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Limitation of Backtracking

" Backtracking works better if we can improve over the bounding
function.

® However, there is still a mechanism that limits backtracking to
be more efficient:

DFS

= No matter how you improve the bounding function, the
traversal is still based on DFS.

= Can we based on other methods to explore the solution space?
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Limitation of Backtracking

e But why not these two?

Using backtracking, when we
meet a dead node here, we
automatically choose this one.
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Limitation of Backtracking

= Can we try BFS?

= No, it is very inefficient.
= No solution is reached until level 1 to level n — 1 of the tree is built.
= No solution means bounding function is useless.

= Branch-and-bound (4337 fE4t) is the techniques to improve
BFS for solution space tree traversal.
= FIFO branch-and-bound.

= Max-profit branch-and-bound.
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Branch-and-Bound

® Different from backtracking, the branch-and-bound method

1. does not limit us to any particular way of traversing the tree;

2. is used only for optimization problems.

® A branch-and-bound algorithm computes a upper bound and
lower bound at a node.

® For maximization problem:
= Upper bound is calculated by the bounding function.

= Lower bound is recorded by the best solution so far.

" We increase the lower bound and decrease the upper bound
until they are equal.
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Branch-and-Bound

® Branch-and-bound is based on BFS, but does not exactly follow
its FIFO machanism.

= \We select the next node to branch based on some rule. Namely,
we branch a node with the highest hope.

= All nodes can be separated into:

= Live nodes: Visited but waiting for branching.

Definition of live
= Dead nodes: Visited. and dead nodes are
slightly different

= Extend node: Selected to branch in the next step. : backtracki
rom pDacCKiracking.

= Unvisited nodes: Unvisited.
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Branch-and-Bound

Q Live nodes
‘ Dead nodes

‘ Extend node

@ Unvisited nodes

Extend node is selected among all live nodes based on designed rules.
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CONTAINER LOADING PROBLEM




Container Loading Problem

= Given n containers (2354§), container i has weight w;. The ship can
hold containers of total weight up to ¥/

® Container Loading problem is to load as many containers as is
possible without sinking the ship.

= Assuming that the solutions are represented by vectors
(x4, X5, ..., X,,), Where x; € {0,1}. 1 denotes taking container i and 0
denotes not taking container i.

® The container loading problem can be formally stated as follows:

n n
maxz WiX; s.t. z wix; < W
i=1 i=1
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Container Loading Problem

In this example, we go though three versions of branch-and-
bound.

® FIFO branch-and-bound with only constraint function.

= FIFO branch-and-bound.

" Max-profit branch-and-bound.
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Container Loading Problem

" The constraint function is same as backtracking.

= Let cw(i) denote the current weight up to level i, namely

l
cw(i) = z W;X;
j=1

then the constraint function is
Ci@)=cw(i—1) + w;

= The pruning condition is C(i) > W, which means there is no
capacity to take container i.
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FIFO with Only Constraint Function

Level i is used to
check solution.

FIFOMaxLoading(w, W, n) : _ SaveQueue/Q, wt, bestw, i)
| i1 We ingert -1 in the 1 itli = nlthen

2 Enqueue(Q, —1)<« queue t.o show the 2 if wt > bestw then
3 cw« 0; bestw «< 0 Ze‘zfﬁaratloln beltween 3 bestw « wt

4  while Q + @ do ITrerent fevels. 4 else

5 ifC(i) < W then 5 Enqueue(Q, wt)

6 SaveQueue(Q, C(i), bestw, i)

7 SaveQueue(Q, cw, bestw, i) <—> Enqueue left and right child.

8 cw <« Dequeue(Q)

9 if cw = —1 then <« The current level is fully explored.

10 if Q # ¢ then return bestw o_|

11 Enqueue(Q, —1) —~ No live node to branch, terminate.

12 cw « Dequeue(Q) :

13 P i1 Continue to explore the next level.

14 return bestw

@ BIIXFEEFE%R

\ ’//
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

11




‘ Dead nodes O Live nodes

Q: |1 i=1

Initialization (Line 1-3)

' Extend node @ Unvisited nodes

1 0
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Q:

-1

8

0

‘ Dead nodes O Live nodes

1 =1

SaveQueue (Line 5-7)

' Extend node @ Unvisited nodes
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‘ Dead nodes O Live nodes

' Extend node @ Unvisited nodes

0

Q:181]0 i=1

Dequeue, cw = —1 (Line 8)
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‘ Dead nodes O Live nodes

Q:0|-1 [ = 2

' Extend node @ Unvisited nodes

0

Move to the next level and
dequeue, cw = 8 (Line 9-13) | 1
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‘ Dead nodes O Live nodes

' Extend node @ Unvisited nodes

0

Q:10(|-1|8 [ =2
SaveQueue (Line 5-7)
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‘ Dead nodes O Live nodes

' Extend node @ Unvisited nodes

0

Q:|-1| 8 [ =2

Dequeue, cw = 0 (Line 8)
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‘ Dead nodes O Live nodes

' Extend node @ Unvisited nodes

Q:|-1|8|6|0]| =2
SaveQueue (Line 5-7)

1 0
0
0 1 0
1 0 1 0 1 0

“égﬂkﬁﬁéﬁﬁ

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

18




‘ Dead nodes O Live nodes

' Extend node @ Unvisited nodes

0

Q:{8]|6]0 [ =2

Dequeue, cw = —1 (Line 8)

“égﬂkﬁﬁéﬁﬁ

Q
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

19




‘ Dead nodes O Live nodes

Q:l6|0]|-1 [ = 3

' Extend node @ Unvisited nodes

0

Move to the next level and
dequeue, cw = 8 (Line 9-13)| 1

8
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‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0

Q:l6|0]|-1 [ = 3
SaveQueue (Line 5-7)

bestw = 10
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‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0

Q:10|-1 i =3

Dequeue, cw = 6 (Line 8)

bestw = 10
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‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0

Q:10|-1 i =3

SaveQueue (Line 5-7)

bestw = 10
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‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0

Q: -1 I =3

Dequeue, cw = 0 (Line 8)

bestw = 10
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‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0

Q: |1 i =3
SaveQueue (Line 5-7)

bestw = 10
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] ‘ Dead nodes O Live nodes
Q: i =3

Extend node isi
Dequeue, cw = —1 (Line 8) ‘ @ Unvisited nodes
and return bestw (Line 10) | 1 0

8

10 8
bestw = 10
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FIFO Branch-and-Bound

® This version is obviously inefficient, because we didn’t add the
bounding function yet.

= We add the bounding function:
B(i) =C() +r(i)

where, (i) denotes the weight sum of the remaining

containers, namely,
n
’I"(l) — z W]

j=i+1

= The pruning condition is B(i) < bestw
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FIFO Branch-and-Bound

ImprovedFIFOMaxLoading(w, W, n)
[<1
Enqueue(Q, —1)
cw « 0; bestw < 0; r«< 0
forj —2tondor «r+ w[j]
while Q # @ do
if C(i) < W then
if C(i) > bestw then begtw < C(i)
if i <71 then Enqueue( ]
if B(i) > bestw and i <nfhen Enqueue(Q, cw)

cw <« Dequeue(Q) Enqueue live node with

if cw = —1 then bounding condition
if Q = @ then retufn bestw

Enqueue(Q, —1)
cw « Dequeue(f))
[<—i+1

16 r <1 —wli]

17 return bestw
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FIFO Branch-and-Bound

if C(i) < W then
if C(i) > bestw then bestw « C(i)
if i < n then Enqueue(Q, C(i))
if B(i) > bestw and i < n then Enqueue(Q, cw)

O o0 3 DN

m Let’s take a deep look into this part.

= Why can we update bestw without checking it is a solution or not?

= |n backtracking, it is not necessary because the bounding function works only
after a feasible solution is obtained.

= However, using FIFO, we can update bestw first to kill more nodes at the
same level.

= This is the key factor that makes FIFO branch-and-bound efficient.
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Dead nodes Live nodes

Extendnode @  Unvisited nodes

Q: -1 (=1

Initialization (Line 1-4)
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Dead nodes Live nodes

Extendnode @  Unvisited nodes

Q: -1 (=1

Initialization (Line 1-4)
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, @ Dead nodes Live nodes
Q:|-1|8 i =1 .

Extendnode @  Unvisited nodes

Enqueue (Line 6-9)

Directly kill this node!
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, @ Dead nodes Live nodes
e - am

Extendnode @  Unvisited nodes

Dequeue, cw = —1 (Line 10)
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Q:

-1

[ =2

Move to the next level and
dequeue, cw = 8 (Line 11-16)
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@ Dead nodes Live nodes

Extendnode @  Unvisited nodes
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, @ Dead nodes Live nodes
Q:|-1|8 i =2 .

Extendnode @  Unvisited nodes

Enqueue (Line 6-9)
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, @ Dead nodes Live nodes
e o am

Extendnode @  Unvisited nodes

Dequeue, cw = —1 (Line 10)
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, @ Dead nodes Live nodes
Q: |-1 [ =3 .

Extendnode @  Unvisited nodes
Move to the next level and

dequeue, cw = 8 (Line 11-16)

bestw = 8
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, @ Dead nodes Live nodes
Q: |-1 [ =3 .

Extendnode @  Unvisited nodes

Enqueue (Line 6-9)
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Q . 3 @ Dead nodes Live nodes
. [ =

Extendnode @  Unvisited nodes

Dequeue, cw = —1 (Line 10)
and return bestw (Line 12)

6y BIIXFERFER

\) %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M AT HRENHER 39




Record the Solution

SolutionFIFOMaxLoading( )

1

<1

2 Enqueue(Q, —1)
3 cw <« 0;bestw < 0;r < 0

03O L

9

10
11
12
13
14
15
16
17
18

forj < 2tondor < r+ wjj]
while Q # @ do
if C(i) < W then
SaveQueue(Q, C(i), i, bestw, E, bestE, bestx, 1)
if B(i) > bestw then
SaveQueue(Q, cw, i, bestw, E, bestE, bestx, 0)
E < Dequeue(Q)
if E = —1 then
if Q = @ then return bestw
Enqueue(Q, —1); E < Dequeue(Q); i < i+ 1; r «r —w]i]
cw < E.weight
for j <« n—1 downto 1 do
bestx[j] < bestE.Lchild +——
bestE « bestE.parent
return bestw

| bestx[i] records the
decision made on step i.

Use data structure:

E.weight: Current weight
E.parent: Parent node
E.Lchild: Decision (0/1)

SaveQueue(Q, wt, i, bestw,
E, bestE, bestx, ch)

1 if i = n then

2 if wt > bestw then
3 bestE < E

4 bestw <« wt

5 bestx[n] « ch
6 else

7 b.weight « wt
8 b.parent « E
9 b.Lchild < ch
10  Enqueue(Q, b)
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FIFO Using Constraint Function and Bounding Function

" |t seems as good as backtracking. Can we further improve?

® The current version of branch-and-bound uses FIFO, just like
backtracking using FILO.

= |t is still limited by FIFO when we are branching.

= Can we choose the node to branch out of the order determined
by FIFO or FILO?

41
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Max-Profit Branch-and-Bound

" Instead, we use max-priority queue. Select node with
maximum upper bound!

= Live nodes become E-nodes in decreasing order of B ().

= Notice that if x is a node with an upper bound, then no node in its
subtree has weight more than this upper bound.

" When do we stop? The node with maximum upper bound is a
leaf, which means no remaining live node can lead to a leaf
with more weight.
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Max-Profit Branch-and-Bound

MaxCostLoading( ) In FIFO, the Ieyel is always increasing, so we don’t
| ie1 need to store it. Now, we rjeed to store level.

2 r[n] <0 Use data structure in

3 forj < n—1downto 1dor[j] < r[j+1]+w[j+ 1] |max-priority queue:

4 whilei #n+ 1 do+— Stop if extracted node is a leaf. N.weight: Node upper bound
5 if C(i) < W then N.level: Node level

6 AddLiveNode(Q, E, C(i) + r[i], 1,i + 1) N.ptr: Pointer to node £
¢ N e TR0 Nobousdng g i
8 N « Extr ax(Q) | No bounding

9 [ <« N.level condition here. AddLiveNode(Q, E, wt, ch, lev)
10 E < N.ptr You can also add it. 1 b.parent « E

11 cw < N.weight — r[i — 1] 2 b.Lchild < ch

12 for j < n downto 1 do 3 N.weight « wt

13 bestx|j] < E.Lchild 4 N.level « lev

14 E <« E.parent 5 N.ptr < b

15 return cw 6 Insert(Q, N)
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Max-Profit Branch-and-Bound

We store upper bounds, rather than current weight

5 if C(i) < W then

6 AddLiveNode(Q, E,|[C(i £ r[i]l1,i+ 1)
7 AddLiveNode(Q, E jcw + r[i], 0,1 + 1)

8 N < ExtractMax(Q)

9 [ < N.level

10 E « N.ptr

11 cw < N.weight — r[i — 1]

The current weight is calculated by upper bound — remaining weight.
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Exa mple Since we store level, we don’t need -1 any more.
Q' @ Dead nodes Live nodes

Initialization (Line 1-3) . Extend node ‘ Unvisited nodes
1 0
1 0 1 0
1 0 1 0 1 0 1 0
Max-profit branch-and-bound forn = 3, =12
iy) BIIKEERER 45
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Q: |16

8

Dead nodes Live nodes

AddLiveNode (Line 6-7)

Extendnode @  Unvisited nodes
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Q:

8

ExtractMax: 16
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Dead nodes Live nodes

Extendnode @  Unvisited nodes

47



Q: |10

8

Dead nodes Live nodes

AddLiveNode (Line 6-7)

Extendnode @  Unvisited nodes
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Q' 3 Dead nodes Live nodes

Extend node fei
ExtractMax: 10 @ Unvisited nodes

o
=
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Dead nodes Live nodes

Extendnode @  Unvisited nodes

(: |10 8|8

AddLiveNode (Line 6-7)

0

8/10

1 0
(0719
Max-profit branch-and-bound forn = 3, w = [8,6,2], W = 12

50
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Dead nodes Live nodes
J:|8|8

Extend node ici
ExtractMax: 10 ‘ Unvisited nodes

0
8/8

—_
o
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o

;) BITARERE

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

51




Q:

8

i=n+1,
terminate.
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Dead nodes Live nodes

Extendnode @  Unvisited nodes
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Branch-and-Bound

= Now, we look back the name of branch-and-bound:

® Branch: We explore all of candidate branches.

= That’s why branch-and-bound is based on BFS.

= Bound: We select a branch based on its bound.

= Bound represents the degree of hope.
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Classroom Exercise

" Draw the pruned solution space tree for the following
container loading problem instance by FIFO branch-and-bound
and max-profit branch-and-bound.

n=4w=[4753], W = 15

= Compare these two results with the one solved by backtracking.

54
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15

Dead nodes Live nodes
. Extendnode @  Unvisited nodes

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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15

12

Dead nodes Live nodes
. Extendnode @  Unvisited nodes

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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14

12

0

1

Dead nodes Live nodes
‘ Extendnode @  Unvisited nodes

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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Dead nodes Live nodes
Q:|15]|14|12| 8
‘ Extendnode @  Unvisited nodes

0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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Dead nodes Live nodes
(Q:|15]|14|12|10| 8
‘ Extendnode @  Unvisited nodes

0 1 0

1 0 1 0 1

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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Dead nodes Live nodes
Q: 15|14 (12|12 |10]{ 8
‘ Extendnode @  Unvisited nodes

1

7/15

0 1 0 1

0
@ ®
1 0 1 0 1 1 0 1

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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Dead nodes Live nodes
Q: 14112112110| 8
. Extendnode @  Unvisited nodes

1 0 1

16/19 11/14 12/15

1 0

15/15 § 12/12

Max-profit branch-and-bound forn = 4,w = [4,7,5,3], W = 15
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Classroom Exercise

Live nodes

Dead nodes

(419
@ 4/12 @ 0/8

0

16/19 11/14
1

@ 11/11 @ 12/12

Saved  Backtracking forn = 4,w = [4,7,5,3], W = 15
0 BTSSR
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0/1 KNAPSACK PROBLEM




0/1 Knapsack Problem

® Constraint function and bounding function are same as the
ones used in backtracking.

= Now, we use max-profit branch-and-bound to solve.
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11\/[axlzriﬁ;Knapsack() uv: upper value calculated by B (i)
2 uv < B(1); bestv < 0
3 whilei #n+1do
4 if C(i) < W then
5 if cv + v[i] > bestv then bestv « cv + v[i]
Add , 6 AddLiveNode(uv, cv + v[i], C(i), 1,i + 1)
bounding ,
L 7 uv <« B(i)
co‘nd|t|on. —if B(i) = bestv then
Itis also ok ) g AddLiveNode(B (D). cv, cw, 0, i + 1)
It WE? don’t 10 N « ExtractMax(Q); E < N.ptr; cw « N.weight
add it. 11 cv « N.value; uv < N.upvalue; i < N.level
12 for j < n to1do T
13 bestx[j] « E.LChild; E < E.parent ——
14 return bestv Key of mpax-priority queue
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Q' bestv = 0 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

Initialization (Line 1-2)
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— Dead nodes Live nodes
0: F6.d50 bestv = 40 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

25+ 25 =50

40 4+ (30 — 20)x1.67 = 56.6
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Q' 0 bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 56.6
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— Dead nodes Live nodes
0: F6.d50 bestv = 40 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

20/56.6 @
1
35/56.6 @

69
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Q' 0 bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 56.6

20/56.6

1

35/56.6

6y BIIXFERFER
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— Dead nodes Live nodes
0: [50][40 bestv = 40 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

20/56.6

1 0 1 0

35/56.6 20/56.6

1 0 1 0 1 0

35/56.6 @
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Q' 40 bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 50

20/56.6

1 0 1 0

35/56.6 20/56.6

1 0 1 0 1 0

35/56.6 @

72
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— Dead nodes Live nodes
0: [50][40 bestv = 40 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

20/56.6 0/50

1 0 1

35/56.6 20/56.6 @ 0/25
1 0 1 0 \

Smaller than bestv
35/56.6 @

©) BIIKSESEE
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Q' 40 bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 50

20/56.6

0

1

35/56.6 20/56.6

1 0

35/56.6 @

©) BIIKSESEE
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— Dead nodes Live nodes
0: [50][40 bestv = 50 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

0/50

20/56.6

0 1

1

35/56.6 20/56.6 15/50

1

35/56.6 @ @

n =3,w = [20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30
EBIIXEEEFER (= M X7 RNHYSE 75
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Q:

40 bestv = 50 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 50

20/56.6 0/50

0

1

35/56.6 20/56.6

1 0

35/56.6 @

n=3,w =[20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30
6y BIIRFEEBRER (=) ZH»Titanuss 76
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Q:

40 bestv = 50 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

[ =n+ 1, terminate

20/56.6 0/50

0

1

35/56.6 20/56.6

1 0
35/56.6 J 20/40

n =3, w =[20,15,15], v = [40,25,25], v/w = [2,1.67,1.67], W = 30
6y BIIRFEEBRER (=) ZH»Titanuss 77
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Classroom Exercise

" Draw the pruned solution space tree for the following
container loading problem instance by max-profit branch-and-
bound.

n=3,v=/[20,40,20],w = [2,54], W = 5

= Compare the result with the one solved by backtracking.

78
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Classroom Exercise

Q' bestv = 0 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

Initialization (Line 1-2)

@) BITRHERER

& Y
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Classroom Exercise

— Dead nodes Live nodes
Q: [44]40 bestv = 20 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

6y BIIXFERFER
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Classroom Exercise

Q' 40 bestv = 20 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

ExtractMax: 44

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Classroom Exercise

— Dead nodes Live nodes
Q: [40][35 bestv = 20 @

Extendnode @  Unvisited nodes

AddLiveNode (Line 4-9)

6y BIIXFERFER
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Classroom Exercise

Q:

35

ExtractMax: 40

) BIIXRERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

bestv = 20 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

MR HENHESE 33




Classroom Exercise

Q: |40

35

20

AddLiveNode (Line 4-9)

bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

\) %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Classroom Exercise

— Dead nodes Live nodes
0: [35]20 bestv = 40 @

Extendnode @  Unvisited nodes

ExtractMax: 40

85
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Classroom Exercise

Q: |40

35

20

AddLiveNode (Line 4-9)

bestv = 40 @ Dead nodes Live nodes

Extendnode @  Unvisited nodes

©) BIIKSERSE

\%) %
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Classroom Exercise

— Dead nodes Live nodes
0: [35]20 bestv = 40 @

Extendnode @  Unvisited nodes

ExtractMax: 40
[ =n+ 1, terminate

@) BITKHERER

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Classroom Exercise

Live nodes

Dead nodes

©) BIIKSESSE
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SAT PROBLEM




SAT Problem

= We have seen the 3-CNF-SAT problem. Now we consider a more
general k-CNF-SAT problem:

¢ — Cl/\CZ/\/\Cn
where each C; has the following form:
Ci=1liy ViV Vi

and the literal ll-j could be one of variables in {x{, x5, ..., X, } orits
negation.

® For example, a 3-CNF-SAT with 4 variables could be:
¢ =1 Vaxy,V-axg) Ay VgV, A
(mx1 V—=x3 V=xy) A(=xg VX V-—xy,)
= Notice three different parameters: n, k and m.

ty) BIIRFERER f DR A RNEER 90

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Solution Space Tree for SAT Problem

91



SAT Problem

® This is a decision problem, rather than optimization problem.
" [t seems that we don’t have bounding function.
® What is the constraint function?

There’s no constraint function. At any node, we still have hope
before we assign the value to the last variable x,,,.

@) BITRHERER

& Y
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SAT Problem

" Remember that any decision problem can also be converted to
optimization problem.

= What is the optimization version for k-CNF-SAT?

" Find an assignment that satisfies the maximum number of
clauses.

6y BIIXFERFER
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SAT Problem

= Now, we can design the bounding function.

" We can calculate the lower bound cv for each node, by
counting the number of satisfied clauses.

= For example, x; = 1:
b= Vaxy,V-axg) AN(xya Vg Vaxg)A
(mx1 V=ax3V—axg) A(—xg VX3V —xy)
= We get cv = 2.

= No matter how we assign values to x,, x3 and x,, the final solution will
not be lower than 2.

6y BIIXFERFER
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SAT Problem

® Again, by the idea of branch-and-bound, we put cv in a max-
priority queue.

= However, the different is that cv is the lower bound, rather
than upper bound in 0/1 knapsack problem.

= |t still works. Higher lower bound also means higher hope.

95
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MaxProfitSAT()

1 i1

2 whilei #m+ 1do ok(i, N, ch)

3 cv < ok(i,N, 1) 1 cneo0

4 if cv > 0 then 2 forj< 1tondo

5 AddLiveNode(cv, 1,i+ 1) 3 if check(Cj, N, ch) = 0 then
6 cv < ok(i, N, 0) 4 return 0

7 if cv > 0 then 5 else if check(C;, N, ch) = 1 then
8 AddLiveNode(cv, 0,i + 1) 6 cn «cn+1

9 N « ExtractMax(Q); i « N. level 7 _return cn

10 for j « m downto 1 do

11 bestx|j] « E.LChild; E < E.parent

ty) BITAZ(EREER
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‘ Dead nodes O Live nodes

(x]_ V _Ixz V _|x3) /\
(xz V X3 V X4) N

(mx1 Vax3 V ax,) A ' Extend node @ Unvisited nodes
(_le V x3 V _|x4)

Xq 1 0

) BIIKFERER

& /
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(X1 V—ax, Vax3) A Q:
(xy VX3 Vi) A

(mx1 Vx3 V axy) A
(x1 VX3V Xxy)

ty) BITAZ(EREER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

2

1

‘ Dead nodes O Live nodes

Extend node

0

@ Unvisited nodes
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(xl V —1X \ _|x3) N Q: 1

‘ Dead nodes O Live nodes
(xz VX3V X4) N

(mx1 Vax3 V ax,) A ' Extend node @ Unvisited nodes
(_le V x3 V _|x4)

Xq 1 0

99
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(X1 V—ax, Vax3) A Q:
(xy VX3 Vi) A

(mx1 Vx3 V axy) A
(x1 VX3V Xxy)

ty) BITAZ(EREER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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3

1

‘ Dead nodes O Live nodes

Extend node

0

@ Unvisited nodes
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‘ Dead nodes O Live nodes

(X1 V—ax, Vax3) A Q:
(xy VX3 Vi) A

(mx1 Vx3 V axy) A
(x1 VX3V Xxy)

ty) BITAZ(EREER

& Y
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3

1

Extend node

0

@ Unvisited nodes
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‘ Dead nodes O Live nodes

(X1 V =X V =x3) A Q:14([3]3]1
(xz V X3 V X4) N
(_le V _|x3 V _Ix4) /\
(_le V x3 V _|x4)
Xq 1
X5 1
X3 1 0 1
Xq 1 0 1 0 1 0
) BIIXRERFER

& Y
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Extend node

0

@ Unvisited nodes
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‘ Dead nodes O Live nodes

(X1 V—ax, Vax3) A Q:
(xy VX3 Vi) A

(mx1 Vx3 V axy) A
(x1 VX3V Xxy)

ty) BITAZ(EREER

& Y
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3

3

1

Extend node

0

@ Unvisited nodes
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Example

(x1 V2xp V —x3) A Q: 31311

‘ Dead nodes O Live nodes
(xz VX3V x4) N

(mx1 V=x3 V —axy) A ‘ Extend node @ Unvisited nodes
(_le VvV x3 \Y _|x4)

0

) EITARIEEER

3 2
=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Classroom Exercise

= Draw the pruned solution space tree for the following k-CNF-
SAT problem instance by max-profit branch-and-bound.
b =(x;Vaxy,Vxz)A(xy Vx,V-axs) A
(mxy Vaxg V) A(Axg VxgV—axg) A
(X, Vax3V=xg) A(—xa VX3 Vi)

6y BIIXFERFER
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Classroom Exercise

(mx1Vaxa V) A (Q: | 1
(X1 VX, V—axg) A

‘ Dead nodes O Live nodes

(mxy Vax3 Vi) A ' Extend node @ Unvisited nodes
(_le VvV x3 \ _Ix4) N\
(xz \% X3 \% _|x4_) A X1 1 0
(_Ixz \% x3 \% x4) a
X5 1 0 1 0
X3 1 0 1 0 1 0 1 0

106
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Classroom Exercise

‘ Dead nodes O Live nodes

(mxg V=axy, V) A
(X1 VX, V—axg) A
(mx1 Vax3 V) A
(Ax1 VX3V x,) A
(xy VX3V —xy) A
(mx, VX3V Xy)

Q:

4

1

ty) BITAZ(EREER

& Y
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Extend node

0

@ Unvisited nodes
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Classroom Exercise

‘ Dead nodes O Live nodes

(mxg V=axy, V) A
(X1 VX, V—axg) A
(mx1 Vax3 V) A
(Ax1 VX3V x,) A
(xy VX3V —xy) A
(mx, VX3V Xy)

Q:

5

4

1

ty) BITAZ(EREER

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Extend node

0

@ Unvisited nodes
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Classroom Exercise

(mxg V=axy, V) A
(X1 VX, V—axg) A
(mx1 Vax3 V) A
(Ax1 VX3V x,) A
(xy VX3V —xy) A
(mx, VX3V Xy)

X2

5

4

1

) BITKHERSR

O #
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

‘ Dead nodes O Live nodes

‘ Extend node @ Unvisited nodes

0
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TRAVELING SALESPERSON PROBLEM




Traveling Salesperson Problem

= Constraint function C (i) is to simply check if the next vertex is
connected to the current vertex:

C (D) = wlx[i], x[j]]
Check if C(i) # oo.
= Bounding function B (i) is the total weight if we connect x|[i]:
B(i) =cw(i—1) +wl[x[i— 1], x[i]]

w(i) = z wixlj — 11, x[/]]
=2

Check if B(i) < bestw.

AT [% M~ .}, HTREN#ESR 111
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Traveling Salesperson Problem

= B(i) = bestw is the condition to prune. If we want to prune
more branches, we need to increase B (i) as much as possible.

" Now, the bounding function
B(i) =cw(i—1) +wl[x|i— 1], x[i]]

only calculates the weight between x|i — 1] and x[i], but
ignores all the remaining paths.

6y B chahf" %aLB;E

\) /
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Traveling Salesperson Problem

= Now, consider these cases:

TG OO
(+)

ty) BIIRFERER f DR A RNEER 113
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Traveling Salesperson Problem

= How to obtain the lower bound if we consider all the nodes
that we haven’t visited?

® Just pick the outgoing edge of each unvisited node with
minimum weight, and sum them up.
= Although it may not form a solution (a path), but it is a lower bound.

= Just like the bound of 0/1 knapsack problem.

6y BIIXFERFER
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The Improved Bounding Function

= Let the cost of the extend node i be
B(i) =cw(i) + rw(i)

where, cw (i) is as before, rw(i) is the sum of costs of least-cost
outgoing edges from each remaining vertices, namely

rw(@ = ) min_ {wlx[j] x[k]]
j=i

i<k<nk+j
= |f B(i) = bestw, then stop search the extend node i and the
following level, otherwise, continue to search.

m At the same time, we adopt min-priority queue to extract the live
node with min cost.

) BIIASHESSR
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MinWeightTSP()
1 |MinSum < 0
2 |fori < 1tondo
3 Min « oo
4 for j <« 1tondo 1 .
5 if Wi, ] % oo and w[i,j] < Min then Min — wli,j]| Lntialize MinOut
6 if Min = oo then return oo
7 MinOut[i] « Min M Isolated vertex
8 MinSum <« MinSum + Min
Olfori—1tondoE.x[i] < i Initialize data
100 E.s < 1; E.cw «< 0; E.rw « MinSum; bestw « o structure
11 while E.s <n do
12 if E.s = n — 1 then e Constraint function fornoden—1-n-1
13 if w[E.x[n — 1], E.x[n]] # o0 and w[E. x[n], E. x[1]] # o0 and
E.cw+ wl|E.x[n—1],E.x[n]] + w|[E.x[n],E.x[1]] < bestw then
14 bestw « E.cw + w|E.x[n — 1], E.x[n]] + w[E.x[n], E. x[1]]
15 E.cw <« bestw; E.lw « bestw
16 EF.s<E.s+1
\
17 Insert(Q, E) Increase level
\$
Not finish here. We still put enqueue it. The algorithm 116

terminates when a solution is dequeued (E.s = n).




E.s: Current node i: Next node

Once moved,
subtract MinOut
the current node.

of

18
19
20
21
22
23
24
25
26
27
28
29
30

elsefori <« E.s+ 1tondo

B(i) «cw+rw

if w[E.x|E.s],E.x[i]] # oo then /

cw <« E.cw + wl|E.x[E.s],E.
rw « E.rw — MinOut|E. x|E.s]]

x[i]] /7

/| |(Calculate B(i)

if B(i) < bestw then

for j « 1tondo N.x[j]l « E.x[j]

N.x[E.s + 1] « E.x]i]
N.x[i] « E.x[E.s + 1]

N.cw < cw; N.s< E.s+1
N.lw < B(i); N.rw «<rw

Insert(Q, N)
E<—ExtractMin(Q)

31 if bestw = oo return co
32 fori « 1tondo bestx|i] « E.x[i]
33 return bestw

Switch selefrted
vertex (E.s|+ 1) to i.
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Q: G\ 30 f2>

MinOut: [4,5,5, 4] X1 1

6y BIIXFERFER
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30
Q: [18[20]44 (2)
4 5
MinOut: [4,5, 5, 4]
10
X2
®
20
X3 3 4 3
X4 4 3 4 2 3 2

6y BIIXFERFER
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(:|20]44

MinOut: [4,5, 5, 4]

6y BIIXFERFER
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(:|20]24]|34|44

MinOut: [4,5, 5, 4]

6y BIIXFERFER
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(:|24]34]44

MinOut: [4,5, 5, 4]

6y BIIXFERFER
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():|20]24]34|35 |44 @ > @

MinOut: [4,5, 5, 4]

10

6,y) BIIKFERER
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Q: | 24| 34(35|44 @ > @

MinOut: [4,5, 5, 4]

6y BIIXFERFER
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O——0®

():|24]25]|34|35 |44

4 5
MinOut: |4,5,5, 4 X
| ] 1 1 6 i
0/18
w2 O
3 D
@ 6/20 4/18
X3 3 4 2 4 2 3
® > O o
Xy 4 3 4 2 3 2

21/25

(1,3,2,4,1), 25
6, BIIKZFERFR

S %
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Q: [ 25]34]35[44 O)——2)

MinOut: [4,5, 5, 4] X1

2

11/20 @

4

21/25

(1,3,2/4,1),25
6, BIIKZFERFR
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(Q: | 25| 25|34 (35|44 (?\ = /z>

MinQOut: [4,5,5, 4] X1 10

4/18
2

14/24 @

3

19/25

(1,3,2,4,1), 25 (1,4,2,3,1), 25
BIIXFEERFEER (= &M rT RN RSEE 127
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(:]25(34|35(44 @ = @

MinQOut: [4,5,5, 4] X1 10

4/18
2

14/24 @

3

19/25

(1,3,2,4,1), 25 (1,4,2,3,1), 25
i) BIIREERER () ZnrTanuss 128
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O——0®

():|25(34|35]|44

MinOut: [4,5, 5, 4]

(1,3,2,4,1),25 (1,4,2,3,1),25
() BIIXFEEFER (00 &0+ 7 wanuses 129
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Classroom Exercise

" Draw the pruned solution space tree for the following TSP
instance by max-profit branch-and-bound.

6y BIIXFERFER
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Classroom Exercise

15
0: ©. (2)
3 5
MinOut: [6,5, 2, 2] X1 1
6 10
) 2 @ 4 C/
3 3 2 @
X3 3 4 2 4 2 3
X4 4 3 4 2 3 2

6y BIIXFERFER
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Classroom Exercise

Q:|15|22(24 @ = @
3 5
MinOut: [6,5, 2, 2] X1 1
6 10
0/15
v O
/23 ¢
X3 3 4 2 4 2 3
X4 4 3 4 2 3 2

il
(|
)I.
e
i
ol
4
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Classroom Exercise

15
()

(:|15|18]22 |24

3 5
MinOut: [6,5, 2, 2]
10
X2
(@)
(5/23) 2
X3 3 4 3
X4 4 3 4 2 3 2

]
(|
)I.
e
i
ol
4

B
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Classroom Exercise

bestw = 33 Cl\ 15 /2>

(:|18]22|24 (33

3 5
MinOut:[6,5,2, 2]
6 10
X2
O,
(5/28 |
X3 3 . 4 :
8/15
Xy 4 3 2 3 ?
18/23
(1,3,4,2,1),33
&) EITAREESE AR HRNEER 134
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Classroom Exercise

Q: [22]24][33 bestw =33 (1 )———2)
3 5
MinOut: [6,5, 2, 2]
6 10
X2
O,
(/23 2
X3 3 4 2 4 3
11/18 8/15
Xy 4 3 4 2 3 2
21/23 18/23
34 > bestw (1,3,2,41),34 (1,3,4,2,1),33
6y BITKAERER () ZnrTanuss 135
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Classroom Exercise

bestw = 33 Cl\ L /2>

Q:]22(24)30]33

3 5
MinOut: [6,5, 2, 2] X1 1
6 10
) 2
O, O
2
@ 13/22
X3 3 4 2 4 2 3
11/18 8/15 @ @
X, 4 3 4 2 3 2

21/23 18/23

(1,3,2,4,1),34 (1,3,4,2,1),33

@) BITKHERER
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Classroom Exercise

Q: [24]30[33 bestw =33 (1 )———2)
3 5
MinOut: [6,5, 2, 2] X1 1
6 10
) 2
O
(5/23 2
X3 3 4 2 4
11/18 8/15 15/22
Xy 4 3 4 2 3 2

21/23 18/23

20/25

(1,3,2,4,1),34 (1,3,4,2,1),33 (1,4,3,2,1),35

G,y) BIIXZERZ5
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Classroom Exercise

bestw = 33 G\ 15 /2>

3 5

():124(29|3033

MinOut:[6,5,2, 2] X1 1 6
10

—®

X2

15/24
2 4

@ @ 11/18 8/15 15/22

X4 4 4 2 3 2

21/23 18/23

20/25

(1,3,2,4,1),34 (1,3,4,2,1),33 (1,4,3,2,1),35

G,y) BIIXZERZ5
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Classroom Exercise

bestw = 33 G\ 15 /2>

3 5

():129(30(33

MinOut:[6,5,2, 2] X1 1 6
10

—®

2

X3 4

20/24 11/18 8/15 15/22

X4 4 3 4 2 3 2

22/24

21/23 18/23 20/25

(1,2,3,4,1), 35 (1,3,2,4,1),34 (1,3,4,2,1),33 (1,4,3,2,1),35
35> bestw (o EITASERSR
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Classroom Exercise

(:130]33 bestw = 33 Cl\ o /2>
3 5
MinOut: [6,5, 2, 2] X1 1
6 10
X2
®
2
15/24
X3 3 4 2 4

20/24 25/29 11/18 8/15 15/22

Xq 4

3 4 2 3 2

22/24 27/29 21/23 18/23 20/25
(1,2,3,4,1),35  (1,2,4,3,1),33 (1,3,24,1),34 (1,3,4,2,1),33 (1,4,3,2,1),35
33 = bestw sp(=esaps CE) A AT HANNER 140
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Classroom Exercise

Q: |33 bestw = 33 Cl\ o /2>
3 5
MinOut: [6,5, 2, 2] X1 1
6 10
X2
®
2
15/24 13/22
X3 3 4 2 4 2 3

20/24 25/29 11/18 8/15 23/30 15/22

X4 4 3 4 2 3 2

22/24

27/29 21/23 18/23 28/30 20/25

(1,2,3,4,1),35 (1,24,3,1),33 (13,24,1),34 (1,3421),33 (14231),34 (1,4321),35

@) EITRRERSER
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Classroom Exercise

bestw = 33 G\ 15 /2>

():|33(34|34|35](35

MinOut: [6,5, 2, 2] X1 1

X2

15/24 13/22

3 4 2 4 2

20/24 25/29 11/18 8/15 23/30 15/22

X3 3

X4 4 3 4 2 3 2

22/24

27/29 21/23 18/23 28/30 20/25

(1,2,3,41),35 (1,24,3,1),33 (1,3,24,1),34 | (1,342,1),33 | (1,423,1),34 (1,43,2,1),35

q:, BIIXZEREER
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Worst case happens!




Better Bounding Function

" |t seems this bounding function is not so efficient. Can we
further improve?

= Now, MinOut is static no matter how we move.

= However, once we decided to go from v to v,, v, should not
go back to v and all the other vertices should not go to v,.

" Therefore, we can update MinOut at each step.

6y BIIXFERFER
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Better Bounding Function

" min{30,6,4} 1 AT 20
st e o [min{305,103] _ |5 @) (2)
nitially, Mintut = min{5,6,20} | |5/ & >
' min{4,10,20} 4] 6 10
and B(i) = 0+ 18 = 18.
= After we choose to igo fro_m vy _to vz,_ <3/ ” @
min{5,10} 5
MinOut = min{6,20}| = | 6 T no path to Vq
_mll’l{4‘,20}_ —4‘— A no path to vZ

and B(i) = 30 + 15 = 45.
= B(i) is increased!

@) BIIRPERLR
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Better Bounding Function

Q0@

4 5
= Then, if we choose to go from v, to v, i
- = - _ 10
MinOut = | min{203| = |20 G
'min{4} | L4. \
) no path to v; and v
and B(i) = 35 + 24 = 59. \ L°
= B(i) is increased! no path to v, and vs
BIXZEERER (=) »Tianuss 145




Example

O——0®

Q:

MinOut: [4,5,5, 4] X1 1

6y BIIXFERFER
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O——0®

(: 242545
4 5
6 10
MinOut:
[—,5,6,4] : 20 @
/' @ ™~ Minout:
X3 2 3 [-,5,5,10]
Xg 4 3 4 2 3 2

147
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(Q:|25]25]45(59 @ = @

X2
O,
X3 3 4
\
X4 4 3 A ’) 3 2 MinOut:
[—, 30,5, —]
T BITARER 148
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Q:|25|25]45]59 @ > @

10

@ 4/24

2

o o

X4 4 3 4 2 ; ?
19/25
(1,4,2,3,1), 25
Gy BITRRERER ZN AT HRNHSR 149
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30
Q: [25]25[45]59 (1) (2)
10
X2
®
X3
Previously, B(i) = 20 here.
Xy 4 We waste time on this branch.

(1,4,2,3,1),25

BIIXZEERFER (=)0 rTitaiues 150
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Classroom Exercise

" Draw the pruned solution space tree for the following TSP
instance by improved bounding function.

6y BIIXFERFER
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Classroom Exercise

Q:

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

152




I
Classroom Exercise

O—=—

(): |15]25]28
3 5
6 10
MinOut:

RN &0
\ MinOut:

X3 3 2 3 [-,5,5,2]

X4 4 3 4 2 3 2

153
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Classroom Exercise

O—=—

(): [25]28]33]35

3 5
6 10
) 4
MinOut: <3/ 2 @
N (13/29
X3 \ 3 2 3
Xgq 4 3 4 2 3 2

154
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Classroom Exercise

O—=—

(): [28(33]34|35(35

3 5
10
O,
MinOut: 2
[—, —,5,6] 13/25 MinOut:
X3 [—,—,5,15]

6,y) BIIKFERER

\) %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Classroom Exercise

OQ——0O

3 5

(:]33|33(34|34|35]35

6 10

4 _ @ 2 @

3
MinOut: MinQut:
- ;’(‘) ”13] 6/28 IS 15 ~,10 13/25

@@@@@@

Xq 4

) 2

15/15

©) BIIKSESSE

\\ 2
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Classroom Exercise

bestw = 33 G\ 15 /2>

():|33(33|34|34(35(35

3 5
X
1 6 10
X2 2 4
5 —®
15/15 6/28 13/25
4 2 3
@ @ @ /33 SNCIED IR
Xq 4 2
18/33
(1,2,4,3,1),33
EBIIXEEEFER (= M X7 RNHYSE 157
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Classroom Exercise

Q: [33]33[34]34][35]35 bestw =33 (1 )———2)

3 5

10

F—®

G,y) BIIXZERZ5
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FLOW SHOP SCHEDULING PROBLEM




Flow Shop Scheduling Problem

= Given n jobs | = (41, J2, ..., Jn), €ach job has two operations
processed by two machines.

® One machine can only process a single job at a time, and
processing must be completed once initiated.

" Furthermore, machine 2 cannot begin processing a job until
machine 1 has completed processing of the same job, namely,
each job must be processed by machine 1 and machine 2 in
turn.

160
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Flow Shop Scheduling Problem

= Each job i requires a processing time of t[i, j] on machinej.

= Given a scheduling solution, F[i, j| denotes the finish time for
job i on machine j.

" The task is to find an optimal scheduling that minimizes the

total finish time:
f=) Fli,2]

n
1=1

161
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tli,j Machine 1 | Machine 2
Vachine 1 i/l | Machine 1] Machine 2

The goal is not to

A 4

| Job 1 2 1 achieve the earliest
Machine2 Job 2 3 1 finish time, but the
ol & > 5 earliest total finish time.
2 1
Job 1 ‘ > F[1,2] =
3 1
Job 2 — ; F[22]=6 f=19
Job 3 > > F[2,2] =10
Job 2 > S
0 > 5 ‘
Job 3 g 5 f=21
Job 1
&) BITKRESPR 162
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Flow Shop Scheduling Problem

‘ Unvisited internal nodes

® Again, this problem is a permutation tree.
@ Unvisited leaf nodes

(6y) BIIRZEBFR

\) /
&5/  SCHOOL OF INFORMATICS XIAMEN UNIVERSITY
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Flow Shop Scheduling Problem

® What is the constraint function for this problem?

There’s no constraint function. Any permutation is a feasible
solution.

6y BIIXFERFER

& Y
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Flow Shop Scheduling Problem

= let x = {x[1],x]|2], ..., x[i]} be the set of jobs that has been
processed up to the extend node i, then

f=) Fix[].2]+7f()
j=1

where

n
rf@ = ) Flxlj]2]
j=i+1
= Computing rf (i) is very difficult, we can estimate its lower
bound?

AT [% M~ .}, HTREN#ESR 165
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" Machine 1 is continuously working.

" The finish time is influenced by the waiting time of machine 2.

|< ------ >| Waiting time for the next job
1

Job 2 > > >

© 2 3 ‘

Job 3 5 1
Job 1 > —

Waiting time for the current job |‘ """ ’I

We can calculate the lower bound by assuming that there’s no waiting time.

ty) BITAZ(EREER

& Y
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Lower bound 1:

= Assume that machine 2 has no waiting time for the current job.

= Each remaining job can be continuously processed in the machine 1 and 2
without waiting time.

rF1G) = Z(F 1]+ (n = j + Delx[j], 1] + elx[]], 2D

j=i+1
= Obviously, we have rf (i) = rf1(i).

6y B chahf" %abﬂ?u
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Lower bound 1: 7f1() = ) (FIx[il, 1]+ (n - j + De[x[j], 1] + e[x[]], 2]

j=i+1

Job i > >
— t[x[i +1],1]
Jobi+1 > >
_ t[x[i + 2], 1]
n—i — ' .
n—i—14 R R
Jobn _ _ . R

= The order from job i + 1 to job n matters.
= Therefore, we can sort t[x[j], 1] in non-decreasing order to obtain smaller

rf1()" < rf1(i).
6y BITKAERER
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N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

168




Lower bound 2:

= Assume that machine 2 has no waiting time for the next job.

= After the machine 2 finished one job, it can process the following job
without waiting time.

rf2(i) = 2 (max(Flx[i] 2], Flx[i], 1] + min ¢[x[k] 1]}
j=i+1 o

+ (n—j + Delx[j],2])
= Obviously, we have rf (i) = rf2(i).

169
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Lower bound 2:

rf2(i) = z (max{F[x[i],Z],F[x[i],l] + min t[x[k], 1]} + (n —j + De[x[j], 2])

5 i<sksn
max{F[x[i], 2], F[x[i], 1] + min t[x][k], 1]}

isksn
Job i . .

_ét[x[i +1],2]

Jobi+1

n—i —

n—i—1-= =P

\ 4

Jobn

s =

= The order from job i + 1 to job n matters.
= Therefore, we can sort t[x[j], 2] in non-decreasing order to obtain smaller

rf200) <rf2(i).
6y BITKAERER
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= So, we have

f=

Flx[jl.2] +rf (@)

~
Il
[

Flx[j], 2] + max{rf1(i),rf2(i)}

~
[

Flx[j], 2] + max{rf1(i)’,rf2(i)'} = B(i)

]

[

]:
= |f B(i) = bestf, then stop search the node i and the following level,

otherwise, continue to search. At the same time, we use min-priority queue
to extend.

6y BIIXFERFER
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t[i, ]
Example 1ob 1 , .

Job 2 3 1
‘ Dead nodes Q Live nodes Job 3 5 3

6y BIIXRFERER
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rf1(1)":

Job 1

v
\ 4
S
| |
‘b—\
)
Il

\ 4
\ 4
~ry
=
w
)
| S— | S—
|
~
|
—_
o

Job 3

\ 4
\ 4
S
| |
N
)
]
Il

Job 2
rf2(1)":

Job 1
Job 2 >
Job 3

A 4
\ 4

ty) BITAZ(EREER
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t[i, ]
Example 1ob 1 , .

Job 2 3 1
‘ Dead nodes Q Live nodes Job 3 5 3

6y BIIXRFERER
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rf1(1)":
Job 2 3 > ! :2 . F[2,2] =
Job1 > F[1,2] = f =20
2 3
Job 3 > » F[3,2] = 10
rf2(1)":
3 1
Job 2 o :2 1 F[Z,Z =4
Job 1 — ; F[1,2]=6 f=19
Job 3 . . F[2,2] =

6y BIIXFERFER
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t[i, ]
Example 1ob 1 , .

Job 2 3 1
‘ Dead nodes Q Live nodes Job 3 5 3

6y BIIXRFERER
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rf1(1)":

Job 3 2, . = . > F[3,2] =
Job 1 — , : F[1,2] = f =19
Job 2 > > Fl2,2] =

rf2(1)":

Job 3 2 > = > =
2 1
Job 2 =

177
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t[i, ]
Example 1ob 1 , .

Job 2 3 1
‘ Dead nodes O Live nodes Job 3 5 3

6y BIIXRFERER

\\ 2
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Experiments for 0/1 Knapsack

n 1000 1200 1400 1600 1800 2000 2200 2400
DPKnapsack 0.109 0.187 0.203 0.296 0.421 0.578 1.125 1.218
BacktrackKnapsack | 0.031 0.063 0.078 0.063 0.11 0.14 0.14 0.109
MaxProfitKnapsack | 0.015 0.015 0.031 0.031 0.031 0.062 0.046 0.046
Optimal value 282000 | 414610 | 455339 | 607732 | 748955 | 940129 | 1305502 | 1312372
A Running time(s)
tud —+— DPKnapsack
1.2 —=— Backt rackknapsack =
1 MaxProfitKnapsack //'/'
0.8
0.6
0.4 e
0.2 v 4
— A =
0 ' : : : -
1000 1200 1400 1600 1800 2000 2200 2400 R
Sy s, foa Ea sy ety = P o2 aa
) BIIXRFEERER M AT HENHSER 179
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Conclusion

After this lecture, you should know:

" What is the difference between backtracking and branch-and-
bound.

® What kind of problem that we can use branch-and-bound.

" How can we improve the bounding function to eliminate more
branches.

180

) EITARERER

9,
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI




Homework

Page 262-263
13.1
13.2
13.4

ty) BITAZ(EREER
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Choose one:

= P263, 13.11.
= {5 ] [ i A DR A 4 DD 0 1]
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