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PROBABILISTIC ANALYSIS
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Probabilistic Analysis

¡ Average-case analysis determines the average (or expected) 
performance.
¡ The average time over all inputs of size 𝑛.

¡ The average-case analysis needs to know the probabilities of all 
input occurrences, i.e., it requires prior knowledge of the input 
distribution.

¡ Usually, to ease the analysis, we can use probabilistic analysis
by simply assuming that all inputs of a given size appear with
equal probability, i.e. draw from a uniform distribution.
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Linear Search

¡ The searching problem:
Search an array 𝐴 of size 𝑛 to 
determine whether the array 
contains the value 𝑥; return 
index if found, 0 if not found.

¡ Recall the strategy 1 of the
phonebook example in
Lecture 1. We check the name
from the top one by one. This
algorithm is called linear
search for the searching
problem.
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LinearSearch(A, x)
1  𝑘 ← 1
2   while 𝑘 ≤ 𝑛 and 𝑥 ≠ 𝐴[𝑘] do
3           𝑘 ← 𝑘 + 1
4   if 𝑘 > 𝑛 then return 0
5   else return 𝑘



Probabilistic Analysis of Linear Search

¡ To simplify the analysis, let 
us assume:
¡ 𝐴[1…𝑛] contains the 

numbers 1 through 𝑛, which 
implies that all elements of 𝐴
are distinct.

¡ The search key 𝑥 is in 𝐴.

¡ The search key 𝑥 is uniformly
drawn from [1…𝑛].

¡ We only count the number of
key comparisons.
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LinearSearch(A, x)
1  𝑘 ← 1
2   while 𝑘 ≤ 𝑛 and 𝑥 ≠ 𝐴[𝑘] do
3           𝑘 ← 𝑘 + 1
4   if 𝑘 > 𝑛 then return 0
5   else return 𝑘



Probabilistic Analysis of Linear Search

¡ Probability of 𝑥 being found at index 𝑘 is 1/𝑛 for each value of 𝑘.
¡ If 𝑥 = 𝐴[𝑘], then the number of comparison is 𝑘.
¡ Therefore, we can calculate the expected number of comparison by

multiplying 𝑘 with its probability 1/𝑛 and then sum them up.
¡ So the number of comparison on the average is:

𝑇 𝑛 = +
!"#

$
1
𝑛 , 𝑘 =

1
𝑛+
!"#

$

𝑘 =
1
𝑛
𝑛(𝑛 + 1)

2 =
𝑛 + 1
2 .

¡ Hence, the average-case time complexity of LinearSearch(𝐴, 𝑥) is 
Θ(𝑛).

¡ Think: What if the key 𝑥 is not uniform distributed?
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Probabilistic Analysis of Insertion Sort

¡ To simplify the analysis, let 
us assume:
¡ 𝐴[1. . 𝑛] contains the numbers 

1 through 𝑛, which implies that 
all elements of 𝐴 are distinct.

¡ All 𝑛! permutations of 𝐴
appear with equal probability
as the input.

¡ We only count the number of
key comparisons.
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InsertSort(A) 

1  for 𝑗 ← 2 to n do

2          𝑘𝑒𝑦 ← 𝐴[𝑗]

3          𝑖 ← 𝑗 − 1
4   while 𝑖 > 0 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

5 𝐴[𝑖 + 1] ← 𝐴[𝑖]

6 𝑖 ← 𝑖 − 1

7 𝐴[𝑖 + 1] ← 𝑘𝑒𝑦
8  return A



Probabilistic Analysis of Insertion Sort

¡ For different input, the difference of running time is from 𝑡%, namely,
how many comparisons do we need before inserting the key.

¡ Now we consider inserting 𝑘𝑒𝑦 = 𝐴[𝑗] in the proper position in 
𝐴[1… 𝑗]. 

¡ If its proper position is 𝑘(1 ≤ 𝑘 ≤ 𝑗), then the number of 
comparisons performed in order to insert 𝑘𝑒𝑦 in 𝐴[𝑘] is:

9 𝑗 − 1, 𝑖𝑓 𝑘 = 1
𝑗 − 𝑘 + 1, 𝑖𝑓 2 ≤ 𝑘 ≤ 𝑗 .

¡ If 𝑘 = 1, the condition in while loop 𝑖 > 0 is false and the comparison 𝐴 𝑖 >
𝑘𝑒𝑦 is not triggered.

¡ If 2 ≤ 𝑘 ≤ 𝑗, one more comparison 𝐴 𝑖 > 𝑘𝑒𝑦 is needed.
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Probabilistic Analysis of Insertion Sort

¡ Since the probability that its proper positions in 𝐴[1… 𝑗] is 1/𝑗, so the 
number of comparisons needed to insert 𝐴[𝑗] in its proper position in 
𝐴[1… 𝑗] is:

1
𝑗 # 𝑗 − 1 +

1
𝑗 &
!"#

$

𝑗 − 𝑘 + 1 =
1
𝑗 (𝑗 − 1 +&

!"%

$&%

𝑘) =
𝑗
2 −

1
𝑗 +

1
2 .

¡ Hence the average number of comparisons performed by InsertSort(𝐴) is:
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What is the order of this term?



The Hiring Problem

¡ The problem scenario:
¡ You are using an employment agency to hire a new office assistant.

¡ The agency sends you one candidate each day.

¡ You interview the candidate and must immediately hire the new one and
fire the current one, if the new candidate is better.

¡ Cost of interview is 𝐶% and cost of hiring is 𝐶&.

¡ If we hire 𝑚 of 𝑛 candidates finally, the cost will be 𝑂(𝑛𝐶! +
𝑚𝐶").

¡ However, 𝑚 varies with each run. 
¡ It depends on the order in which we interview the candidates.
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The Hiring Problem
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HireAssistant(n)
1  𝑏𝑒𝑠𝑡 ← 0

2  for 𝑖 ← 1 to n do
3        interview candidate i

4        if candidate i is better than candidate best then
5                 𝑏𝑒𝑠𝑡 ← 𝑖
6                 hire candidate i.



Analysis of the Hiring Problem

¡ Best case
¡ We just hire one candidate only.

¡ The first is the best. Good luck thanks god.

¡ Cost: Ω(𝑛𝐶% + 𝐶&).

¡ Worst case
¡ We hire all 𝑛 candidates.

¡ Each candidate is better than the current hired one. What a tough life!

¡ Cost: 𝑂(𝑛𝐶% + 𝑛𝐶&).

¡ What is the average case?
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Probabilistic Analysis of the Hiring Problem

¡ In general, we have no control over the order in which 
candidates appear.

¡ We just assume that they come in a random order.
¡ The interview score list 𝑆 is equivalent to a permutation of the candidate 

numbers ⟨1,2,3, … , 𝑛⟩.

¡ 𝑆 is equally likely to be any one of the 𝑛! permutations. Each of the 
possible 𝑛! permutations appears with equal probability.
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Probabilistic Analysis of the Hiring Problem

¡ Candidate 𝑖 is hired if and only if candidate 𝑖 is better than each 
of candidates 1, 2, . . . , 𝑖 − 1.

¡ Base on the assumption that the candidates arrive in random 
order, any one of these 𝑖 candidates is equally likely to be the 
best one so far.

¡ Thus, the probability of hiring candidate 𝑖 is 1/𝑖. The average 
cost of hiring is:

=
!#$

%
1
𝑖
> 𝐶" = 𝐶"=

!#$

%
1
𝑖
= 𝑂 𝐶" lg 𝑛 .

¡ Thus, the averaged-case hiring cost is 𝑂(lg𝑛), which is much 
better than the worst-case cost of 𝑂(𝑛).
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Probabilistic Analysis of the Hiring Problem

¡ ∑!#$% $
! is called the 𝑛th harmonic

number (调和数).

¡ It has a bound of 𝑂 lg 𝑛 .
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Examples of Probabilistic Analysis

Example 1: the Hat-Check Problem

¡ Each of 𝑛 customers gives a hat to a hat-check person at a 
restaurant. 

¡ The hat-check person gives the hats back to the customers in a 
random order. 

¡ What is the expected number of customers that get back their 
own hat?

15



Examples of Probabilistic Analysis

Example 1 (cont’d)

¡ Because there are 𝑛 hats and the ordering of hats is random, 
each customer has a probability of 1/𝑛 of getting back his or 
her own hat. 

¡ Now we can compute the expected number of all customers:

=
!#$

%
1
𝑛
= 1.
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Examples of Probabilistic Analysis

Example 2

¡ Assume that 12 passengers enter an elevator at the basement 
and independently choose to exit randomly at one of the 10 
above-ground floors. 

¡ What is the expected number of stops that the elevator will 
have to make?
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Examples of Probabilistic Analysis

Example 2 (cont’d)

¡ Denote the event that the elevator stops at the 𝑖th level as 𝐻!.
¡ Pr 𝐻! = 1 − Pr 𝐻! = 1 − 1 − 1/10 $1 = 1 − 9/10 $1.

¡ 𝐻%: the elevator does not stop (no passenger exit) at the 𝑖th level.

¡ Now we can compute expected number of stops:

=
!#$

$-

(1 − 0.9$1) = 10 1 − 0.9$1 ≈ 7.176.
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Classroom Exercise

¡ Let 𝐴[1…𝑛] be an array of 𝑛 distinct numbers. If 𝑖 < 𝑗 and 
𝐴[𝑖] > 𝐴[𝑗], then the pair (𝑖, 𝑗) is called an inversion of 𝐴.

¡ Suppose that each element of 𝐴 is generated by randomly 
permutation. What is the expected number of inversions.
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Classroom Exercise
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Solution:

¡ Denote the event 𝑖 < 𝑗 and 𝐴[𝑖] > 𝐴[𝑗] as 𝐻!0.

¡ Given two distinct random numbers, the probability that the 
first is bigger than the second is 1/2. We have Pr 𝐻!0 = 1/2.

¡ Now we can compute expected number of inversions by sum
over of the pairs in the array:

=
!#$

%2$

=
0#!3$

%
1
2
=
𝑛(𝑛 − 1)

2
⋅
1
2
=
𝑛(𝑛 − 1)
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AMORTIZED ANALYSIS
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Amortized Analysis

¡ In some algorithms, the average-case performance is difficult
to be determined because each operation takes different time.

¡ We can perform a sequence of such operations and average
over the total time of all the operations performed. This is
called amortized analysis (分摊分析).

¡ Amortized analysis differs from average-case analysis in that 
probability is not involved.

¡ An amortized analysis guarantees the average performance of 
each operation in the worst case.
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Amortized Analysis

¡ The key idea of amortized analysis:

If each single is different, but the total is fixed, we count the total
and then calculate the average.

¡ Base on this idea, there are three methods:
¡ Aggregate method (合计方法)

¡ Accounting Method (记账方法)

¡ Potential method (势能方法)
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Aggregate Method

¡ In aggregate method (合计方法), we show that for all 𝑛, a 
sequence of 𝑛 operations takes worst-case time 𝑇(𝑛) in total. 

¡ In the worst case, the average cost, or amortized cost, per 
operation is therefore 𝑇(𝑛)/𝑛. 

¡ Note that this amortized cost applies to each operation, even 
when there are several types of operations in the sequence.
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MultiPop Operation

¡ Consider stack operations on stack 𝑆:
¡ Push(𝑆, 𝑥) pushes object 𝑥 onto stack 𝑆.

¡ Pop(𝑆) pops the top of stack 𝑆 and returns the popped object.

¡ Since each of these operations runs in 𝑂(1) time, let us 
consider the cost of each to be 1. 

¡ The total cost of a sequence of 𝑛 Push and Pop operations is 
therefore 𝑛, and the actual running time for 𝑛 operations is 
therefore Θ(𝑛).
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MultiPop Operation

¡ Now we add a new stack operation MultiPop(𝑆, 𝑘): remove the 𝑘 top 
objects of stack 𝑆 or pop the entire stack if it contains fewer than 𝑘
objects.

¡ What is the running time of MultiPop(𝑆, 𝑘) on a stack of 𝑠 objects?
¡ It varies for different 𝑆.
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MultiPop(𝑆, 𝑘)
1 while not StackEmpty(𝑆) and 𝑘 ≠ 0 do
2 Pop(S)
3 𝑘 ← 𝑘 − 1

23
17
6

39
10
47

10
47

top

top

MultiPop(S, 4) MultiPop(S, 7)



Aggregate Method for MultiPop Operation

¡ Let us analyze a sequence of 𝑛 Push, Pop, and MultiPop
operations on an initially empty stack.

Push(𝑆, 1), Push(𝑆, 2), Pop(𝑆), Push(𝑆, 4), MultiPop(𝑆, 2), …

¡ For a stack with at most 𝑛 elements, the worst-case time of 
MultiPop is 𝑂(𝑛), and we may have 𝑂(𝑛) MultiPop operations .
Hence a sequence of 𝑛 MultiPop operations costs 𝑂(𝑛2).

¡ This analysis is correct but the upper bound is too high. We
have at most 𝑛 elements to pop. How does 𝑂(𝑛2) come?
¡ This upper bound situation will never be happened, because it is

impossible to pop 𝑛 elements in MultiPop for 𝑛 times.

27
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Aggregate Method for MultiPop Operation

¡ Notice: each element is popped at most once after it is pushed
into a stack.

¡ Therefore, the total number of Pop (include the ones in
MultiPop) operations is at most 𝑛.

¡ Therefore, any sequence of 𝑛 Push, Pop, and MultiPop
operations on an initially empty stack can cost at most 𝑂(𝑛). 

¡ The average cost of an operation is 𝑂(𝑛)/𝑛 = 𝑂(1).
¡ Although it looks like 𝑂(𝑛).
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Binary Counter

¡ Consider the problem of implementing a 𝑘-bit binary counter
(𝑘位二进制计数器) that counts upward from 0.
¡ We use an array 𝐴[0…𝑘 − 1] of bits as the counter.
¡ The lowest-order bit is in 𝐴[0] and the highest-order bit is in 𝐴[𝑘 − 1].
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Increment(A)
1  𝑖 ← 0
2  while 𝑖 < 𝑛 and 𝐴[𝑖] = 1 do
3  𝐴[𝑖] ← 0
4  𝑖 ← 𝑖 + 1
5  if 𝑖 < 𝑛 then
6  𝐴[𝑖] ← 1

Video source: https://imgur.com/gallery/56LASVI

A wooden 8-bit binary counter

https://imgur.com/gallery/56LASVI


Binary Counter
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0                     0        0        0        0        0        0        0       0 0
1                     0        0        0        0        0        0        0        1 1
2                     0        0        0        0        0        0        1        0 3
3                     0        0        0        0        0        0        1        1 4
4                     0        0        0        0        0        1        0       0 7
5                     0        0        0        0        0        1        0        1 8
6                     0        0        0        0        0        1        1        0 10
7                     0        0        0        0        0        1        1        1 11
8                     0        0        0        0        1        0        0        0 15
9                     0        0        0        0        1        0        0        1 16
10                   0        0        0        0        1        0        1        0 18
11                   0        0        0        0        1        0        1        1 19
12                   0        0        0        0        1        1        0        0 22
13                   0        0        0        0        1        1        0        1 23
14                   0        0        0        0        1        1        1        0                 25
15                   0        0        0        0        1        1        1        1 26
16                   0        0        0        1        0        0        0        0 31

Counter value 𝐴[7] 𝐴[6] 𝐴[5] 𝐴[4] 𝐴[3] 𝐴[2] 𝐴[1] 𝐴[0] total cost



Aggregate Method for Binary Counter

¡ What is the average cost of a single execution of Increment, if
we count the number of bits flipped as the cost?

¡ Follow the idea of amortized analysis, we consider a sequence
of 𝑛 Increment operations on an initially zero counter.

¡ In the worst case, array 𝐴 contains all 1. A single execution of 
Increment takes time 𝑂(𝑘). Thus, the whole sequence takes
𝑂(𝑛𝑘).

¡ Will this worst case happen?
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Aggregate Method for Binary Counter

¡ We can observe:
¡ 𝐴[0] is flipped for every execution.

¡ 𝐴[1] is flipped for every two executions, i.e. 𝐴[1] is flipped 𝑛/2 times
for each execution.

¡ 𝐴[2] is flipped for every four executions, i.e. 𝐴[2] is flipped 𝑛/4 times
for each execution.

¡ …

¡ 𝐴[𝑖] is flipped for every 2% executions, i.e. 𝐴[𝑖] is flipped 𝑛/2% times for
each execution.
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Aggregate Method for Binary Counter

¡ Therefore, the total number of flips for 𝑛 execution of
Increment is:

=
!#-

./ %
𝑛
2!

< 𝑛=
!#-

;
1
2!
= 2𝑛.

¡ The worst-case time for a sequence of 𝑛 Increment operations 
on an initially zero counter is therefore 𝑂(𝑛). 

¡ The average cost of each operation, and therefore the 
amortized cost per operation, is 𝑂(𝑛)/𝑛 = 𝑂(1).
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Accounting Method

¡ Accounting method (记账方法): Assign differing charges to 
different operations, with some operations charged more or 
less than they actually cost. The amount we charge an 
operation is called its amortized cost.

¡ When an operation’s amortized cost exceeds its actual cost, the 
difference is assigned to specific objects in the data structure 
as credit (存款). 

¡ Credit can be used later on to help pay for operations whose 
amortized cost is less than their actual cost.
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Accounting Method

¡ We denote:
¡ 𝑐%: the actual cost of the 𝑖th operation.

¡ �̂�%: the amortized cost of the 𝑖th operation.

¡ For the sequence of all 𝑛 operations, we require:

=
!#$

%

�̂�! ≥=
!#$

%

𝑐!

¡ The total credit associated with the data structure must be 
nonnegative at all times.
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Accounting Method for MultiPop Operation

Recall the stack operations. The actual costs of the operations are:
Push 1,
Pop 1,
MultiPop         min(k, s). 

The amortized costs by accounting method are:
Push 2,
Pop 0,
MultiPop 0.
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Accounting Method for MultiPop Operation

¡ Suppose we use a $1 to represent each unit of cost. We start with an 
empty stack.

¡ When we push an element on the stack, we use $1 to pay the actual 
cost of the push and are left with a credit of $1 (out of the $2 
charged). 
¡ At any point in time, every element on the stack has $1 of credit on it, which 

is for the cost of popping it. 
¡ To pop (from Pop or MultiPop) an element, we take the dollar of credit off 

the element and use it to pay the actual cost of the operation. 
¡ Thus, by charging the Push operation a little bit more, we needn’t charge the 

Pop operation anymore. 

¡ Thus, for any sequence of 𝑛 Push, Pop, and MultiPop operations, the 
total amortized cost is 𝑂(𝑛).
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Accounting Method for Binary Counter

¡ Let us once again use $1 to represent each unit of cost.
¡ For the accounting method, let us charge an amortized cost of 

$2 to set a bit to 1. 
¡ When a bit is set to 1, we use $1 to pay for the actual setting, and the 

other $1 for preparing flipping the bit back to 0.

¡ The cost of setting the bits to 0 within the while loop is paid by the dollars 
on the bits when they are set to 1.

¡ Thus, the amortized cost for setting bits to 0 in the while loop becomes 0,
and the amortized cost of setting bits to 1 in Line 6 of Increment is $2.

¡ Thus, for 𝑛 Increment operations, the total amortized cost is 
𝑂(𝑛), which bounds the total actual cost. 
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Potential Method

¡ In accounting method, we associate credits with elements in
the data structure.

¡ Similarly, in potential method (势能方法), we store “potential”
of the data structure for future operations.
¡ We start with an initial data structure 𝐷' on which 𝑛 operations are 

performed. 
¡ Let 𝐷% be the data structure that results after applying the 𝑖th operation 

to data structure 𝐷%(), for each 𝑖 = 1, 2, … , 𝑛.
¡ A potential function Φ maps each data structure 𝐷% to a real number 
Φ(𝐷%), which is the potential associated with data structure 𝐷𝑖.
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Potential Method

¡ Let 𝑐! be the actual cost of the 𝑖th operation.
¡ The amortized cost �̂�! of the 𝑖th operation with respect to 

potential function Φ is defined by 
�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!2$ .

¡ The total amortized cost of the 𝑛 operations is

=
!#$

%

�̂�! ==
!#$

%

𝑐! +Φ 𝐷! −Φ 𝐷!2$

==
!#$

%

𝑐! +Φ 𝐷% −Φ 𝐷- .
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Potential Method

¡ Just like accounting method, we can pay for future operations by 
potential in potential method.

¡ If we can define a potential function Φ so that Φ(𝐷$) ≥ Φ(𝐷'), then 
the total amortized cost is an upper bound on the total actual cost.
¡ It is often convenient to define Φ(𝐷") = 0 and the Φ(𝐷#) ≥ 0 for all 𝑖.

¡ We consider the potential difference Φ(𝐷() − Φ(𝐷()#) for the 𝑖th
operation:
¡ If it is positive, �̂�# represents an overcharge to the 𝑖th operation, and the 

potential of the data structure increases.

¡ If it is negative, �̂�# represents an undercharge to the 𝑖th operation, and the 
actual cost of the operation is paid by the decrease in the potential. 
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Potential Method for MultiPop Operation

¡ Define the potential function: 

Φ 𝐷! = number of objects in the stack after the 𝑖th operation. 

¡ Starting from the empty stack 𝐷-, we have Φ(𝐷0) = 0. 

¡ Since the number of objects in the stack is never negative, the 
stack 𝐷! that results after the 𝑖th operation has nonnegative 
potential, and thus Φ(𝐷!) ≥ 0 = Φ(𝐷-) for all 0 ≤ 𝑖 ≤ 𝑛.

¡ The total amortized cost of 𝑛 operations with respect to Φ
therefore represents an upper bound on the actual cost.
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Potential Method for MultiPop Operation

¡ If the 𝑖th operation on a stack containing 𝑠 objects is a Push operation:
¡ The potential difference is 

Φ 𝐷! −Φ 𝐷!"# = 𝑠 + 1 − 𝑠 = 1.
¡ The amortized cost is

�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!"# = 1 + 1 = 2.

¡ If the 𝑖th operation on the stack is MultiPop(𝑆, 𝑘) and that 𝑘′ = min(𝑘, 𝑠)
objects are popped off the stack.
¡ The potential difference is 

Φ 𝐷! −Φ 𝐷!"# = −𝑘$.
¡ The amortized cost is

�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!"# = 𝑘$ − 𝑘$ = 0.

¡ Similarly, the amortized cost of a Pop operation is also 0. 
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Potential Method for MultiPop Operation

¡ The amortized cost of each of the three operations is 𝑂(1), and 
thus the total amortized cost of a sequence of 𝑛 operations is 
𝑂(𝑛).

¡ Since we have already argued that Φ(𝐷!) ≥ Φ(𝐷"), the total 
amortized cost of 𝑛 operations is an upper bound on the total 
actual cost.
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Potential Method for Binary Counter

¡ Define the potential function: 

Φ 𝐷! = the number of 1’s in the counter after the 𝑖 th operation.

¡ Suppose that the 𝑖th Increment operation sets 𝑡! bits to 0. 
¡ If Φ 𝐷% = 0, then the 𝑖th operation resets all 𝑘 bits, and so Φ 𝐷%() =
𝑡% = 𝑘. 

¡ If Φ 𝐷% > 0, then Φ 𝐷% = Φ 𝐷%() − 𝑡% + 1. 

¡ In either case, we have Φ 𝐷! ≤ Φ 𝐷!#$ − 𝑡! + 1.
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Potential Method for Binary Counter

¡ The actual cost 𝑐! is at most 𝑡! + 1 (set 𝑡! bits to 0, and set at 
most one bit to 1). 

¡ The potential difference after the 𝑖th operation is
Φ 𝐷! −Φ 𝐷!#$ ≤ Φ 𝐷!#$ − 𝑡! + 1 −Φ 𝐷!#$ = 1 − 𝑡!.

¡ The amortized cost is therefore
�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!#$ ≤ 𝑡! + 1 + 1 − 𝑡! = 2.

¡ Since Φ(𝐷!) ≥ 0 for all 𝑖, the total amortized cost of a 
sequence of 𝑛 Increment operations is an upper bound on the 
total actual cost, and so the worst-case cost of 𝑛 Increment
operations is 𝑂(𝑛).
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Classroom Exercise

Dynamic table insertion:

1. Initial table size 𝑚 = 1;

2. Insert elements until the number 
of elements in the table 𝑛 > 𝑚;

3. Generate a new table of size 2𝑚;

4. Reinsert the elements in old table 
into the new one;

5. Back to step 2.
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For example, insert 1, 2, 3, 4, 5, 6, 7, 8, 9,
10 one by one:
¡ insert 1: cost 1
¡ insert 2: cost 2
¡ insert 3: cost 3
¡ insert 4: cost 1
¡ insert 5: cost 5
¡ insert 6,7,8: cost 3
¡ insert 9: cost 9
¡ insert 10: cost 1

¡ Use amortized analysis to analyze the average cost of dynamic table
insertion. We only consider the cost of insertion (no cost for table
generation).



Classroom Exercise

Solution (aggregate method):
¡ The 𝑖th operation causes an expansion only when 𝑖 − 1 is an exact 

power of 2. The cost of the 𝑖th operation is 

𝑐( = 9𝑖 if 𝑖 − 1 is an exact power of 2,
1 otherwise.

¡ The total cost of a sequence of 𝑛 dynamic table insertion operations 
is

+
("#

$

𝑐( ≤ 𝑛 + +
%"'

+, $

2% < 𝑛 + 2𝑛 = 3𝑛.

¡ Since the total cost of 𝑛 operations is 𝑂(𝑛), the amortized cost of a 
single operation is 𝑂(1). 
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Classroom Exercise

Solution (accounting method):
¡ Assume that 𝑚 is an power of 2.
¡ When we are inserting the (𝑚 + 1)th element in the table, we

expand the table to 2𝑚.

¡ We charge each insertion operation $3 (amortized cost).

¡ Use $1 to perform immediate insert.

¡ Store $2 as credit for future use.

¡ When we have 2𝑚 elements, we expand the table to 4𝑚:

¡ $1 is used to re-insert the item itself (items from𝑚+ 1 to 2𝑚).

¡ $1 is used to re-insert another old item (items from 1 to 𝑚).
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Classroom Exercise

Solution (potential method):

¡ Define the potential function: 
Φ 𝐷! = 2 4 𝑛𝑢𝑚 𝑇 − 𝑠𝑖𝑧𝑒 𝑇 .

¡ 𝑛𝑢𝑚 𝑇 is the number of elements in 𝑇.

¡ 𝑠𝑖𝑧𝑒 𝑇 is the size of the table.

¡ Φ 𝑇" = 0 and Φ 𝑇 is always ≥ 0.
¡ Immediately after an expansion, we have 𝑛𝑢𝑚[𝑇] = 𝑠𝑖𝑧𝑒[𝑇]/2, and thus 
Φ(𝑇) = 0. 

¡ Immediately before an expansion, we have 𝑛𝑢𝑚[𝑇] = 𝑠𝑖𝑧𝑒[𝑇], and thus 
Φ(𝑇) = 𝑛𝑢𝑚[𝑇].
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Classroom Exercise

¡ If the 𝑖th TABLE-INSERT operation does not trigger an expansion, then we 
have 𝑠𝑖𝑧𝑒[𝑇%] = 𝑠𝑖𝑧𝑒[𝑇%()] and the amortized cost of the operation is 

�̂�% = 𝑐% +Φ 𝑇% −Φ 𝑇%()
= 1 + 2 T 𝑛𝑢𝑚 𝑇% − 𝑠𝑖𝑧𝑒 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑠𝑖𝑧𝑒 𝑇%()
= 1 + 2 𝑛𝑢𝑚 𝑇% − 𝑛𝑢𝑚 𝑇%() = 3.

¡ If the 𝑖th operation does trigger an expansion, then we have 𝑠𝑖𝑧𝑒[𝑇%] = 2 T
𝑠𝑖𝑧𝑒[𝑇%()] and 𝑛𝑢𝑚 𝑇%() = 𝑠𝑖𝑧𝑒 𝑇%() . Thus, the amortized cost of the 
operation is 
�̂�% = 𝑐% +Φ 𝑇% −Φ 𝑇%()
= 𝑛𝑢𝑚 𝑇% + 2 T 𝑛𝑢𝑚 𝑇% − 𝑠𝑖𝑧𝑒 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑠𝑖𝑧𝑒 𝑇%()
= 𝑛𝑢𝑚 𝑇% + 2 T 𝑛𝑢𝑚 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑛𝑢𝑚 𝑇%()
= 3 T 𝑛𝑢𝑚 𝑇% − 3 T 𝑛𝑢𝑚 𝑇%() = 3.
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Summary of Amortized Analysis

¡ When should we use amortized analysis, rather than 
probabilistic analysis? We can’t determine each single, but we 
know the total.
¡ Amortized analysis always gives the upper bound.

¡ For accounting method and potential method, some tricky design is
needed.

¡ For a sorting algorithm for 𝑛 arrays, we can’t determine each 
single, nor the total. Hence amortized analysis is not applicable 
for it.
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EMPIRICAL ANALYSIS
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Problem of Theoretical Analysis

¡ Previous analysis are based on asymptotic notations. However,
there are also some issues when we are dealing with real-world
problems.
¡ Asymptotic notations only consider the case when the size tends to

infinity.

¡ Which of the algorithm with the following complexity will you
choose?

10%𝑛 vs. 𝑛&

¡ Based on asymptotic notations, we choose the one with 10*𝑛.

¡ However, if our input scale only range from 1 to 10*, we should choose
the one with 𝑛#.
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Empirical Analysis

¡ Empirical analysis (实验分析) is most useful for hard problem 
or randomized algorithm.
¡ Data generation (benchmark).

¡ Algorithm implement (software and hardware).

¡ Result analysis (visualization).
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Conclusion

After this lecture, you should know:

¡ Why do we need probabilistic analysis?

¡ How to use probabilistic analysis for average case analysis?

¡ Which case is suitable for applying amortized analysis?

¡ What are the differences among three amortized analysis
methods?
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Homework

¡ Page 31

3.1

3.2

3.4

3.6

3.8
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谢谢

有问题欢迎随时跟我讨论
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