B AT

Lecture 2: Asymptotic Notation

it

TR EAE B b AR A &

luyang@xmu.edu.cn

Asymptotic Notation

" Intuitively, just look at the dominant term.
T(n) = 0n’ + 1OmT~+5n+25

= Drop lower-order terms 10n? + 5n + 25.

® |gnore constant 0.1.

= But we can’t say that T (n) equals to n3.
= |t grows like n3. But it doesn’t equal to n3.

= We define asymptotic notations (#4545) like T(n) = 0(n?)
to describe the asymptotic running time of an algorithm.

= “Asymptotic” here means “as something tends to infinity”, as we want to
compare algorithms for very large n.

&) BITARERER

\" /
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-gv f% M~ .}, HTREN#ESER 1

Logarithm Review

Definition m Useful identities for all reala > 0,

1 : : b > 0,c > 0,andn, and where
0gp a is the unique number ¢ s.t. :
he = q. logarithm bases are not 1:

= Notations: " log.(ab) = log.a +log b

n _—
= lgn = log, n (binary logarithm) " log, a™ = nlog, a
" Inn = log, n (natural logarithm) = log, G) = —log, a

= lg¥n = (Ign)* (exponentiation) = log, a = (log, b)™?
a

= lglgn =lg(lgn) (composition) a glogrc — clogpa

m Derivative:

" log,a=

. d(loggx) 1
dx - x1na

&) BITARERER

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Big O Notation

Definition 2.2

For a given complexity function g(n), O(g(n)) is the set of complexity
functions f(n) for which there exists some positive real constant ¢ and
some nonnegative integer n, such that for all n = n,,

0<f(n) <cgn).

8 O(g (n)) is a set of functions in terms of g(n) that satisfy the
definition.

= If f(n) = O(g(n)), it represents that f(n) is an element in O(g(n)).
We say that f(n) is “big O (J0)” of g(n).

= Strictly, we should use “€” instead of “=". However, it is conventional to use
“=" for asymptotic notations.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [2 M~ .}, HTREN#ESER 3

Big O Notation

cg(n)

" No matter how large t f(n) = 0(g(n))
f(n)is, it will
eventually be smaller
than cg(n) for some
¢ and some n;.

= Big O notation
describes an upper
bound. We use it to
bound the worst-
case running time of
an algorithm on
arbitrary inputs.

) BIIARERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

G AT tRNHES 4

Image source: [&]2.2, 5K7E R, FIkBH 5 004, 1B Toll i ket 2009.

Display of Growth of Functions

Operations

Big-O Complexity Chart

[Excellent || Good | Fair | Bad |[Horrible |

O(n)

0O(1), O(log n)

Elements

c,, BIIXFEEBER

==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: http://bigocheatsheet.com/img/big-o-complexity-chart.png

AT HENHEE

Big O Notation

Example 1

We show that n® + 10n = 0(n?). Because, forn > 1,
n®+10n < n® + 10n* = 11n%,
we can take ¢ = 11 and ny = 1 to obtain our result.

" To show a function is in big O of another function, the key is to
find a specific value of ¢ and ny that make the inequality hold.

= More examples of functions in 0(n?):

= n%, n? +n, n? + 1000n, 1000n? + 10001, n, n/1000, n1-299%°
n?/lglglgn.

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Use the definition of Big O notation to show:
s 2% = 0(2™)?

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 M~ .}’ HTREN#ESER 7

Classroom Exercise

Proof:

We prove it by contradiction. Assume there exist constants ¢ > 0 and
ng = 0, such that

24" < 2™,
foralln = ngy. Then
241 = 2MM < 27,
2" < c.

But we can’t find any constant c is greater than 2" for alln > n,. So

the assumption leads to a contradiction. Then we can certify that
24™ # 0(2™M).

How about 2"*1 = 0 (2")?

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Big {) Notation

Definition 2.3

For a given complexity function g(n), Q(g(n)) is the set of
complexity functions f(n) for which there exists some positive
real constant ¢ and some nonnegative integer ny such that for all
n = ny,

0 <cgn) < f(n).
o Q(g(n)) is the opposite of 0(g(n)).

= If f(n) = Q(g(n)), it represents that f(n) is an element in
Q(g(n)). We say that f(n) is “big Q (K Q)" of g(n).

\ E»-igv [2 M~ .}, HTREN#ESER 9

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Big {) Notation

() =Q@g(m)

[

® No matter how small
f(n)is, it will
eventually be larger
than cg(n) for some
¢ and some n;.

= Big () notation
describes an lower
bound. We use it to
bound the best-case
running time of an
algorithm on
arbitrary inputs.

Ny n
&) BITASEESE AR HARNEER 10

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: [&]2.3, 5K4E R, k5004, 1B oll i ket 2009.

Big ® Notation

Definition 2.1

For a given complexity function g(n), ©(g(n)) is the set of
complexity functions f(n) for which there exists some positive
real constants c; and ¢, and some nonnegative integer ny such

that, for alln = n,,
0<cg(n) <f(n) <cgn).

= If f(n) = @(g(n)), we say that f(n) is “big © (/) 0)” or has the
same order (&%) of g(n).

= 8(gm) = 0(g(m) N A(g(m)).

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [2 MDA .}, itENESYR 11

Relation between Big O, Big) and Big ®

B(n 2‘:'

4n? 4n+ 32
bni+9 6n® + nt

5#2+2n 2"+ 4n

(a) An?) (b) Q(»?)) B(xd) =And) N Qn?)

)

= Now we have O, 0, and (). Intuitively, they just like “<”, “=",
and “=" for complexity functions.

6y BIIXFERFER

&m/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

12

Image source: Figure 1.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Big ® Notation

= f(n) = 0(g(n)) implies [/() =08(gm)
f(n) = 0(g(n)) and
f(n) =a(gm)).

= Big O can also be used to f(n)

bound the worst-case time
complexity.

c,g(n)

= For insertion sort, the worst- c1g(n)
case is both ®(n?) and
0(n?).
= However, we usually use
Big O notation because we
don’t care the best-case.

v

) BIIARERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

G AT tRNHES 13

Image source: [&]2.1, 5K7E R, Ik BH 5 004, 1B Toll i ket 2009.

Properties of Asymptotic Notations

For any two functions f(n) and g(n), f(n) = ©(g(n)) if and
only if f(n) = 0(g(n)) and f(n) = Q(g(n)).
= ® = 0andQ.

For any two functions f;(n) and f,(n), if fy(n) = 0(g1(n)) and

f2(n) = 0(g2(n)), we have f;(n) + f,(n) = 0(max {g;(n),
g.(m)}).

" Pick the larger one.

) & D AT RN RSE 14

Properties of Asymptotic Notations

m Transitivity (/&) m Reflexivity (H k)
= If f(n) = ©(g(n)) and g(n) = = If f(n) = 0(f(n)).
@(h(")) then f(n) = @(h(n)). = Same for O and ().
= Same for O and (). = Symmetry (Xﬂ‘ﬁ(‘@)
= Additivity (R]) = f(n) = @(g(n)) if and only if
= If f(n) = ©(h(n)) and g(n) = gm) =0(f(n).
0(h(n)) then f(n) + g(n) = = Not hold for O and Q.
@(h(n)).

= Same for O and ().

ty) BIIRFERFER () ZHrTdaanuss 15
35227 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Properties of Asymptotic Notations

" Consider the following ordering of complexity categories:
0(gn) 0(n) B(nlgn) 6(n?) 6(n/) O(n*) B(a™) O(L™) B(n!)
wherek >j>2andb =>a = 1.

= If f(n) is to the left of g(n) in the above sequence, then

f(n) =0(g(m))

= Notice: Big O is a set of functions. We can’t say O(lgn) < 0(n).

: E»-igv [2 MDA .}, itENESYR 16

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Properties of Asymptotic Notations

Example 2
Given f(n) = %n(n — 1), prove that f(n) = 0(n?)

Proof:

By the property, we first show that f(n) = 0(n?):
1

1 1 1 1
“n(n—1) =-n? —=n < -n? (forc = =and ny = 0).
2 2 2 2 2

Then we show that f(n) = Q(n?).
11 1,

%n(n—l):i ——n> n —Snom=on (forc=iandn0=2).

2
Thus f(n) = ©(n?).

6y B]kah{"' %abﬂ?u

i 7
e/ SCHOOL OF INFOR

17

Using Limit to Determine Order

" |[n addition to proving by definition, we can also use limit to get
asymptotic notations.

f = ¢ implies f(n) = @(g(n)) ifo<c<o

lim —n< + o implies f(n) = O(g(n))
& + 0 implies f(n) = Q(g(n))

AT [% MDA .}, itENESYR 18

Using a Limit to Determine Order

Example 3

Compare the orders of growth of%n(n — 1) and n?.

1
' 77’1(”—1)_11_ n*—-n -
n1—r>rolo n2 - an—r}c}o n2 an—r>rolo()_

Thus, %n(n — 1) = 0(n?).

19

EI]kahf" %abﬂ?u

L OF INFORMATICS

Classroom Exercise

Compare the orders of growth of a™ and b™, whenb >a > 0

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 MDA .}’ itENESYR 20

Classroom Exercise

Solution:
a a\™"
lim — = lim (—) = 0.

n—oo phN n—-oo \p

The limit is 0 because 0 < % < 1.Thus,a™ = 0(b™).

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 MDA .}’ itENESYR 21

Using a Limit to Determine Order

= When calculating lim fn) how to deal with the following

N—00 g(n)
cases?

lim f(n) = lim g(n) =0 or £ o
Nn—>00 Nn—>00

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [} M~ ii"’ﬁ-ﬂﬂ#* 22

Using a Limit to Determine Order

FERBHTAS
HEHAR
= Y—E=) " VN

wE RN
B8 0K AT

&) BITAPERER

N\ CHOOL OF INFORMATICS XIAMEN UNIVERSI

AT HBENHER

Image source: https://tieba.baidu.com/p/5933589166

23

https://tieba.baidu.com/p/5933589166

Using a Limit to Determine Order

L'Hopital’s Rule (3% 514 32 0))
If f(x) and g(x) are both differentiable with derivatives f'(x)
and g'(x), respectively, and if

lim f(x) = lim g(x) =0 or + oo,

X— 00 X—C0

then

lim [x) = lim f(x)
x>0 g(x) x-0 g'(x)’

whenever the limit on the right exists.

6y BNIXFERFER (o) 07 tanues
N3/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

24

Using a Limit to Determine Order

Example 4

d(loggax) 1
lgn = 0(n) dx xlna
because /
lg x - d(lgx)/dx - 1/(xIn2)
lim — = lim =] =
x—o x x—-oo dx/dx X—>00 1

25

EI Jdcahf" %abﬂ?u

L OF INFORMATICS

Exercises

Show the correctness of the following statements.

mlgn=0(Mn)

mn=0(nlgn)
snlgn = 0(n?)
= 2" = (5™

= lg3n =0(n%)

26

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Conclusion

After this lecture, you should know:
= Why do we need asymptotic notation?

" What are the meaning of these asymptotic notations big O, big
®, or big ()7

" How to prove a complexity function is big O, big 0, or big (1?

" How to compare the order of two complexity function?

27

ty) BITAZEREE

9,
Nz’ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Homework

= Page 19
2.1
2.2
2.3
2.9

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

28

A T8 B R B 18

BMrT ENHER 29

T BIIKSEREE)/
A

\3

e/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

