
算法设计与分析
Lecture 3: Algorithm Analysis

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

PROBABILISTIC ANALYSIS

1

Probabilistic Analysis

¡ Average-case analysis determines the average (or expected)
performance.
¡ The average time over all inputs of size 𝑛.

¡ The average-case analysis needs to know the probabilities of all
input occurrences, i.e., it requires prior knowledge of the input
distribution.

¡ Usually, to ease the analysis, we can use probabilistic analysis
by simply assuming that all inputs of a given size appear with
equal probability, i.e. draw from a uniform distribution.

2

Linear Search

¡ The searching problem:
Search an array 𝐴 of size 𝑛 to
determine whether the array
contains the value 𝑥; return
index if found, 0 if not found.

¡ Recall the strategy 1 of the
phonebook example in
Lecture 1. We check the name
from the top one by one. This
algorithm is called linear
search for the searching
problem.

3

LinearSearch(A, x)
1 𝑘 ← 1
2 while 𝑘 ≤ 𝑛 and 𝑥 ≠ 𝐴[𝑘] do
3 𝑘 ← 𝑘 + 1
4 if 𝑘 > 𝑛 then return 0
5 else return 𝑘

Probabilistic Analysis of Linear Search

¡ To simplify the analysis, let
us assume:
¡ 𝐴[1…𝑛] contains the

numbers 1 through 𝑛, which
implies that all elements of 𝐴
are distinct.

¡ The search key 𝑥 is in 𝐴.

¡ The search key 𝑥 is uniformly
drawn from [1…𝑛].

¡ We only count the number of
key comparisons.

4

LinearSearch(A, x)
1 𝑘 ← 1
2 while 𝑘 ≤ 𝑛 and 𝑥 ≠ 𝐴[𝑘] do
3 𝑘 ← 𝑘 + 1
4 if 𝑘 > 𝑛 then return 0
5 else return 𝑘

Probabilistic Analysis of Linear Search

¡ Probability of 𝑥 being found at index 𝑘 is 1/𝑛 for each value of 𝑘.
¡ If 𝑥 = 𝐴[𝑘], then the number of comparison is 𝑘.
¡ Therefore, we can calculate the expected number of comparison by

multiplying 𝑘 with its probability 1/𝑛 and then sum them up.
¡ So the number of comparison on the average is:

𝑇 𝑛 = +
!"#

$
1
𝑛 , 𝑘 =

1
𝑛+
!"#

$

𝑘 =
1
𝑛
𝑛(𝑛 + 1)

2 =
𝑛 + 1
2 .

¡ Hence, the average-case time complexity of LinearSearch(𝐴, 𝑥) is
Θ(𝑛).

¡ Think: What if the key 𝑥 is not uniform distributed?

5

Probabilistic Analysis of Insertion Sort

¡ To simplify the analysis, let
us assume:
¡ 𝐴[1. . 𝑛] contains the numbers

1 through 𝑛, which implies that
all elements of 𝐴 are distinct.

¡ All 𝑛! permutations of 𝐴
appear with equal probability
as the input.

¡ We only count the number of
key comparisons.

6

InsertSort(A)

1 for 𝑗 ← 2 to n do

2 𝑘𝑒𝑦 ← 𝐴[𝑗]

3 𝑖 ← 𝑗 − 1
4 while 𝑖 > 0 and 𝐴[𝑖] > 𝑘𝑒𝑦 do

5 𝐴[𝑖 + 1] ← 𝐴[𝑖]

6 𝑖 ← 𝑖 − 1

7 𝐴[𝑖 + 1] ← 𝑘𝑒𝑦
8 return A

Probabilistic Analysis of Insertion Sort

¡ For different input, the difference of running time is from 𝑡%, namely,
how many comparisons do we need before inserting the key.

¡ Now we consider inserting 𝑘𝑒𝑦 = 𝐴[𝑗] in the proper position in
𝐴[1… 𝑗].

¡ If its proper position is 𝑘(1 ≤ 𝑘 ≤ 𝑗), then the number of
comparisons performed in order to insert 𝑘𝑒𝑦 in 𝐴[𝑘] is:

9 𝑗 − 1, 𝑖𝑓 𝑘 = 1
𝑗 − 𝑘 + 1, 𝑖𝑓 2 ≤ 𝑘 ≤ 𝑗 .

¡ If 𝑘 = 1, the condition in while loop 𝑖 > 0 is false and the comparison 𝐴 𝑖 >
𝑘𝑒𝑦 is not triggered.

¡ If 2 ≤ 𝑘 ≤ 𝑗, one more comparison 𝐴 𝑖 > 𝑘𝑒𝑦 is needed.

7

Probabilistic Analysis of Insertion Sort

¡ Since the probability that its proper positions in 𝐴[1… 𝑗] is 1/𝑗, so the
number of comparisons needed to insert 𝐴[𝑗] in its proper position in
𝐴[1… 𝑗] is:

1
𝑗 # 𝑗 − 1 +

1
𝑗 &
!"#

$

𝑗 − 𝑘 + 1 =
1
𝑗 (𝑗 − 1 +&

!"%

$&%

𝑘) =
𝑗
2 −

1
𝑗 +

1
2 .

¡ Hence the average number of comparisons performed by InsertSort(𝐴) is:

6
!"#

$
𝑗
2
−
1
𝑗
+
1
2

=
𝑛(𝑛 + 1)

4
−
1
2
−6
!"#

$
1
𝑗
+
𝑛 − 1
2

=
𝑛#

4 +
3𝑛
4 −6

!"#

$
1
𝑗 = Θ 𝑛# .

8

What is the order of this term?

The Hiring Problem

¡ The problem scenario:
¡ You are using an employment agency to hire a new office assistant.

¡ The agency sends you one candidate each day.

¡ You interview the candidate and must immediately hire the new one and
fire the current one, if the new candidate is better.

¡ Cost of interview is 𝐶% and cost of hiring is 𝐶&.

¡ If we hire 𝑚 of 𝑛 candidates finally, the cost will be 𝑂(𝑛𝐶! +
𝑚𝐶").

¡ However, 𝑚 varies with each run.
¡ It depends on the order in which we interview the candidates.

9

The Hiring Problem

10

HireAssistant(n)
1 𝑏𝑒𝑠𝑡 ← 0

2 for 𝑖 ← 1 to n do
3 interview candidate i

4 if candidate i is better than candidate best then
5 𝑏𝑒𝑠𝑡 ← 𝑖
6 hire candidate i.

Analysis of the Hiring Problem

¡ Best case
¡ We just hire one candidate only.

¡ The first is the best. Good luck thanks god.

¡ Cost: Ω(𝑛𝐶% + 𝐶&).

¡ Worst case
¡ We hire all 𝑛 candidates.

¡ Each candidate is better than the current hired one. What a tough life!

¡ Cost: 𝑂(𝑛𝐶% + 𝑛𝐶&).

¡ What is the average case?

11

Probabilistic Analysis of the Hiring Problem

¡ In general, we have no control over the order in which
candidates appear.

¡ We just assume that they come in a random order.
¡ The interview score list 𝑆 is equivalent to a permutation of the candidate

numbers ⟨1,2,3, … , 𝑛⟩.

¡ 𝑆 is equally likely to be any one of the 𝑛! permutations. Each of the
possible 𝑛! permutations appears with equal probability.

12

Probabilistic Analysis of the Hiring Problem

¡ Candidate 𝑖 is hired if and only if candidate 𝑖 is better than each
of candidates 1, 2, . . . , 𝑖 − 1.

¡ Base on the assumption that the candidates arrive in random
order, any one of these 𝑖 candidates is equally likely to be the
best one so far.

¡ Thus, the probability of hiring candidate 𝑖 is 1/𝑖. The average
cost of hiring is:

=
!#$

%
1
𝑖
> 𝐶" = 𝐶"=

!#$

%
1
𝑖
= 𝑂 𝐶" lg 𝑛 .

¡ Thus, the averaged-case hiring cost is 𝑂(lg𝑛), which is much
better than the worst-case cost of 𝑂(𝑛).

13

???

Probabilistic Analysis of the Hiring Problem

¡ ∑!#$% $
! is called the 𝑛th harmonic

number (调和数).

¡ It has a bound of 𝑂 lg 𝑛 .

14

1 2 3 4 5 6 7 8 9 10

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

=
!#$

%
1
𝑖
≤ =

,#-

./ %

=
0#-

1!2$
1

2, + 𝑗

≤ =
,#-

./ %

=
0#-

1!2$
1
2,

= =
,#-

./ %

1

≤ lg 𝑛 + 1 .

Examples of Probabilistic Analysis

Example 1: the Hat-Check Problem

¡ Each of 𝑛 customers gives a hat to a hat-check person at a
restaurant.

¡ The hat-check person gives the hats back to the customers in a
random order.

¡ What is the expected number of customers that get back their
own hat?

15

Examples of Probabilistic Analysis

Example 1 (cont’d)

¡ Because there are 𝑛 hats and the ordering of hats is random,
each customer has a probability of 1/𝑛 of getting back his or
her own hat.

¡ Now we can compute the expected number of all customers:

=
!#$

%
1
𝑛
= 1.

16

Examples of Probabilistic Analysis

Example 2

¡ Assume that 12 passengers enter an elevator at the basement
and independently choose to exit randomly at one of the 10
above-ground floors.

¡ What is the expected number of stops that the elevator will
have to make?

17

Examples of Probabilistic Analysis

Example 2 (cont’d)

¡ Denote the event that the elevator stops at the 𝑖th level as 𝐻!.
¡ Pr 𝐻! = 1 − Pr 𝐻! = 1 − 1 − 1/10 $1 = 1 − 9/10 $1.

¡ 𝐻%: the elevator does not stop (no passenger exit) at the 𝑖th level.

¡ Now we can compute expected number of stops:

=
!#$

$-

(1 − 0.9$1) = 10 1 − 0.9$1 ≈ 7.176.

18

Classroom Exercise

¡ Let 𝐴[1…𝑛] be an array of 𝑛 distinct numbers. If 𝑖 < 𝑗 and
𝐴[𝑖] > 𝐴[𝑗], then the pair (𝑖, 𝑗) is called an inversion of 𝐴.

¡ Suppose that each element of 𝐴 is generated by randomly
permutation. What is the expected number of inversions.

19

Classroom Exercise

20

Solution:

¡ Denote the event 𝑖 < 𝑗 and 𝐴[𝑖] > 𝐴[𝑗] as 𝐻!0.

¡ Given two distinct random numbers, the probability that the
first is bigger than the second is 1/2. We have Pr 𝐻!0 = 1/2.

¡ Now we can compute expected number of inversions by sum
over of the pairs in the array:

=
!#$

%2$

=
0#!3$

%
1
2
=
𝑛(𝑛 − 1)

2
⋅
1
2
=
𝑛(𝑛 − 1)

4
.

AMORTIZED ANALYSIS

21

Amortized Analysis

¡ In some algorithms, the average-case performance is difficult
to be determined because each operation takes different time.

¡ We can perform a sequence of such operations and average
over the total time of all the operations performed. This is
called amortized analysis (分摊分析).

¡ Amortized analysis differs from average-case analysis in that
probability is not involved.

¡ An amortized analysis guarantees the average performance of
each operation in the worst case.

22

Amortized Analysis

¡ The key idea of amortized analysis:

If each single is different, but the total is fixed, we count the total
and then calculate the average.

¡ Base on this idea, there are three methods:
¡ Aggregate method (合计方法)

¡ Accounting Method (记账方法)

¡ Potential method (势能方法)

23

Aggregate Method

¡ In aggregate method (合计方法), we show that for all 𝑛, a
sequence of 𝑛 operations takes worst-case time 𝑇(𝑛) in total.

¡ In the worst case, the average cost, or amortized cost, per
operation is therefore 𝑇(𝑛)/𝑛.

¡ Note that this amortized cost applies to each operation, even
when there are several types of operations in the sequence.

24

MultiPop Operation

¡ Consider stack operations on stack 𝑆:
¡ Push(𝑆, 𝑥) pushes object 𝑥 onto stack 𝑆.

¡ Pop(𝑆) pops the top of stack 𝑆 and returns the popped object.

¡ Since each of these operations runs in 𝑂(1) time, let us
consider the cost of each to be 1.

¡ The total cost of a sequence of 𝑛 Push and Pop operations is
therefore 𝑛, and the actual running time for 𝑛 operations is
therefore Θ(𝑛).

25

MultiPop Operation

¡ Now we add a new stack operation MultiPop(𝑆, 𝑘): remove the 𝑘 top
objects of stack 𝑆 or pop the entire stack if it contains fewer than 𝑘
objects.

¡ What is the running time of MultiPop(𝑆, 𝑘) on a stack of 𝑠 objects?
¡ It varies for different 𝑆.

26

MultiPop(𝑆, 𝑘)
1 while not StackEmpty(𝑆) and 𝑘 ≠ 0 do
2 Pop(S)
3 𝑘 ← 𝑘 − 1

23
17
6

39
10
47

10
47

top

top

MultiPop(S, 4) MultiPop(S, 7)

Aggregate Method for MultiPop Operation

¡ Let us analyze a sequence of 𝑛 Push, Pop, and MultiPop
operations on an initially empty stack.

Push(𝑆, 1), Push(𝑆, 2), Pop(𝑆), Push(𝑆, 4), MultiPop(𝑆, 2), …

¡ For a stack with at most 𝑛 elements, the worst-case time of
MultiPop is 𝑂(𝑛), and we may have 𝑂(𝑛) MultiPop operations .
Hence a sequence of 𝑛 MultiPop operations costs 𝑂(𝑛2).

¡ This analysis is correct but the upper bound is too high. We
have at most 𝑛 elements to pop. How does 𝑂(𝑛2) come?
¡ This upper bound situation will never be happened, because it is

impossible to pop 𝑛 elements in MultiPop for 𝑛 times.

27

𝑛

Aggregate Method for MultiPop Operation

¡ Notice: each element is popped at most once after it is pushed
into a stack.

¡ Therefore, the total number of Pop (include the ones in
MultiPop) operations is at most 𝑛.

¡ Therefore, any sequence of 𝑛 Push, Pop, and MultiPop
operations on an initially empty stack can cost at most 𝑂(𝑛).

¡ The average cost of an operation is 𝑂(𝑛)/𝑛 = 𝑂(1).
¡ Although it looks like 𝑂(𝑛).

28

Binary Counter

¡ Consider the problem of implementing a 𝑘-bit binary counter
(𝑘位二进制计数器) that counts upward from 0.
¡ We use an array 𝐴[0…𝑘 − 1] of bits as the counter.
¡ The lowest-order bit is in 𝐴[0] and the highest-order bit is in 𝐴[𝑘 − 1].

29

Increment(A)
1 𝑖 ← 0
2 while 𝑖 < 𝑛 and 𝐴[𝑖] = 1 do
3 𝐴[𝑖] ← 0
4 𝑖 ← 𝑖 + 1
5 if 𝑖 < 𝑛 then
6 𝐴[𝑖] ← 1

Video source: https://imgur.com/gallery/56LASVI

A wooden 8-bit binary counter

https://imgur.com/gallery/56LASVI

Binary Counter

30

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0 3
3 0 0 0 0 0 0 1 1 4
4 0 0 0 0 0 1 0 0 7
5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
7 0 0 0 0 0 1 1 1 11
8 0 0 0 0 1 0 0 0 15
9 0 0 0 0 1 0 0 1 16
10 0 0 0 0 1 0 1 0 18
11 0 0 0 0 1 0 1 1 19
12 0 0 0 0 1 1 0 0 22
13 0 0 0 0 1 1 0 1 23
14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31

Counter value 𝐴[7] 𝐴[6] 𝐴[5] 𝐴[4] 𝐴[3] 𝐴[2] 𝐴[1] 𝐴[0] total cost

Aggregate Method for Binary Counter

¡ What is the average cost of a single execution of Increment, if
we count the number of bits flipped as the cost?

¡ Follow the idea of amortized analysis, we consider a sequence
of 𝑛 Increment operations on an initially zero counter.

¡ In the worst case, array 𝐴 contains all 1. A single execution of
Increment takes time 𝑂(𝑘). Thus, the whole sequence takes
𝑂(𝑛𝑘).

¡ Will this worst case happen?

31

Aggregate Method for Binary Counter

¡ We can observe:
¡ 𝐴[0] is flipped for every execution.

¡ 𝐴[1] is flipped for every two executions, i.e. 𝐴[1] is flipped 𝑛/2 times
for each execution.

¡ 𝐴[2] is flipped for every four executions, i.e. 𝐴[2] is flipped 𝑛/4 times
for each execution.

¡ …

¡ 𝐴[𝑖] is flipped for every 2% executions, i.e. 𝐴[𝑖] is flipped 𝑛/2% times for
each execution.

32

Aggregate Method for Binary Counter

¡ Therefore, the total number of flips for 𝑛 execution of
Increment is:

=
!#-

./ %
𝑛
2!

< 𝑛=
!#-

;
1
2!
= 2𝑛.

¡ The worst-case time for a sequence of 𝑛 Increment operations
on an initially zero counter is therefore 𝑂(𝑛).

¡ The average cost of each operation, and therefore the
amortized cost per operation, is 𝑂(𝑛)/𝑛 = 𝑂(1).

33

Accounting Method

¡ Accounting method (记账方法): Assign differing charges to
different operations, with some operations charged more or
less than they actually cost. The amount we charge an
operation is called its amortized cost.

¡ When an operation’s amortized cost exceeds its actual cost, the
difference is assigned to specific objects in the data structure
as credit (存款).

¡ Credit can be used later on to help pay for operations whose
amortized cost is less than their actual cost.

34

Accounting Method

¡ We denote:
¡ 𝑐%: the actual cost of the 𝑖th operation.

¡ �̂�%: the amortized cost of the 𝑖th operation.

¡ For the sequence of all 𝑛 operations, we require:

=
!#$

%

�̂�! ≥=
!#$

%

𝑐!

¡ The total credit associated with the data structure must be
nonnegative at all times.

35

Accounting Method for MultiPop Operation

Recall the stack operations. The actual costs of the operations are:
Push 1,
Pop 1,
MultiPop min(k, s).

The amortized costs by accounting method are:
Push 2,
Pop 0,
MultiPop 0.

36

Accounting Method for MultiPop Operation

¡ Suppose we use a $1 to represent each unit of cost. We start with an
empty stack.

¡ When we push an element on the stack, we use $1 to pay the actual
cost of the push and are left with a credit of $1 (out of the $2
charged).
¡ At any point in time, every element on the stack has $1 of credit on it, which

is for the cost of popping it.
¡ To pop (from Pop or MultiPop) an element, we take the dollar of credit off

the element and use it to pay the actual cost of the operation.
¡ Thus, by charging the Push operation a little bit more, we needn’t charge the

Pop operation anymore.

¡ Thus, for any sequence of 𝑛 Push, Pop, and MultiPop operations, the
total amortized cost is 𝑂(𝑛).

37

Accounting Method for Binary Counter

¡ Let us once again use $1 to represent each unit of cost.
¡ For the accounting method, let us charge an amortized cost of

$2 to set a bit to 1.
¡ When a bit is set to 1, we use $1 to pay for the actual setting, and the

other $1 for preparing flipping the bit back to 0.

¡ The cost of setting the bits to 0 within the while loop is paid by the dollars
on the bits when they are set to 1.

¡ Thus, the amortized cost for setting bits to 0 in the while loop becomes 0,
and the amortized cost of setting bits to 1 in Line 6 of Increment is $2.

¡ Thus, for 𝑛 Increment operations, the total amortized cost is
𝑂(𝑛), which bounds the total actual cost.

38

Potential Method

¡ In accounting method, we associate credits with elements in
the data structure.

¡ Similarly, in potential method (势能方法), we store “potential”
of the data structure for future operations.
¡ We start with an initial data structure 𝐷' on which 𝑛 operations are

performed.
¡ Let 𝐷% be the data structure that results after applying the 𝑖th operation

to data structure 𝐷%(), for each 𝑖 = 1, 2, … , 𝑛.
¡ A potential function Φ maps each data structure 𝐷% to a real number
Φ(𝐷%), which is the potential associated with data structure 𝐷𝑖.

39

Potential Method

¡ Let 𝑐! be the actual cost of the 𝑖th operation.
¡ The amortized cost �̂�! of the 𝑖th operation with respect to

potential function Φ is defined by
�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!2$.

¡ The total amortized cost of the 𝑛 operations is

=
!#$

%

�̂�! ==
!#$

%

𝑐! +Φ 𝐷! −Φ 𝐷!2$

==
!#$

%

𝑐! +Φ 𝐷% −Φ 𝐷- .

40

Potential Method

¡ Just like accounting method, we can pay for future operations by
potential in potential method.

¡ If we can define a potential function Φ so that Φ(𝐷$) ≥ Φ(𝐷'), then
the total amortized cost is an upper bound on the total actual cost.
¡ It is often convenient to define Φ(𝐷") = 0 and the Φ(𝐷#) ≥ 0 for all 𝑖.

¡ We consider the potential difference Φ(𝐷() − Φ(𝐷()#) for the 𝑖th
operation:
¡ If it is positive, �̂�# represents an overcharge to the 𝑖th operation, and the

potential of the data structure increases.

¡ If it is negative, �̂�# represents an undercharge to the 𝑖th operation, and the
actual cost of the operation is paid by the decrease in the potential.

41

Potential Method for MultiPop Operation

¡ Define the potential function:

Φ 𝐷! = number of objects in the stack after the 𝑖th operation.

¡ Starting from the empty stack 𝐷-, we have Φ(𝐷0) = 0.

¡ Since the number of objects in the stack is never negative, the
stack 𝐷! that results after the 𝑖th operation has nonnegative
potential, and thus Φ(𝐷!) ≥ 0 = Φ(𝐷-) for all 0 ≤ 𝑖 ≤ 𝑛.

¡ The total amortized cost of 𝑛 operations with respect to Φ
therefore represents an upper bound on the actual cost.

42

Potential Method for MultiPop Operation

¡ If the 𝑖th operation on a stack containing 𝑠 objects is a Push operation:
¡ The potential difference is

Φ 𝐷! −Φ 𝐷!"# = 𝑠 + 1 − 𝑠 = 1.
¡ The amortized cost is

�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!"# = 1 + 1 = 2.

¡ If the 𝑖th operation on the stack is MultiPop(𝑆, 𝑘) and that 𝑘′ = min(𝑘, 𝑠)
objects are popped off the stack.
¡ The potential difference is

Φ 𝐷! −Φ 𝐷!"# = −𝑘$.
¡ The amortized cost is

�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!"# = 𝑘$ − 𝑘$ = 0.

¡ Similarly, the amortized cost of a Pop operation is also 0.

43

Potential Method for MultiPop Operation

¡ The amortized cost of each of the three operations is 𝑂(1), and
thus the total amortized cost of a sequence of 𝑛 operations is
𝑂(𝑛).

¡ Since we have already argued that Φ(𝐷!) ≥ Φ(𝐷"), the total
amortized cost of 𝑛 operations is an upper bound on the total
actual cost.

44

Potential Method for Binary Counter

¡ Define the potential function:

Φ 𝐷! = the number of 1’s in the counter after the 𝑖 th operation.

¡ Suppose that the 𝑖th Increment operation sets 𝑡! bits to 0.
¡ If Φ 𝐷% = 0, then the 𝑖th operation resets all 𝑘 bits, and so Φ 𝐷%() =
𝑡% = 𝑘.

¡ If Φ 𝐷% > 0, then Φ 𝐷% = Φ 𝐷%() − 𝑡% + 1.

¡ In either case, we have Φ 𝐷! ≤ Φ 𝐷!#$ − 𝑡! + 1.

45

Potential Method for Binary Counter

¡ The actual cost 𝑐! is at most 𝑡! + 1 (set 𝑡! bits to 0, and set at
most one bit to 1).

¡ The potential difference after the 𝑖th operation is
Φ 𝐷! −Φ 𝐷!#$ ≤ Φ 𝐷!#$ − 𝑡! + 1 −Φ 𝐷!#$ = 1 − 𝑡!.

¡ The amortized cost is therefore
�̂�! = 𝑐! +Φ 𝐷! −Φ 𝐷!#$ ≤ 𝑡! + 1 + 1 − 𝑡! = 2.

¡ Since Φ(𝐷!) ≥ 0 for all 𝑖, the total amortized cost of a
sequence of 𝑛 Increment operations is an upper bound on the
total actual cost, and so the worst-case cost of 𝑛 Increment
operations is 𝑂(𝑛).

46

Classroom Exercise

Dynamic table insertion:

1. Initial table size 𝑚 = 1;

2. Insert elements until the number
of elements in the table 𝑛 > 𝑚;

3. Generate a new table of size 2𝑚;

4. Reinsert the elements in old table
into the new one;

5. Back to step 2.

47

For example, insert 1, 2, 3, 4, 5, 6, 7, 8, 9,
10 one by one:
¡ insert 1: cost 1
¡ insert 2: cost 2
¡ insert 3: cost 3
¡ insert 4: cost 1
¡ insert 5: cost 5
¡ insert 6,7,8: cost 3
¡ insert 9: cost 9
¡ insert 10: cost 1

¡ Use amortized analysis to analyze the average cost of dynamic table
insertion. We only consider the cost of insertion (no cost for table
generation).

Classroom Exercise

Solution (aggregate method):
¡ The 𝑖th operation causes an expansion only when 𝑖 − 1 is an exact

power of 2. The cost of the 𝑖th operation is

𝑐(= 9𝑖 if 𝑖 − 1 is an exact power of 2,
1 otherwise.

¡ The total cost of a sequence of 𝑛 dynamic table insertion operations
is

+
("#

$

𝑐(≤ 𝑛 + +
%"'

+, $

2% < 𝑛 + 2𝑛 = 3𝑛.

¡ Since the total cost of 𝑛 operations is 𝑂(𝑛), the amortized cost of a
single operation is 𝑂(1).

48

Classroom Exercise

Solution (accounting method):
¡ Assume that 𝑚 is an power of 2.
¡ When we are inserting the (𝑚 + 1)th element in the table, we

expand the table to 2𝑚.

¡ We charge each insertion operation $3 (amortized cost).

¡ Use $1 to perform immediate insert.

¡ Store $2 as credit for future use.

¡ When we have 2𝑚 elements, we expand the table to 4𝑚:

¡ $1 is used to re-insert the item itself (items from𝑚+ 1 to 2𝑚).

¡ $1 is used to re-insert another old item (items from 1 to 𝑚).

49

Classroom Exercise

Solution (potential method):

¡ Define the potential function:
Φ 𝐷! = 2 4 𝑛𝑢𝑚 𝑇 − 𝑠𝑖𝑧𝑒 𝑇 .

¡ 𝑛𝑢𝑚 𝑇 is the number of elements in 𝑇.

¡ 𝑠𝑖𝑧𝑒 𝑇 is the size of the table.

¡ Φ 𝑇" = 0 and Φ 𝑇 is always ≥ 0.
¡ Immediately after an expansion, we have 𝑛𝑢𝑚[𝑇] = 𝑠𝑖𝑧𝑒[𝑇]/2, and thus
Φ(𝑇) = 0.

¡ Immediately before an expansion, we have 𝑛𝑢𝑚[𝑇] = 𝑠𝑖𝑧𝑒[𝑇], and thus
Φ(𝑇) = 𝑛𝑢𝑚[𝑇].

50

Classroom Exercise

¡ If the 𝑖th TABLE-INSERT operation does not trigger an expansion, then we
have 𝑠𝑖𝑧𝑒[𝑇%] = 𝑠𝑖𝑧𝑒[𝑇%()] and the amortized cost of the operation is

�̂�% = 𝑐% +Φ 𝑇% −Φ 𝑇%()
= 1 + 2 T 𝑛𝑢𝑚 𝑇% − 𝑠𝑖𝑧𝑒 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑠𝑖𝑧𝑒 𝑇%()
= 1 + 2 𝑛𝑢𝑚 𝑇% − 𝑛𝑢𝑚 𝑇%() = 3.

¡ If the 𝑖th operation does trigger an expansion, then we have 𝑠𝑖𝑧𝑒[𝑇%] = 2 T
𝑠𝑖𝑧𝑒[𝑇%()] and 𝑛𝑢𝑚 𝑇%() = 𝑠𝑖𝑧𝑒 𝑇%() . Thus, the amortized cost of the
operation is
�̂�% = 𝑐% +Φ 𝑇% −Φ 𝑇%()
= 𝑛𝑢𝑚 𝑇% + 2 T 𝑛𝑢𝑚 𝑇% − 𝑠𝑖𝑧𝑒 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑠𝑖𝑧𝑒 𝑇%()
= 𝑛𝑢𝑚 𝑇% + 2 T 𝑛𝑢𝑚 𝑇% − 2 T 𝑛𝑢𝑚 𝑇%() − 𝑛𝑢𝑚 𝑇%()
= 3 T 𝑛𝑢𝑚 𝑇% − 3 T 𝑛𝑢𝑚 𝑇%() = 3.

51

Summary of Amortized Analysis

¡ When should we use amortized analysis, rather than
probabilistic analysis? We can’t determine each single, but we
know the total.
¡ Amortized analysis always gives the upper bound.

¡ For accounting method and potential method, some tricky design is
needed.

¡ For a sorting algorithm for 𝑛 arrays, we can’t determine each
single, nor the total. Hence amortized analysis is not applicable
for it.

52

EMPIRICAL ANALYSIS

53

Problem of Theoretical Analysis

¡ Previous analysis are based on asymptotic notations. However,
there are also some issues when we are dealing with real-world
problems.
¡ Asymptotic notations only consider the case when the size tends to

infinity.

¡ Which of the algorithm with the following complexity will you
choose?

10%𝑛 vs. 𝑛&

¡ Based on asymptotic notations, we choose the one with 10*𝑛.

¡ However, if our input scale only range from 1 to 10*, we should choose
the one with 𝑛#.

54

Empirical Analysis

¡ Empirical analysis (实验分析) is most useful for hard problem
or randomized algorithm.
¡ Data generation (benchmark).

¡ Algorithm implement (software and hardware).

¡ Result analysis (visualization).

55

Conclusion

After this lecture, you should know:

¡ Why do we need probabilistic analysis?

¡ How to use probabilistic analysis for average case analysis?

¡ Which case is suitable for applying amortized analysis?

¡ What are the differences among three amortized analysis
methods?

56

Homework

¡ Page 31

3.1

3.2

3.4

3.6

3.8

57

谢谢

有问题欢迎随时跟我讨论

58

