N, ch)
1 cn \leftarrow 0
2 for j \leftarrow 1 to n do
3 if check(C_j, N, ch) = 0 then
4 return 0
5 else if check(C_j, N, ch) = 1 then
6 cn \leftarrow cn + 1
7 return cn
```


Computer Science Department of Xiamen University

 χ_4

■ Draw the pruned solution space tree for the following k-CNF-SAT problem instance by max-profit branch-and-bound.

$$\phi = (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor x_4)$$

 x_2

 χ_3

 χ_4

TRAVELING SALESPERSON PROBLEM

• Constraint function C(i) is to simply check if the next vertex is connected to the current vertex:

$$C(i) = w[x[i], x[j]]$$

Check if $C(i) \neq \infty$.

■ Bounding function B(i) is the total weight if we connect x[i]:

$$B(i) = cw(i-1) + w[x[i-1], x[i]]$$

$$cw(i) = \sum_{j=2}^{i} w[x[j-1], x[j]]$$

Check if B(i) < bestw.

- $B(i) \ge bestw$ is the condition to prune. If we want to prune more branches, we need to increase B(i) as much as possible.
- Now, the bounding function

$$B(i) = cw(i-1) + w[x[i-1], x[i]]$$

only calculates the weight between x[i-1] and x[i], but ignores all the remaining paths.

Now, consider these cases:

After going to node i, the rest paths are hopeless.

- How to obtain the lower bound if we consider all the nodes that we haven't visited?
- Just pick the outgoing edge of each unvisited node with minimum weight, and sum them up.
 - Although it may not form a solution (a path), but it is a lower bound.
 - Just like the bound of 0/1 knapsack problem.

The Improved Bounding Function

Let the cost of the extend node i be

$$B(i) = cw(i) + rw(i)$$

where, cw(i) is as before, rw(i) is the sum of costs of least-cost outgoing edges from each remaining vertices, namely

$$rw(i) = \sum_{j=i}^{n} \min_{i < k < n, k \neq j} \{w[x[j], x[k]]\}$$

- If $B(i) \ge bestw$, then stop search the extend node i and the following level, otherwise, continue to search.
- At the same time, we adopt min-priority queue to extract the live node with min cost.


```
MinWeightTSP()
   MinSum \leftarrow 0
   for i \leftarrow 1 to n do
       Min \leftarrow \infty
       for j \leftarrow 1 to n do
4
                                                                               Initialize MinOut
          if w[i,j] \neq \infty and w[i,j] < Min then Min \leftarrow w[i,j]
       if Min = \infty then return \infty
6
                                                 Isolated vertex
       MinOut[i] \leftarrow Min
       MinSum \leftarrow MinSum + Min
                                                                                  Initialize data
    for i \leftarrow 1 to n do E \cdot x[i] \leftarrow i
10 E.s \leftarrow 1; E.cw \leftarrow 0; E.rw \leftarrow MinSum; bestw \leftarrow \infty
                                                                                  structure
11 while E.s < n do
                                             Constraint function for node n-1 \rightarrow n \rightarrow 1
12
       if E.s = n - 1 then
13
            if w[E.x[n-1], E.x[n]] \neq \infty and w[E.x[n], E.x[1]] \neq \infty and
                    E.cw + w[E.x[n-1], E.x[n]] + w[E.x[n], E.x[1]] < bestw then
                 bestw \leftarrow E.cw + w[E.x[n-1], E.x[n]] + w[E.x[n], E.x[1]]
14
15
                E.cw \leftarrow bestw; E.lw \leftarrow bestw
16
                E.s \leftarrow E.s + 1
                                            Increase level
17
                Insert(Q, E)
```

Not finish here. We still put enqueue it. The algorithm terminates when a solution is dequeued (E, s = n).

E.s: Current node

i: Next node

Once moved, subtract *MinOut* of the current node.

```
18
        else for i \leftarrow E.s + 1 to n do
19
            if w[E.x[E.s], E.x[i]] \neq \infty then
20
                 cw \leftarrow E.cw + w[E.x[E.s], E.x[i]]
                                                                    Calculate B(i)
21
                 rw \leftarrow E.rw - MinOut[E.x[E.s]]
22
                 B(i) \leftarrow cw + rw
                 if B(i) < bestw then
23
                      for j \leftarrow 1 to n do N.x[j] \leftarrow E.x[j]
24
                      N.x[E.s+1] \leftarrow E.x[i] Switch selected
25
                      N.x[i] \leftarrow E.x[E.s+1] \mid \text{vertex } (E.s|+1) \text{ to } i.
26
27
                      N.cw \leftarrow cw; N.s \leftarrow E.s + 1
28
                      N.lw \leftarrow B(i); N.rw \leftarrow rw
29
                      Insert(Q, N)
30
        E \leftarrow \text{ExtractMin}(Q)
31 if bestw = \infty return \infty
32 for i \leftarrow 1 to n do bestx[i] \leftarrow E.x[i]
33 return bestw
```


(1,3,2,4,1),25

Computer Science Department of Xiamen University

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Draw the pruned solution space tree for the following TSP instance by max-profit branch-and-bound.

Computer Science Department of Xiamen University

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Better Bounding Function

- It seems this bounding function is not so efficient. Can we further improve?
- Now, *MinOut* is static no matter how we move.
- However, once we decided to go from v_1 to v_2 , v_2 should not go back to v_1 and all the other vertices should not go to v_2 .
- Therefore, we can update *MinOut* at each step.

Better Bounding Function

■ Initially,
$$MinOut = \begin{bmatrix} \min\{30,6,4\} \\ \min\{30,5,10\} \\ \min\{5,6,20\} \\ \min\{4,10,20\} \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 5 \\ 4 \end{bmatrix}$$
, and $B(i) = 0 + 18 = 18$.

• After we choose to go from v_1 to v_2 ,

$$MinOut = \begin{bmatrix} -1 & -1 & -1 \\ min\{5,10\} \\ min\{6,20\} \\ min\{4,20\} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 5 & -1 \\ 4 \end{bmatrix}$$
 no path to v_1

and B(i) = 30 + 15 = 45.

 $\blacksquare B(i)$ is increased!

Better Bounding Function

■ Then, if we choose to go from v_2 to v_3 ,

$$MinOut = \begin{bmatrix} -\\ -\\ \min\{20\}\\ \min\{4\} \end{bmatrix} = \begin{bmatrix} -\\ -\\ 20\\ 4 \end{bmatrix}$$

and B(i) = 35 + 24 = 59.

 $\blacksquare B(i)$ is increased!

no path to v_1 and v_2

no path to v_2 and v_3

(1,4,2,3,1), 25

Draw the pruned solution space tree for the following TSP instance by improved bounding function.

(1,2,4,3,1),33

FLOW SHOP SCHEDULING PROBLEM

- Given n jobs $J = (j_1, j_2, ..., j_n)$, each job has two operations processed by two machines.
- One machine can only process a single job at a time, and processing must be completed once initiated.
- Furthermore, machine 2 cannot begin processing a job until machine 1 has completed processing of the same job, namely, each job must be processed by machine 1 and machine 2 in turn.

- Each job i requires a processing time of t[i,j] on machine j.
- Given a scheduling solution, F[i,j] denotes the finish time for job i on machine j.
- The task is to find an optimal scheduling that minimizes the total finish time:

$$f = \sum_{i=1}^{n} F[i, 2]$$

Machine 1	
Machine 2	→

t[i,j]	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

The goal is not to achieve the earliest finish time, but the earliest total finish time.

Again, this problem is a permutation tree.

- Unvisited internal nodes
- Unvisited leaf nodes

What is the constraint function for this problem?

There's no constraint function. Any permutation is a feasible solution.

Let $x = \{x[1], x[2], ..., x[i]\}$ be the set of jobs that has been processed up to the extend node i, then

$$f = \sum_{j=1}^{i} F[x[j], 2] + rf(i)$$

where

$$rf(i) = \sum_{j=i+1}^{n} F[x[j], 2]$$

• Computing rf(i) is very difficult, we can estimate its lower bound?

- Machine 1 is continuously working.
- The finish time is influenced by the waiting time of machine 2.

We can calculate the lower bound by assuming that there's no waiting time.

Lower bound 1:

- Assume that machine 2 has no waiting time for the current job.
 - Each remaining job can be continuously processed in the machine 1 and 2 without waiting time.

$$rf1(i) = \sum_{j=i+1}^{n} (F[x[i], 1] + (n-j+1)t[x[j], 1] + t[x[j], 2])$$

• Obviously, we have $rf(i) \ge rf1(i)$.

Lower bound 1:
$$rf1(i) = \sum_{j=i+1}^{n} (F[x[i], 1] + (n-j+1)t[x[j], 1] + t[x[j], 2])$$

- The order from job i + 1 to job n matters.
- Therefore, we can sort t[x[j], 1] in non-decreasing order to obtain smaller $rf1(i)' \le rf1(i)$.

Lower bound 2:

- Assume that machine 2 has no waiting time for the next job.
 - After the machine 2 finished one job, it can process the following job without waiting time.

$$rf2(i) = \sum_{j=i+1}^{n} \left(\max\{F[x[i], 2], F[x[i], 1] + \min_{i \le k \le n} t[x[k], 1] \right) + (n-j+1)t[x[j], 2]$$

• Obviously, we have $rf(i) \ge rf2(i)$.

Lower bound 2:

$$rf2(i) = \sum_{j=i+1}^{n} \left(\max\{F[x[i], 2], F[x[i], 1] + \min_{i \le k \le n} t[x[k], 1]\} + (n-j+1)t[x[j], 2] \right)$$

- The order from job i + 1 to job n matters.
- Therefore, we can sort t[x[j], 2] in non-decreasing order to obtain smaller $rf2(i)' \le rf2(i)$.

So, we have

$$f = \sum_{j=1}^{i} F[x[j], 2] + rf(i)$$

$$\geq \sum_{j=1}^{i} F[x[j], 2] + \max\{rf1(i), rf2(i)\}$$

$$\geq \sum_{j=1}^{i} F[x[j], 2] + \max\{rf1(i)', rf2(i)'\} = B(i)$$

• If $B(i) \ge best f$, then stop search the node i and the following level, otherwise, continue to search. At the same time, we use min-priority queue to extend.

Dead nodes (

Live	nodes

t[i,j]	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

*rf*1(1)':

$$F[1,2] = 3$$

 $F[3,2] = 7$ $f = 18$
 $F[2,2] = 8$

rf2(1)':

$$F[1,2] = 3$$

 $F[2,2] = 5$ $f = 16$
 $F[2,2] = 8$

Dead nodes (

Live	nodes
Live	noaes

t[i,j]	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

rf1(1)':

rf2(1)':

De De

Dead nodes (

t[i,j]	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

*rf*1(1)':

$$F[3,2] = 5$$

$$F[1,2] = 5$$
 $f = 19$
 $F[2,2] = 9$

rf2(1)':

$$F[3,2] = 5$$

$$F[1,2] = 6$$
 $f = 18$

$$F[2,2] = 7$$

t[i,j]Machine 1Machine 2Job 121Job 231Job 323

Dead nodes	$(\)$	Live nodes

Experiments for 0/1 Knapsack

n	1000	1200	1400	1600	1800	2000	2200	2400
DPKnapsack	0.109	0.187	0.203	0.296	0.421	0.578	1.125	1.218
BacktrackKnapsack	0.031	0.063	0.078	0.063	0.11	0.14	0.14	0.109
MaxProfitKnapsack	0.015	0.015	0.031	0.031	0.031	0.062	0.046	0.046
Optimal value	282000	414610	455339	607732	748955	940129	1305502	1312372

Conclusion

After this lecture, you should know:

- What is the difference between backtracking and branch-andbound.
- What kind of problem that we can use branch-and-bound.
- How can we improve the bounding function to eliminate more branches.

Homework

Page 262-263

13.1

13.2

13.4

Experiment

Choose one:

- P263, 13.11.
- 使用回溯解决石材切割问题.

谢谢

有问题欢迎随时跟我讨论

