B AT

Lecture 3: Algorithm Analysis

it

TR EAE B b AR A &

luyang@xmu.edu.cn

PROBABILISTIC ANALYSIS

Probabilistic Analysis

= Average-case analysis determines the average (or expected)
performance.

= The average time over all inputs of size n.

" The average-case analysis needs to know the probabilities of all
input occurrences, i.e., it requires prior knowledge of the input

distribution.

® Usually, to ease the analysis, we can use probabilistic analysis

by simply assuming that all inputs of a given size appear with
equal probability, i.e. draw from a uniform distribution.

&) BITARERER

\" “
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

® The searching problem:
Search an array A of size n to

determine whether the array | LinearSearch(A4, x)

contains the value x; return | kel
index if found, O if not found.

= Recall the strategy 1 of the 2 while k < nandx # A[k] do
phonebook example in 3 k—k+1

Lecture 1. We check the name 4 if k > n then return O
from the top one by one. This

algorithm is called linear 5 else return k
search for the searching
problem.

6y) BIIXRERFMKR

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Probabilistic Analysis of Linear Search

= To simplify the analysis, let
us assume:

. LinearSearch(A, x)
= A[1 ...n] contains the
numbers 1 through n, which 1 k<1
|mpI|(-as-thataII elements of A 2 while k < 1 and x % A[k] do
are distinct.
3 k<k+1

® The search key x is uniformly 4 it k > n then return 0

drawn from [1 ...n]. 5 else return k

= We only count the number of
key comparisons.

® The search key x is in A.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Probabilistic Analysis of Linear Search

= Probability of x being found at index k is 1/n for each value of k.
= If x = A|k], then the number of comparison is k.

m Therefore, we can calculate the expected number of comparison by
multiplying k with its probability 1/n and then sum them up.

= So the number of comparison on the average is:
n

n
1 1 Inn+1 n+1
T(n):z—-kz—Zkz— (nt+ 1) _ |
n n n 2 2
k=1 k=1
= Hence, the average-case time complexity of LinearSearch(A4, x) is
O(n).

= Think: What if the key x is not uniform distributed?

6y BITKFERER AT HBENHER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Probabilistic Analysis of Insertion Sort

= To simplify the analysis, let
us assume:

= A[1..n] contains the numbers
1 through n, which implies that
all elements of A are distinct.

= All n! permutations of A
appear with equal probability
as the input.

= We only count the number of
key comparisons.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

InsertSort(A)

1 forj < 2tondo

2 key « A[j]

3 [<j—1

4 while i > 0 and A[i] > key do
5 Ali + 1] « A[i]

6 [—i—1

7 Ali + 1] « key

8 return A

\ E»-igv [2 M~ .}, HTREN#ESER

Probabilistic Analysis of Insertion Sort

= For different input, the difference of running time is from t;, namely,
how many comparisons do we need before inserting the key.

= Now we consider inserting key = A[j] in the proper position in
Al ..]].

= |f its proper position is k(1 < k < j), then the number of
comparisons performed in order to insert key in A[k] is:

j—1, if k=1
j—k+1, if2<k<j
= |f k = 1, the condition in while loop i > 0 is false and the comparison A[i] >

key is not triggered.

= If 2 < k < j, one more comparison A[i] > key is needed.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [2 M~ .}, HTREN#ESER 7

Probabilistic Analysis of Insertion Sort

= Since the probability that its proper positions in A[1 ...j] is 1/j, so the

number of comparisons needed to insert A[j] in its proper position in

A[l..j]is:

1 1< 1 S 11
= Hence the average number of comparisons performed by InsertSort(A) is:
n n
1 1 nn+1 1 1 n—-1

)

j=22 j 2 4 2 j=2] 2

N What is the order of this term?
) BIIARERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [2 M~ .}, HTREN#ESER 8

The Hiring Problem

" The problem scenario:

= You are using an employment agency to hire a new office assistant.
= The agency sends you one candidate each day.

= You interview the candidate and must immediately hire the new one and
fire the current one, if the new candidate is better.

= Cost of interview is C; and cost of hiring is C,.

= |f we hire m of n candidates finally, the cost will be O(nC; +
”mCh)

= However, m varies with each run.

= |t depends on the order in which we interview the candidates.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

The Hiring Problem

HireAssistant(n)
1 best <0

2 fori <« 1tondo

3 interview candidate i

4 if candidate i is better than candidate best then
5 best « i

6 hire candidate i.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

10

Analysis of the Hiring Problem

m Best case

= We just hire one candidate only.
= The first is the best. Good luck thanks god.
= Cost: Q(nC; + Cy).
= Worst case
= We hire all n candidates.
= Each candidate is better than the current hired one. What a tough life!
= Cost: O0(nC; + nCy).
" What is the average case?

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

11

Probabilistic Analysis of the Hiring Problem

" In general, we have no control over the order in which
candidates appear.

= \We just assume that they come in a random order.

= The interview score list S is equivalent to a permutation of the candidate
numbers (1,2,3, ..., n).

= S is equally likely to be any one of the n! permutations. Each of the
possible n! permutations appears with equal probability.

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

12

Probabilistic Analysis of the Hiring Problem

® Candidate i is hired if and only if candidate i is better than each
of candidates 1, 2,...,1 — 1.

® Base on the assumption that the candidates arrive in random
order, any one of these i candidates is equally likely to be the
best one so far.

= Thus, the probability of hiring candidate i is 1/i. The average
cost of hiring is:
n

1 1297
i=1 i=1
= Thus, the averaged-case hiring cost is O (lgn), which is much
better than the worst-case cost of 0 (n).

EIJJ’C#‘" %#E AT HBENHER 13

L OF INFORMATICS XI

Probabilistic Analysis of the Hiring Problem

=y |s called the nth harmonic z 2 z
number (FAFN%ERL). 2k +j

= |t has a bound of O(lgn).

_ 1
— 2_k
k=0 j=0
1123 |4|5|6|7]|8]|9]10 |1g n]
/l ')\ ']\ ') — 1
k=0 k=1 k=2 k=3
k=0
<lgn+1

14

L OF INFORMATICS

Examples of Probabilistic Analysis

Example 1: the Hat-Check Problem

® Each of n customers gives a hat to a hat-check person at a
restaurant.

" The hat-check person gives the hats back to the customersin a
random order.

" What is the expected number of customers that get back their
own hat?

15

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Examples of Probabilistic Analysis

Example 1 (cont’d)

® Because there are n hats and the ordering of hats is random,
each customer has a probability of 1/n of getting back his or
her own hat.

= Now we can compute the expected number of all customers:

16

@) BIIASERSE

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Examples of Probabilistic Analysis

Example 2

= Assume that 12 passengers enter an elevator at the basement
and independently choose to exit randomly at one of the 10
above-ground floors.

" What is the expected number of stops that the elevator will
have to make?

17

@) BIIASERSE

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Examples of Probabilistic Analysis

Example 2 (cont’d)

= Denote the event that the elevator stops at the ith level as H;.
» Pr{H;} =1—-Pr{H;} =1— (1 —1/10)12 = 1 — (9/10)12.
= H;: the elevator does not stop (no passenger exit) at the ith level.

" Now we can compute expected number of stops:
10

2(1 —0.91%) =101 — 0.91%) = 7.176.

18

@) BITKSERSR

L OF INFORMATICS XI

Classroom Exercise

= let A[1 ...n] be an array of n distinct numbers. If i < j and
Ali] > Alj], then the pair (i,) is called an inversion of A.

® Suppose that each element of A is generated by randomly
permutation. What is the expected number of inversions.

19

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Solution:

= Denote the event i < j and A[i] > A[j] as H;;.

® Given two distinct random numbers, the probability that the
first is bigger than the second is 1/2. We have Pr{Hl-j} =1/2.

" Now we can compute expected number of inversions by sum
over of the pairs in the array:

"21 i %zn(nz_l)ézn(nzt_l)'

i=1 j=i+1

20

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AMORTIZED ANALYSIS

Amortized Analysis

" In some algorithms, the average-case performance is difficult
to be determined because each operation takes different time.

= We can perform a sequence of such operations and average
over the total time of all the operations performed. This is
called amortized analysis (43 #4435 #r).

® Amortized analysis differs from average-case analysis in that
probability is not involved.

" An amortized analysis guarantees the average performance of
each operation in the worst case.

6y BIIXRFEEBFE5R

\" /
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

22

Amortized Analysis

" The key idea of amortized analysis:

If each single is different, but the total is fixed, we count the total
and then calculate the average.

® Base on this idea, there are three methods:
= Aggregate method (&t J712%)
= Accounting Method (12) J572:)
= Potential method (G877 1)

&) BITARERER

\" /
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

23

Aggregate Method

= |n aggregate method (&7 /7 1), we show that for all n, a
sequence of n operations takes worst-case time T'(n) in total.

" |In the worst case, the average cost, or amortized cost, per
operation is therefore T (n) /n.

= Note that this amortized cost applies to each operation, even
when there are several types of operations in the sequence.

24

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

MultiPop Operation

" Consider stack operations on stack S:

= Push(S, x) pushes object x onto stack S.
= Pop(S) pops the top of stack S and returns the popped object.

= Since each of these operations runs in O(1) time, let us
consider the cost of each to be 1.

= The total cost of a sequence of n Push and Pop operations is
therefore n, and the actual running time for n operations is
therefore O(n).

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

25

MultiPop Operation

= Now we add a new stack operation MultiPop(S, k): remove the k top
objects of stack S or pop the entire stack if it contains fewer than k
objects.

= What is the running time of MultiPop(S, k) on a stack of s objects?

= |t varies for different S.

top— 23
MultiPop(S, k) 17
1 while not StackEmpty(S) and k # 0 do 369
) Pop(S) 10 top— 10
3 k—k—1 i i —

MultiPop(S, 4) MultiPop(S, 7)

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, itENESYR 26

Aggregate Method for MultiPop Operation

= | et us analyze a sequence of n Push, Pop, and MultiPop
operations on an initially empty stack.

Push(S, 1), Push(S, 2), Pop(S), Push(S, 4), MultiPop(S, 2), ...

|
n

® For a stack with at most n elements, the worst-case time of
MultiPop is O(n), and we may have 0 (n) MultiPop operations .
Hence a sequence of n MultiPop operations costs 0 (n?).

)

" This analysis is correct but the upper bound is too high. We
have at most n elements to pop. How does O (n?) come?

= This upper bound situation will never be happened, because it is
impossible to pop n elements in MultiPop for n times.

G) BIXFERER (&) #]sRnues 27

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Aggregate Method for MultiPop Operation

= Notice: each element is popped at most once after it is pushed
into a stack.

= Therefore, the total number of Pop (include the ones in
MultiPop) operations is at most n.

= Therefore, any sequence of n Push, Pop, and MultiPop
operations on an initially empty stack can cost at most O(n).

= The average cost of an operationis O(n)/n = 0(1).
= Although it looks like O (n).

28

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Binary Counter

= Consider the problem of implementing a k-bit binary counter
(kA — 3%+ % 8%) that counts upward from O.

= We use an array A[0 ... k — 1] of bits as the counter.
= The lowest-order bit is in A[0] and the highest-order bitisin A[k — 1].

Increment(A)

li<0

2 whilei <nand A[i] =1do
3 Ali] < 0

4 l—1+1

5 if i < n then

6 Ali]l « 1

@ BIIXZEERER (-

N3/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M T RNHES 29

Video source: https://imgur.com/gallery/56LASVI

https://imgur.com/gallery/56LASVI

-
Q
)
-
D)
O
@)
>~
-
q)
-
(aA)]

A[7] Al|6] A[5] A[4] A[3] A[2] A[1l] A[O] total cost

Counter value

O N <IN

O-+HO—0

OO -0

OO0

OO0 OO0OO0o

OO O0O0O0o

oNelolele

OO0 O0O0O0o

olololoele)

O aNM <

10
11
15
16
18
19
22
23
25
26
31

A O 1 01010 A0«wO0O

Od 100 dA—"100«d—0

AA "1 0000w - O

O 00 T H A A A AAAO

eoNoNoNoNoNololololololl

eoNoNoNoNolojlojololo oo

eoNoNoNoNololojoleleloele)

eoNoloNololojlojolololole)

o
on

BEkR

@/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

,) BIIKZE

Aggregate Method for Binary Counter

" What is the average cost of a single execution of Increment, if
we count the number of bits flipped as the cost?

" Follow the idea of amortized analysis, we consider a sequence
of n Increment operations on an initially zero counter.

" |[n the worst case, array A contains all 1. A single execution of
Increment takes time O (k). Thus, the whole sequence takes

0 (nk).

= Will this worst case happen?

31

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Aggregate Method for Binary Counter

= \We can observe:

= A[O] is flipped for every execution.

= A[1] is flipped for every two executions, i.e. A[1] is flipped [n/2] times
for each execution.

= A[2]is flipped for every four executions, i.e. A[2] is flipped |n/4] times
for each execution.

= A[i] is flipped for every 2! executions, i.e. A[i] is flipped [n/ZiJ times for
each execution.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESER 32

Aggregate Method for Binary Counter

" Therefore, the total number of flips for n execution of
Increment is:
|lg n|

2 ‘<"221_

" The worst-case time for a sequence of n Increment operations
on an initially zero counter is therefore O (n).

" The average cost of each operation, and therefore the
amortized cost per operation, is O(n)/n = 0(1).

6y B chaL{"' %aLBE

\% /
\&z%/ SCHOOL OF INFOR

33

Accounting Method

= Accounting method (T2 75 72): Assign differing charges to
different operations, with some operations charged more or
less than they actually cost. The amount we charge an
operation is called its amortized cost.

" \When an operation’s amortized cost exceeds its actual cost, the
difference is assigned to specific objects in the data structure

as credit ({F5X).

® Credit can be used later on to help pay for operations whose
amortized cost is less than their actual cost.

ey B]7(64" %atl‘?i

\'
3=+ SCHOOL OF INFORM

34

Accounting Method

= \We denote:

= ¢;: the actual cost of the ith operation.

= (;: the amortized cost of the ith operation.

" For the sequence of all n operations, we require:

n n
E 61’ > E Ci
=1 =1

= The total credit associated with the data structure must be
nonnegative at all times.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

35

Accounting Method for MultiPop Operation

Recall the stack operations. The actual costs of the operations are:
Push 1,
Pop 1,
MultiPop min(k, s).

The amortized costs by accounting method are:

Push 2,
Pop 0,
MultiPop 0.
‘, EI]7@4’" %—7—[‘; 36

L OF INFORMATICS

Accounting Method for MultiPop Operation

= Suppose we use a $1 to represent each unit of cost. We start with an
empty stack.

= When we push an element on the stack, we use $1 to pay the actual
cost of the push and are left with a credit of $1 (out of the S2
charged).

= At any point in time, every element on the stack has S1 of credit on it, which
is for the cost of popping it.

= To pop (from Pop or MultiPop) an element, we take the dollar of credit off
the element and use it to pay the actual cost of the operation.

= Thus, by charging the Push operation a little bit more, we needn’t charge the
Pop operation anymore.

= Thus, for any sequence of n Push, Pop, and MultiPop operations, the
total amortized cost is O (n).

ty) BITAZEREE

() &
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

37

Accounting Method for Binary Counter

= Let us once again use $1 to represent each unit of cost.

" For the accounting method, let us charge an amortized cost of
S2 to set a bit to 1.

= When a bit is set to 1, we use S1 to pay for the actual setting, and the
other S1 for preparing flipping the bit back to O.

= The cost of setting the bits to 0 within the while loop is paid by the dollars
on the bits when they are set to 1.

= Thus, the amortized cost for setting bits to 0 in the while loop becomes 0,
and the amortized cost of setting bits to 1 in Line 6 of Increment is $2.

® Thus, for n Increment operations, the total amortized cost is
O (n), which bounds the total actual cost.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

38

Potential Method

® |In accounting method, we associate credits with elements in
the data structure.

= Similarly, in potential method (I&AE J77%), we store “potential”
of the data structure for future operations.

= We start with an initial data structure Dy on which n operations are
performed.

= Let D; be the data structure that results after applying the ith operation
to data structure D;_4, foreachi =1,2,...,n

= A potential function ® maps each data structure D; to a real number
®(D;), which is the potential associated with data structure D,.

ty) BITAZEREE

() &
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

39

Potential Method

= Let ¢; be the actual cost of the ith operation.

= The amortized cost ¢; of the ith operation with respect to
potential function @ is defined by

i = ¢ + @(D;) — P(D;—1).

" The total amortized cost of the n operations is
n

2 ¢ = zn:(ci + ®(D;) — ®(D;—1))
i=1

=1

=) i+ ®(Dy) — (DY),
=1

40

@) BITKSERSR

L OF INFORMATICS

Potential Method

= Just like accounting method, we can pay for future operations by
potential in potential method.

= |f we can define a potential function ® so that ®(D,,) = ®(D,), then
the total amortized cost is an upper bound on the total actual cost.
= |tis often convenient to define ®(D,) = 0 and the ®(D;) = 0 for all i.

= We consider the potential difference ®(D;) — ®(D;_,) for the ith
operation:

= [f it is positive, ¢; represents an overcharge to the ith operation, and the
potential of the data structure increases.

= [f it is negative, ¢; represents an undercharge to the ith operation, and the
actual cost of the operation is paid by the decrease in the potential.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

41

Potential Method for MultiPop Operation

® Define the potential function:

®(D;) = number of objects in the stack after the ith operation.
= Starting from the empty stack Dy, we have ®(D,) = 0.

= Since the number of objects in the stack is never negative, the
stack D; that results after the ith operation has nonnegative
potential, and thus ®(D;) = 0 = &(Dy) forall0 < i < n.

" The total amortized cost of n operations with respect to ®
therefore represents an upper bound on the actual cost.

42

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Potential Method for MultiPop Operation

= |f the ith operation on a stack containing s objects is a Push operation:

" The potential difference is
®(D,) —®(D;_) =(+1)—s=1.
® The amortized cost is
&i=c+®MD)—d(D;_))=1+1=2.
= |f the ith operation on the stack is MultiPop(S, k) and that k' = min(k, s)
objects are popped off the stack.
" The potential difference is
o(D;) — ®(Di—y) = —k'.

® The amortized cost is

& =c;+dD;)—d(D;_)=k'—k' =0.

= Similarly, the amortized cost of a Pop operation is also 0.

ty) BITAZEREE

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

43

Potential Method for MultiPop Operation

= The amortized cost of each of the three operations is O(1), and
thus the total amortized cost of a sequence of n operations is

0O(n).

= Since we have already argued that ®(D;) = ®(D,), the total
amortized cost of n operations is an upper bound on the total
actual cost.

44

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Potential Method for Binary Counter

® Define the potential function:

®(D;) = the number of 1’s in the counter after the ith operation.

= Suppose that the ith Increment operation sets t; bits to 0.

= [f ®(D;) = 0, then the ith operation resets all k bits, and so ®(D;_;) =
ti — k

m |f CD(DL) > 0, then CD(Dl) = CD(Di_l) — t; + 1.
= |n either case, we have ®(D;) < ®(D;_1) — t; + 1.

45

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Potential Method for Binary Counter

= The actual cost ¢; is at most t; + 1 (set t; bits to 0, and set at
most one bit to 1).

" The potential difference after the ith operation is
®(D;) — P(Di—y) < (P(Dj—1) —t; +1) —®(D;—1) =1 —t;.
" The amortized cost is therefore
Ci=c;+PD;) — D)) <(t;+1)+(A—¢;) =2.

= Since ®(D;) = 0 for all i, the total amortized cost of a
sequence of n Increment operations is an upper bound on the
total actual cost, and so the worst-case cost of n Increment
operations is O(n).

46

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Dynamic table insertion: For example, insert 1, 2,3,4,5,6,7,8,9,
10 one by one:
1. Initial table sizem = 1; = insert 1: cost 1
2. Insert elements until the number " insert 2: cost 2
of elements in the table n > m; = insert 3: cost 3
3. Generate a new table of size 2m; " insert 4:cost 1
® jnsert 5:cost5
4. Reinsert the elements in old table = insert 6,7,8: cost 3
into the new one; = insert 9: cost9
5. Back to step 2. = insert 10: cost 1

Use amortized analysis to analyze the average cost of dynamic table
insertion. We only consider the cost of insertion (no cost for table
generation).

6y BIIXFERFER

S 4
NG/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

47

Classroom Exercise

Solution (aggregate method):

® The ith operation causes an expansion only when i — 1 is an exact
power of 2. The cost of the ith operation is

__ i ifi—1isanexact power of 2,
Ci = 1 .
otherwise.

® The total cost of a sequence of n dynamic table insertion operations

IS
n llg n|
ZCiSTH‘ Z 2 <n+2n=3n
i=1 j=0

= Since the total cost of n operations is O(n), the amortized cost of a
single operationis O(1).

ty) BITAZEREE

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

48

Classroom Exercise

Solution (accounting method):

= Assume that m is an power of 2.

= When we are inserting the (m + 1)th element in the table, we
expand the table to 2m.

= We charge each insertion operation S3 (amortized cost).
= Use S1 to perform immediate insert.
= Store S2 as credit for future use.

= When we have 2m elements, we expand the table to 4m:
= S1is used to re-insert the item itself (items from m + 1 to 2m).

= S1is used to re-insert another old item (items from 1 to m).

ty) BITAZEREE

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

49

Classroom Exercise

Solution (potential method):

® Define the potential function:
®d(D;) = 2 -num|T] — size|T].
= num|T] is the number of elementsin T.

= size[T] is the size of the table.
= &(Ty) = 0and ®(T) is always = 0.

= Immediately after an expansion, we have num|T]| = size[T]/2, and thus
d(T) = 0.

= Immediately before an expansion, we have num|T] = size|T], and thus
®(T) = num|T].

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

50

Classroom Exercise

= |f the ith TABLE-INSERT operation does not trigger an expansion, then we
have size|T;] = size[T;_1] and the amortized cost of the operation is
¢ = ¢ + (1) — ©(T;—4)
=1+ (2 -num(T;) — SiZB(Ti)) — (2 -num(T;_q) — SiZQ(Ti_l))
=1+ Z(num(Tl-) - num(Tl-_l)) = 3.
= |f the ith operation does trigger an expansion, then we have size[T;] = 2 -
size[T;_1] and num|[T;_4] = size[T;_1]. Thus, the amortized cost of the
operation is
6 = ¢+ O(Ty) — P(Ti—1)
= num|T;] + (2 - num|T;] — size[T;]) — (2 - num|T;_1] — size[T;_1])
num|T;] + (2 - num|[T;] — 2 - num|[T;_1]) — num|T;_{]
3 - num|T;] — 3 - num|T;_1] = 3.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

51

Summary of Amortized Analysis

"= When should we use amortized analysis, rather than

probabilistic analysis? We can’t determine each single, but we
know the total.

= Amortized analysis always gives the upper bound.

= For accounting method and potential method, some tricky design is
needed.

" For a sorting algorithm for n arrays, we can’t determine each

single, nor the total. Hence amortized analysis is not applicable
for it.

ty) BITAZEREE

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

52

EMPIRICAL ANALYSIS

Problem of Theoretical Analysis

® Previous analysis are based on asymptotic notations. However,

there are also some issues when we are dealing with real-world
problems.

= Asymptotic notations only consider the case when the size tends to
infinity.

® Which of the algorithm with the following complexity will you
choose?

10°n vs. n?
= Based on asymptotic notations, we choose the one with 10°n.

= However, if our input scale only range from 1 to 10>, we should choose
the one with n?.

) BIIRFERFH

\&==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

54

Empirical Analysis

= Empirical analysis (3Z55:43-#) is most useful for hard problem
or randomized algorithm.

= Data generation (benchmark).

= Algorithm implement (software and hardware).

= Result analysis (visualization).

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

55

Conclusion

After this lecture, you should know:

= Why do we need probabilistic analysis?

" How to use probabilistic analysis for average case analysis?
® Which case is suitable for applying amortized analysis?

" What are the differences among three amortized analysis
methods?

@) BITARES S

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

56

Homework

= Page 31
3.1
3.2
3.4
3.6
3.8

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 M~ .}’ HTREN#ESER 57

A T8 B R B 18

M AT HRN#SLR 58

T BIIKSEREE)/
A

\3

e/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

