算法设计与分析

Lecture 3: Algorithm Analysis

卢杨 厦门大学信息学院计算机科学系 luyang@xmu.edu.cn

PROBABILISTIC ANALYSIS

Probabilistic Analysis

- Average-case analysis determines the average (or expected) performance.
 - The average time over all inputs of size *n*.
- The average-case analysis needs to know the probabilities of all input occurrences, i.e., it requires prior knowledge of the input distribution.
- Usually, to ease the analysis, we can use probabilistic analysis by simply assuming that all inputs of a given size appear with equal probability, i.e. draw from a uniform distribution.

Linear Search

- The searching problem: Search an array A of size n to determine whether the array contains the value x; return index if found, 0 if not found.
- Recall the strategy 1 of the phonebook example in Lecture 1. We check the name from the top one by one. This algorithm is called linear search for the searching problem.

LinearSearch(A, x)

- $1 \quad k \leftarrow 1$
- 2 while $k \le n$ and $x \ne A[k]$ do
- $3 \qquad k \leftarrow k + 1$
- 4 if k > n then return 0
- 5 else return k

Probabilistic Analysis of Linear Search

- To simplify the analysis, let us assume:
 - A[1 ... n] contains the numbers 1 through n, which implies that all elements of A are distinct.
 - The search key x is in A.
 - The search key x is uniformly drawn from [1 ... n].
 - We only count the number of key comparisons.

LinearSearch(A, x)

- 1 $k \leftarrow 1$
- 2 while $k \le n$ and $x \ne A[k]$ do
- $3 \qquad k \leftarrow k + 1$
- 4 if k > n then return 0
- 5 else return *k*

Probabilistic Analysis of Linear Search

- Probability of x being found at index k is 1/n for each value of k.
- If x = A[k], then the number of comparison is k.
- Therefore, we can calculate the expected number of comparison by multiplying k with its probability 1/n and then sum them up.
- So the number of comparison on the average is:

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot k = \frac{1}{n} \sum_{k=1}^{n} k = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

- Hence, the average-case time complexity of LinearSearch(A, x) is $\Theta(n)$.
- Think: What if the key x is not uniform distributed?

Probabilistic Analysis of Insertion Sort

- To simplify the analysis, let us assume:
 - A[1..n] contains the numbers 1 through n, which implies that all elements of A are distinct.
 - All n! permutations of A appear with equal probability as the input.
 - We only count the number of key comparisons.

InsertSort(A)

```
1 for j \leftarrow 2 to n do
```

2
$$key \leftarrow A[j]$$

$$i \leftarrow j - 1$$

4 while
$$i > 0$$
 and $A[i] > key$ do

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

7
$$A[i+1] \leftarrow key$$

8 return A

Probabilistic Analysis of Insertion Sort

- For different input, the difference of running time is from t_j , namely, how many comparisons do we need before inserting the key.
- Now we consider inserting key = A[j] in the proper position in A[1...j].
- If its proper position is $k(1 \le k \le j)$, then the number of comparisons performed in order to insert key in A[k] is:

$$\begin{cases} j-1, & if \ k=1 \\ j-k+1, & if \ 2 \le k \le j \end{cases}$$

- If k=1, the condition in while loop i>0 is false and the comparison A[i]>key is not triggered.
- If $2 \le k \le j$, one more comparison A[i] > key is needed.

Probabilistic Analysis of Insertion Sort

• Since the probability that its proper positions in A[1 ... j] is 1/j, so the number of comparisons needed to insert A[j] in its proper position in A[1 ... j] is:

$$\frac{1}{j} \cdot (j-1) + \frac{1}{j} \sum_{k=2}^{j} (j-k+1) = \frac{1}{j} (j-1) + \sum_{k=1}^{j-1} k = \frac{j}{2} - \frac{1}{j} + \frac{1}{2}.$$

Hence the average number of comparisons performed by InsertSort(A) is:

$$\sum_{j=2}^{n} \left(\frac{j}{2} - \frac{1}{j} + \frac{1}{2} \right) = \frac{n(n+1)}{4} - \frac{1}{2} - \sum_{j=2}^{n} \frac{1}{j} + \frac{n-1}{2}$$
$$= \frac{n^2}{4} + \frac{3n}{4} - \sum_{j=2}^{n} \frac{1}{j} = \Theta(n^2).$$

➤ What is the order of this term?

The Hiring Problem

- The problem scenario:
 - You are using an employment agency to hire a new office assistant.
 - The agency sends you one candidate each day.
 - You interview the candidate and must immediately hire the new one and fire the current one, if the new candidate is better.
 - Cost of interview is C_i and cost of hiring is C_h .
- If we hire m of n candidates finally, the cost will be $O(nC_i + mC_h)$.
- However, m varies with each run.
 - It depends on the order in which we interview the candidates.

The Hiring Problem

```
HireAssistant(n)

1 best \leftarrow 0

2 for i \leftarrow 1 to n do

3 interview candidate i

4 if candidate i is better than candidate best then

5 best \leftarrow i

6 hire candidate i.
```


Analysis of the Hiring Problem

- Best case
 - We just hire one candidate only.
 - The first is the best. Good luck thanks god.
 - Cost: $\Omega(nC_i + C_h)$.
- Worst case
 - We hire all n candidates.
 - Each candidate is better than the current hired one. What a tough life!
 - Cost: $O(nC_i + nC_h)$.
- What is the average case?

Probabilistic Analysis of the Hiring Problem

- In general, we have no control over the order in which candidates appear.
- We just assume that they come in a random order.
 - The interview score list S is equivalent to a permutation of the candidate numbers $\langle 1,2,3,...,n \rangle$.
 - S is equally likely to be any one of the n! permutations. Each of the possible n! permutations appears with equal probability.

Probabilistic Analysis of the Hiring Problem

- Candidate i is hired if and only if candidate i is better than each of candidates 1, 2, ..., i 1.
- Base on the assumption that the candidates arrive in random order, any one of these i candidates is equally likely to be the best one so far.
- Thus, the probability of hiring candidate i is 1/i. The average cost of hiring is:

$$\sum_{i=1}^{n} \frac{1}{i} \cdot C_h = C_h \sum_{i=1}^{n} \frac{1}{i} \stackrel{???}{=} O(C_h \lg n).$$

■ Thus, the averaged-case hiring cost is $O(\lg n)$, which is much better than the worst-case cost of O(n).

Probabilistic Analysis of the Hiring Problem

- $\sum_{i=1}^{n} \frac{1}{i}$ is called the nth harmonic number (调和数).
- It has a bound of $O(\lg n)$.

$$\sum_{i=1}^{n} \frac{1}{i} \le \sum_{k=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^{k}-1} \frac{1}{2^{k} + j}$$

$$\le \sum_{k=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^{k}-1} \frac{1}{2^{k}}$$

$$= \sum_{k=0}^{\lfloor \lg n \rfloor} 1$$

$$\le \lg n + 1.$$

Example 1: the Hat-Check Problem

- Each of n customers gives a hat to a hat-check person at a restaurant.
- The hat-check person gives the hats back to the customers in a random order.
- What is the expected number of customers that get back their own hat?

Example 1 (cont'd)

- Because there are n hats and the ordering of hats is random, each customer has a probability of 1/n of getting back his or her own hat.
- Now we can compute the expected number of all customers:

$$\sum_{i=1}^{n} \frac{1}{n} = 1.$$

Example 2

- Assume that 12 passengers enter an elevator at the basement and independently choose to exit randomly at one of the 10 above-ground floors.
- What is the expected number of stops that the elevator will have to make?

Example 2 (cont'd)

- Denote the event that the elevator stops at the ith level as H_i .
- $Pr{H_i}$ = 1 $Pr{\overline{H_i}}$ = 1 $(1 1/10)^{12}$ = 1 $(9/10)^{12}$.
 - \blacksquare $\overline{H_i}$: the elevator does not stop (no passenger exit) at the *i*th level.
- Now we can compute expected number of stops:

$$\sum_{i=1}^{10} (1 - 0.9^{12}) = 10(1 - 0.9^{12}) \approx 7.176.$$

Classroom Exercise

- Let A[1 ... n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A.
- Suppose that each element of A is generated by randomly permutation. What is the expected number of inversions.

Classroom Exercise

Solution:

- Denote the event i < j and A[i] > A[j] as H_{ij} .
- Given two distinct random numbers, the probability that the first is bigger than the second is 1/2. We have $Pr\{H_{ij}\} = 1/2$.
- Now we can compute expected number of inversions by sum over of the pairs in the array:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2} = \frac{n(n-1)}{2} \cdot \frac{1}{2} = \frac{n(n-1)}{4}.$$

AMORTIZED ANALYSIS

Amortized Analysis

- In some algorithms, the average-case performance is difficult to be determined because each operation takes different time.
- We can perform a sequence of such operations and average over the total time of all the operations performed. This is called amortized analysis (分摊分析).
- Amortized analysis differs from average-case analysis in that probability is not involved.
- An amortized analysis guarantees the average performance of each operation in the worst case.

Amortized Analysis

The key idea of amortized analysis:

If each single is different, but the total is fixed, we count the total and then calculate the average.

- Base on this idea, there are three methods:
 - Aggregate method (合计方法)
 - Accounting Method (记账方法)
 - Potential method (势能方法)

Aggregate Method

- In aggregate method (合计方法), we show that for all n, a sequence of n operations takes worst-case time T(n) in total.
- In the worst case, the average cost, or amortized cost, per operation is therefore T(n)/n.
- Note that this amortized cost applies to each operation, even when there are several types of operations in the sequence.

MultiPop Operation

- Consider stack operations on stack S:
 - Push(S, x) pushes object x onto stack S.
 - $ightharpoonup \operatorname{Pop}(S)$ pops the top of stack S and returns the popped object.
- Since each of these operations runs in O(1) time, let us consider the cost of each to be 1.
- The total cost of a sequence of n Push and Pop operations is therefore n, and the actual running time for n operations is therefore $\Theta(n)$.

MultiPop Operation

- Now we add a new stack operation $\operatorname{MultiPop}(S, k)$: remove the k top objects of stack S or pop the entire stack if it contains fewer than k objects.
- What is the running time of MultiPop(S, k) on a stack of s objects?
 - It varies for different S.

MultiPop(S, k)

1 while not StackEmpty(S) and $k \neq 0$ do

- 2 $\operatorname{Pop}(S)$
- $3 \qquad k \leftarrow k 1$

MultiPop(S, 4) MultiPop(S, 7)

Aggregate Method for MultiPop Operation

Let us analyze a sequence of *n* Push, Pop, and MultiPop operations on an initially empty stack.

Push
$$(S, 1)$$
, Push $(S, 2)$, Pop (S) , Push $(S, 4)$, MultiPop $(S, 2)$, ...

- For a stack with at most n elements, the worst-case time of MultiPop is O(n), and we may have O(n) MultiPop operations . Hence a sequence of n MultiPop operations costs $O(n^2)$.
- This analysis is correct but the upper bound is too high. We have at most n elements to pop. How does $O(n^2)$ come?
 - This upper bound situation will never be happened, because it is impossible to pop n elements in MultiPop for n times.

Aggregate Method for MultiPop Operation

- Notice: each element is popped at most once after it is pushed into a stack.
- Therefore, the total number of Pop (include the ones in MultiPop) operations is at most n.
- Therefore, any sequence of n Push, Pop, and MultiPop operations on an initially empty stack can cost at most O(n).
- The average cost of an operation is O(n)/n = O(1).
 - Although it looks like O(n).

Binary Counter

- Consider the problem of implementing a k-bit binary counter (k位二进制计数器) that counts upward from 0.
 - We use an array A[0 ... k 1] of bits as the counter.
 - The lowest-order bit is in A[0] and the highest-order bit is in A[k-1].

Increment(A)

$$1 i \leftarrow 0$$

2 while i < n and A[i] = 1 do

$$3 \qquad A[i] \leftarrow 0$$

4
$$i \leftarrow i + 1$$

5 if
$$i < n$$
 then

6
$$A[i] \leftarrow 1$$

A wooden 8-bit binary counter

Binary Counter

Counter value	<i>A</i> [7]	<i>A</i> [6]	<i>A</i> [5]	A[4]	<i>A</i> [3]	A[2]	<i>A</i> [1]	A[0]	total cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Aggregate Method for Binary Counter

- What is the average cost of a single execution of Increment, if we count the number of bits flipped as the cost?
- Follow the idea of amortized analysis, we consider a sequence of n Increment operations on an initially zero counter.
- In the worst case, array A contains all 1. A single execution of Increment takes time O(k). Thus, the whole sequence takes O(nk).
- Will this worst case happen?

Aggregate Method for Binary Counter

- We can observe:
 - A[0] is flipped for every execution.
 - A[1] is flipped for every two executions, i.e. A[1] is flipped $\lfloor n/2 \rfloor$ times for each execution.
 - A[2] is flipped for every four executions, i.e. A[2] is flipped $\lfloor n/4 \rfloor$ times for each execution.
 - •
 - A[i] is flipped for every 2^i executions, i.e. A[i] is flipped $\lfloor n/2^i \rfloor$ times for each execution.

Aggregate Method for Binary Counter

■ Therefore, the total number of flips for *n* execution of Increment is:

$$\sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n.$$

- The worst-case time for a sequence of n Increment operations on an initially zero counter is therefore O(n).
- The average cost of each operation, and therefore the amortized cost per operation, is O(n)/n = O(1).

Accounting Method

- Accounting method (记账方法): Assign differing charges to different operations, with some operations charged more or less than they actually cost. The amount we charge an operation is called its amortized cost.
- When an operation's amortized cost exceeds its actual cost, the difference is assigned to specific objects in the data structure as credit (存款).
- Credit can be used later on to help pay for operations whose amortized cost is less than their actual cost.

Accounting Method

- We denote:
 - c_i : the actual cost of the *i*th operation.
 - \hat{c}_i : the amortized cost of the *i*th operation.
- \blacksquare For the sequence of all n operations, we require:

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

The total credit associated with the data structure must be nonnegative at all times.

Accounting Method for MultiPop Operation

Recall the stack operations. The actual costs of the operations are:

Push

1,

Pop

1.

MultiPop

 $\min(k, s)$.

The amortized costs by accounting method are:

Push

2.

Pop

0,

MultiPop

0.

Accounting Method for MultiPop Operation

- Suppose we use a \$1 to represent each unit of cost. We start with an empty stack.
- When we push an element on the stack, we use \$1 to pay the actual cost of the push and are left with a credit of \$1 (out of the \$2 charged).
 - At any point in time, every element on the stack has \$1 of credit on it, which is for the cost of popping it.
 - To pop (from Pop or MultiPop) an element, we take the dollar of credit off the element and use it to pay the actual cost of the operation.
 - Thus, by charging the Push operation a little bit more, we needn't charge the Pop operation anymore.
- Thus, for any sequence of n Push, Pop, and MultiPop operations, the total amortized cost is O(n).

Accounting Method for Binary Counter

- Let us once again use \$1 to represent each unit of cost.
- For the accounting method, let us charge an amortized cost of \$2 to set a bit to 1.
 - When a bit is set to 1, we use \$1 to pay for the actual setting, and the other \$1 for preparing flipping the bit back to 0.
 - The cost of setting the bits to 0 within the while loop is paid by the dollars on the bits when they are set to 1.
 - Thus, the amortized cost for setting bits to 0 in the while loop becomes 0, and the amortized cost of setting bits to 1 in Line 6 of Increment is \$2.
- Thus, for n Increment operations, the total amortized cost is O(n), which bounds the total actual cost.

Potential Method

- In accounting method, we associate credits with elements in the data structure.
- Similarly, in potential method (势能方法), we store "potential" of the data structure for future operations.
 - We start with an initial data structure D_0 on which n operations are performed.
 - Let D_i be the data structure that results after applying the ith operation to data structure D_{i-1} , for each i = 1, 2, ..., n.
 - A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with data structure D_i .

Potential Method

- Let c_i be the actual cost of the *i*th operation.
- The amortized cost \hat{c}_i of the ith operation with respect to potential function Φ is defined by

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}).$$

The total amortized cost of the n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right)$$
$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$$

Potential Method

- Just like accounting method, we can pay for future operations by potential in potential method.
- If we can define a potential function Φ so that $\Phi(D_n) \ge \Phi(D_0)$, then the total amortized cost is an upper bound on the total actual cost.
 - It is often convenient to define $\Phi(D_0) = 0$ and the $\Phi(D_i) \ge 0$ for all i.
- We consider the potential difference $\Phi(D_i) \Phi(D_{i-1})$ for the ith operation:
 - If it is positive, \hat{c}_i represents an overcharge to the ith operation, and the potential of the data structure increases.
 - If it is negative, \hat{c}_i represents an undercharge to the ith operation, and the actual cost of the operation is paid by the decrease in the potential.

Potential Method for MultiPop Operation

- Define the potential function:
 - $\Phi(D_i)$ = number of objects in the stack after the *i*th operation.
- Starting from the empty stack D_0 , we have $\Phi(D_0) = 0$.
- Since the number of objects in the stack is never negative, the stack D_i that results after the ith operation has nonnegative potential, and thus $\Phi(D_i) \geq 0 = \Phi(D_0)$ for all $0 \leq i \leq n$.
- The total amortized cost of n operations with respect to Φ therefore represents an upper bound on the actual cost.

Potential Method for MultiPop Operation

- If the *i*th operation on a stack containing *s* objects is a Push operation:
 - The potential difference is

$$\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = 1.$$

The amortized cost is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2.$$

- If the *i*th operation on the stack is $\operatorname{MultiPop}(S, k)$ and that $k' = \min(k, s)$ objects are popped off the stack.
 - The potential difference is

$$\Phi(D_i) - \Phi(D_{i-1}) = -k'.$$

The amortized cost is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k' - k' = 0.$$

Similarly, the amortized cost of a Pop operation is also 0.

Potential Method for MultiPop Operation

- The amortized cost of each of the three operations is O(1), and thus the total amortized cost of a sequence of n operations is O(n).
- Since we have already argued that $\Phi(D_i) \ge \Phi(D_0)$, the total amortized cost of n operations is an upper bound on the total actual cost.

Potential Method for Binary Counter

Define the potential function:

 $\Phi(D_i)$ = the number of 1's in the counter after the *i*th operation.

- Suppose that the ith Increment operation sets t_i bits to 0.
 - If $\Phi(D_i) = 0$, then the *i*th operation resets all *k* bits, and so $\Phi(D_{i-1}) = t_i = k$.
 - If $\Phi(D_i) > 0$, then $\Phi(D_i) = \Phi(D_{i-1}) t_i + 1$.
- In either case, we have $\Phi(D_i) \leq \Phi(D_{i-1}) t_i + 1$.

Potential Method for Binary Counter

- The actual cost c_i is at most $t_i + 1$ (set t_i bits to 0, and set at most one bit to 1).
- The potential difference after the ith operation is $\Phi(D_i) \Phi(D_{i-1}) \le (\Phi(D_{i-1}) t_i + 1) \Phi(D_{i-1}) = 1 t_i.$
- The amortized cost is therefore

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \le (t_i + 1) + (1 - t_i) = 2.$$

• Since $\Phi(D_i) \geq 0$ for all i, the total amortized cost of a sequence of n Increment operations is an upper bound on the total actual cost, and so the worst-case cost of n Increment operations is O(n).

Dynamic table insertion:

- 1. Initial table size m = 1;
- 2. Insert elements until the number of elements in the table n > m;
- 3. Generate a new table of size 2m;
- Reinsert the elements in old table into the new one;
- 5. Back to step 2.

For example, insert 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 one by one:

- insert 1: cost 1
- insert 2: cost 2
- insert 3: cost 3
- insert 4: cost 1
- insert 5: cost 5
- insert 6,7,8: cost 3
- insert 9: cost 9
- insert 10: cost 1
- Use amortized analysis to analyze the average cost of dynamic table insertion. We only consider the cost of insertion (no cost for table generation).

Solution (aggregate method):

■ The ith operation causes an expansion only when i-1 is an exact power of 2. The cost of the ith operation is

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$$

ullet The total cost of a sequence of n dynamic table insertion operations is

$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j < n + 2n = 3n.$$

• Since the total cost of n operations is O(n), the amortized cost of a single operation is O(1).

Solution (accounting method):

- \blacksquare Assume that m is an power of 2.
- When we are inserting the (m + 1)th element in the table, we expand the table to 2m.
- We charge each insertion operation \$3 (amortized cost).
 - Use \$1 to perform immediate insert.
 - Store \$2 as credit for future use.
- When we have 2m elements, we expand the table to 4m:
 - \$1 is used to re-insert the item itself (items from m+1 to 2m).
 - \$1 is used to re-insert another old item (items from 1 to m).

Solution (potential method):

Define the potential function:

$$\Phi(D_i) = 2 \cdot num[T] - size[T].$$

- num[T] is the number of elements in T.
- size[T] is the size of the table.
- $\Phi(T_0) = 0$ and $\Phi(T)$ is always ≥ 0 .
 - Immediately after an expansion, we have num[T] = size[T]/2, and thus $\Phi(T) = 0$.
 - Immediately before an expansion, we have num[T] = size[T], and thus $\Phi(T) = num[T]$.

If the *i*th TABLE-INSERT operation does not trigger an expansion, then we have $size[T_i] = size[T_{i-1}]$ and the amortized cost of the operation is

$$\hat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})
= 1 + (2 \cdot num(T_i) - size(T_i)) - (2 \cdot num(T_{i-1}) - size(T_{i-1}))
= 1 + 2(num(T_i) - num(T_{i-1})) = 3.$$

If the ith operation does trigger an expansion, then we have $size[T_i] = 2 \cdot size[T_{i-1}]$ and $num[T_{i-1}] = size[T_{i-1}]$. Thus, the amortized cost of the operation is

$$\begin{split} \hat{c}_i &= c_i + \Phi(T_i) - \Phi(T_{i-1}) \\ &= num[T_i] + (2 \cdot num[T_i] - size[T_i]) - (2 \cdot num[T_{i-1}] - size[T_{i-1}]) \\ &= num[T_i] + (2 \cdot num[T_i] - 2 \cdot num[T_{i-1}]) - num[T_{i-1}] \\ &= 3 \cdot num[T_i] - 3 \cdot num[T_{i-1}] = 3. \end{split}$$

Summary of Amortized Analysis

- When should we use amortized analysis, rather than probabilistic analysis? We can't determine each single, but we know the total.
 - Amortized analysis always gives the upper bound.
 - For accounting method and potential method, some tricky design is needed.
- For a sorting algorithm for n arrays, we can't determine each single, nor the total. Hence amortized analysis is not applicable for it.

EMPIRICAL ANALYSIS

Problem of Theoretical Analysis

- Previous analysis are based on asymptotic notations. However, there are also some issues when we are dealing with real-world problems.
 - Asymptotic notations only consider the case when the size tends to infinity.
- Which of the algorithm with the following complexity will you choose?

$$10^5 n \text{ vs. } n^2$$

- Based on asymptotic notations, we choose the one with $10^5 n$.
- However, if our input scale only range from 1 to 10^5 , we should choose the one with n^2 .

Empirical Analysis

- Empirical analysis (实验分析) is most useful for hard problem or randomized algorithm.
 - Data generation (benchmark).
 - Algorithm implement (software and hardware).
 - Result analysis (visualization).

Conclusion

After this lecture, you should know:

- Why do we need probabilistic analysis?
- How to use probabilistic analysis for average case analysis?
- Which case is suitable for applying amortized analysis?
- What are the differences among three amortized analysis methods?

Homework

- Page 31
 - 3.1
 - 3.2
 - 3.4
 - 3.6
 - 3.8

谢谢

有问题欢迎随时跟我讨论

