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Recursion

= Recursion (3% J7) is one of most powerful
methods of solution available to
computer scientists.

® Recursion is a problem-solving approach
that can be used to generate simple
solutions to certain kinds of problems that
would be difficult to solve in other ways.

® Recursion splits an problem instance into
one or more simpler instances of the

same problem.
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Design a Recursive Algorithm

® Base case: There must be at least one case, for a small value of
n, that can be solved directly.

® Recursive case: A problem instance of a given size n can be split
into one or more smaller instances of the same problem.

= Steps:
= Recognize the base case and provide a quick solution to it.

= Devise a recursion to split the instance into smaller instances of itself,
while making progress toward the base case.

= Combine the solutions of the smaller problems in such a way as to solve
the larger problem.
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Design a Recursive Algorithm

Questions when using recursive solution:

" How to define the problem in terms of a smaller problem of
the same type?

" How does each recursive call diminish the size of the problem?
" What instance of the problem can serve as the base case?

" As the problem size diminishes, will you reach this base case?
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Why Use Recursion?

= Advantages
= |nteresting conceptual framework (good recursion algorithm is art).

= |ntuitive solutions to difficult problems.

" But, disadvantages...
= More memory & time.

= Different way of thinking!
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Correctness of Recursive Algorithm

Correctness proof of recursion is similar to induction.

" Base case: Verify that the base case is recognized and solved
correctly.

® Induction step: Verify that if all smaller problems are solved
correctly, then the original problem is also solved correctly.
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Recursion

Example 1

Consider the function f(n) which calculates 2 to the power of n,
namely f(n) = 2™,

This can be expressed as:

1 ifn =20,
f(n) = {ZXf(’I’l — 1) otherwise.

6y BIIXFERFER

S %
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI




Recursion

Example 1 (cont’d) f(n)

1 if n = 0 then return 1
2 elsereturn 2 x f(n—1)

f8)
2% | f@2)
2x | fe1)
2% | f10)
1




Recursion

Example 1 (cont’d)

Correctness proof:

® Base case:

= By definition, f(0) = 2° = 1, and the recursive algorithm returns 1 when
n = 0. Therefore, the base case holds.

" Inductive step:

= Assume that the property is true forn = k, i.e. f(k) = 2*. We have to
show that the property is true forn = k + 1.

= By recursive algorithm, f(k + 1) returns 2xf (k) = 2x2% = 2¥*1, s,
inductive proof is complete.
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Recursion

= f(n) =2 = f(n—1)isrecursive definition of a function, which is defined in
terms of itself.

= Therefore, to stop, there must be a case when it does not call itself (called
base case, stopping condition or exit condition (& 5 H 1)).

= Recursion is an alternative to looping. As with looping, recursion can cause
your program to loop forever.

My recursive functidhahen there is no exit condition

Exit condition is very important for recursion...
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Rules of Recursion

= Base cases: Always have the base case (stopping condition),
which is solved without recursion.

= Base case is usually the simplest case to solve.

= Making progress: for recursive cases, each new call must always
make progress towards base case.

= Sometimes you have the base case but it can never be reached.

® Design Rule: assume all recursive calls work.
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Efficiency of Recursion

® The nature of recursion is iteration.
Therefore, any recursive function
can be converted to an equivalent

iterative (looping) method. Jf(n)
= Although recursion is elegant, it I total <1
can be inefficient, because there 2 fori < O0Otondo
are more calls to methods. 3 total « total * 2

= Sometimes, there are many recursive

. 4 return total
calls to the same instance.

® |terative methods are more Ilterative way to write f(n)
efficient and faster.
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Recursion

Example 2: Fibonacci sequence (327 AR L A1)
= Fibonacci sequence is defined by

fo=0
fi=1
fo = fa-1— fu-2 forn = 2

=0,11,2,3,5,8,13,21...

Fib(n)
/ \ 1 ifn <1 then
2 return n
3 else
\ 4 return Fib(n — 1) + Fib(n — 2)
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Recursion

Example 2: Fibonacci sequence (cont’d)

= The recursion equation (3% JH 5 #2£) for the number of moves
that solve the nth Fibonacci term is:

B 0(1) ifn<1
rn) _{T(n—1)+T(n—2)+1 ifn>1

" |s it efficient to calculate the nth Fibonacci term by recursion?

= When calculating Fib(5), how many times of Fib(3) and Fib(2) is
calculated?

13
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Recursion

Example 3: Towers of Hanoi (i 1%)

= Objective: Transfer disks from pole A to pole C.

® Rules: Only move one disk at a time, and can’t put a bigger disk
on a smaller one.
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Recursion

Example 3: Towers of Hanoi (cont’d)

" The recursive function Hanoi(n, A,

B, C) means moving n disks from Hanoi(n, 4, B, C)
polg A to pole C using B as | ifn =1 then move(4, C)
auxiliary. 7 else
= Steps: 3 Hanoi(n — 1, 4, C, B)
= Move n — 1 disks from A to B, using C 4 move(A4, C)
as auxiliary. 5 Hanoi(n — 1, B, A, C)

= Move the disk left on A directly to C.

= Move the n — 1 disks from B to C, using
A as auxiliary.
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lllustration of recursion calls forn = 3

Hanoi(3,A4, B, C)

A-C
Hanoi(2,A4,C, B) Hanoi(2, B, A, C)
A—-B B—-C
Hanoi(1, A, B, C) Hanoi(1,C,A,B) Hanoi(1,B,C,A) Hanoi(1,A,B,C)

l i l i

A-C C - B B - A A-C
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lllustration of recursion instances forn = 4
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Recursion

Example 3: Towers of Hanoi (cont’d)

® The recursion equation for the number of moves that solve
Towers of Hanoi is:

) ={ e(1) ifn=1

2T(n—1)+1 ifn>1"

" However, it is a recursion equation, rather than a function of n.
How to convert it as a function of n?

= Recall what we have learned in discrete mathematics: characteristic
equation (4F4IE /5 #£) with characteristic root (44 FEAR).
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Recursion

Example 4: Selection sort (3 £&HE7)

Similar to insertion sort, selecion sort is SelectionSort(A)
a very straightforward sorting algrotihm. | { fori « 1ton — 1 do

= Start with an empty left hand and the |2 k «i

cards face down on the table. forj — i+ 1ton do

3
8 Then remove the smallesjc card .at.a 4 if A[j] < A[k] then
time from the table, and insert it into .
the rightmost in the left hand. S k<]
6

if k # i then A[i] < Alk]

= At all times, the cards held in the left
hand are sorted.

@) BITRHERER
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i k
5 2 1
i, k
1 2 5
1 2 5
1 2 5
i, k
1 2 5
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Recursion

Usually, we only write the changing

Example 4: Selection sort (cont’d) variables as the arguments of a
recursive function in pseudocode.

® The recursive version of

selection sort is very easy to RecursiveSelectionSortti)
convert. 1if i = n then return O
= Replace the outer loop by a 2 else
recursive call. 3 ke
s Because. we are actually doing the 4 for j < i+ 1tondo
same thing for each subsequence
Ali ...n]. 5 if A[j] < Alk] then
= Although it works, it is not 6 k<]
elegant at all as a recursive 7 if k = i then A[i] < A[k]
algorithm. 8 RecursiveSelectionSort(i + 1)
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Recursion

Example 4: Selection sort (cont’d)

= Selecting the minimal one among n elements needsn — 1
comparisons.

" Therefore, the recursion equation is:
- 0(1) ifn=1
T(n)_{T(n—1)+(n—1) ifn>1

22
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Recursion

Example 5: Generating permutations

Goal: Generate all n! permutations of sequence (1,2, ..., n).

" What is a proper small instance of this problem?

= Get all permutation of a sequence with n — 1 elements.

" Given the solution of a small instance, how to solve the original
problem?

= Get all permutation of the sequence with n elements by the ones with
n — 1 elements.

@) BITRHERER
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Recursion

Example 5: Generating permutations

ldea 1: Put different elements on fixed position.
= Suppose we can generate all permutations for n — 1 numbers.

® Generate all the permutations of the numbers 2,3, ..., n and add the

number 1 to the beginning of each permutation (the ones starting
with 1).

= Next, generate all permutations of the numbers 1,3, ...,n and add
the number 2 to the beginning of each permutation (the ones
starting with 2).

® Repeat this procedure until finally the permutations of 1,2,3, ..., n —
1 are generated and the number n is added at the beginning of each
permutation.
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Recursion

Example 5: Generating permutations (cont’d)

Perml(m) GeneratingPerm1()
1 if m = n then output P[1..n] I for j « 1ton do
2 else . .
3 for j « mtondo 2 Pl
4 P[j] « P[m] 3 Perm1(1)
5 Perml(m + 1)
6 Plj] < Pm]|
\
Must switch back. Otherwise it will be messed up!

AT [% MDA .}, it ENESYR 25
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Illustration of recursion calls forn = 3

init: 123
Perm1(1)
123 213 321
Perm1(2) Perm1(2) Perm1(2)
123 132 213 231 321 312
Perml1(3)| [Perml(3)| |Perml(3)||Perml(3)||Perm1(3)| |Perml(3)
123 132 213 231 321 312

Try n = 4 by yourself

26




Recursion

Example 4: Generating permutations (cont’d)

Idea 2: Put fixed element on different positions.
= Suppose we can generate all permutations of the numbers 1,2, ...,n — 1.

= First, we put nin P[1] and generate all the permutations of the firstn — 1
numbers using the subarray P[2 ...n].

= Next, we put n in P[2] and generate all the permutations of the firstn — 1
numbers using the subarray P[1] and P[3 ...n].

= Then, we put n in P[3] and generate all the permutations of the firstn — 1
numbers using the subarray P[1 ...2] and P[4 ...n].

= Repeat the above process until finally we put nn in P[n] and generate all the
permutations of the first n — 1 numbers using the subarray P[1 ...n — 1].
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Recursion

Example 5: Generating permutations (cont’d)

Perm2(m) GeneratingPerm?2()
1 if m = 0 then output P[1..n] | for j < 1 ton do
2 else .

3 forj < 1tondo 2 P]<0

4 if P[j] = O then 3 Perm1(n)

5 Plj] «m

6 Perm2(m — 1)

7 P[j] < 0O

Must reset to 0. Otherwise the positions are not enough.
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Illustration of recursion calls forn = 3

init: 000
Perm2(3)
300 030 003
Perm?2(2) Perm2(2) Perm?2(2)
V\BOZ 23(/&2 203\ 023
Perm2(1)| |[Perm2(1)| |Perm2(1)||Perm2(1)||Perm2(1)| |Perm2(1)
Pern;2(0) PernIZ(O) Pern;2(0) Pern;2(0) Pern;2(0) PCI’H‘IVZ(O)
321 312 231 132 213 123

Try n = 4 by yourself
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Recursion

Example 5: Generating permutations (cont’d)

" For both ideas, each instance is split into n smaller instance
with size n — 1.

" Therefore, the recursion equation is:
B 0(1) ifn=1
T(n) = {n(T(n —D+1) ifn>1

30
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Classroom Exercise

Write the pseudocode of recursive linear search.

]
(|
)I.
e
i
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4
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Classroom Exercise

Solution:

RecursiveLinearSearch(i)

1 if i > n then return 0

2 if A[i] = x then

3  returni

3 else

4 return RecursiveLinearSearch(i + 1)

6y BIIXFERFER
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Recursive Analysis

® Goal of recursion analysis: obtain an asymptotic bound ©® or O
from the the recursive equation of a recursive algorithm.

T(n) = g(T(n — k)) or T(n) = g(T(n/k))
!
T(n) = f(n)

33
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Overview of Recursive Analysis Methods

= Substitution method (3% J5 1)

= Guess a bound (directly guess or based on recursion tree);

= Prove our guess correct using Mathematical Induction.

= Master method (AR 3%)
= A theorem with three cases;

= |n each case, the result can be directly obtained without calculation.
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Technicalities

In practice, we neglect certain technical details when we state
and solve recursion. It won’t affect the final asymptotic results.

= Suppose n is an non-negative integer in T (n).

® Omit floors and ceiling.

= E.g. T(n) = 2T(In/2]),and T(n) = 2T(|n/2]) are equivalent to
T(n) = 2T(n/2).

= As n is sufficiently small, we regard T(n) = T (1), where T(1)
denotes the constant.

= We cansimplyset T(1) = 1and T(0) = 0.

35
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Substitution Method

Steps of substitution method:

1. Guess the form of the solution.

2. Use mathematical induction (Z{ 2213 472%) to find the
constants and show that the solution works.

36
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Substitution Method

Example 6

Consider the recursion equation for the number of comparisons of recursive
selection sort:

Tm)=Tn—1D+n—-1)
1. GuessT(n) = 0(n?).
2. Prove: T(n) < cn?:
= Base case: Whenn =1,T(1) =1 < c1?, for choosing ¢ > 1.
= |nductive step: Suppose T(n — 1) < c(n — 1),

T <cn—1*+n-1
=cn®>?—-2cn+c+n—-1
<cn®*-2cn+2c+n-1

cn?—R2c—1)(n-1)

1
< cn? (forc > E)

ty) BITAZ(EREER
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Substitution Method

Example 7

Consider the recursion equation for the number of moves that solve Towers of
Hanoi:

T(n) =2T(n—1)+1
1. GuessT(n) = 0(2™M).
2. Prove:T(n) < c2™:

= Base case: Whenn =1, T(1) = 1 < ¢21, for choosing ¢ >

N |-

= |nduction step: Suppose T(n — 1) < ¢2™ 1,
T(n) <2c2™1+1

=c2"+1
Ac2™.
" T(n) <c2™+ 1can'timply T(n) < c2™. How can we do?

(loose) (tight)
6,y) BIIKFERER
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Substitution Method

= Sometimes the guess is correct, but somehow the math
doesn't seem to work out in the induction.

® Usually, the problem is that the inductive assumption isn't
strong enough to prove the detailed bound.

® Revise the guess by subtracting a lower-order term often
permits the math to go through.

39
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Substitution Method

Example 7 (cont’d)

= Consider the recursion equation for the number of moves f that solve
Towers of Hanoi:

T(n) =2T(n—1)+1
1. GuessT(n) = 0(2™M).
2. Prove:T(n) < c2™ —b:

= Base case: Whenn =1,T(1) =1 < ¢2! — b, for choosing ¢ > #.
= |nduction step: Suppose T(n — 1) < c2™ 1 — b.
T(n) <2(c2"1-b)+1

=c2"—-2b+1

< c2"—b (forb = 1).
= T(n) < c2™— b canderive T(n) < c2". Therefore T(n) = 0(n) is proved.

(tight) (loose)
6,y) BIIKFERER
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Classroom Exercise

Use substitution method to give the asymptotic bound of the
following recursive equation:

T(n) =T(n/2]) +T(In/2]) +1

41
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Classroom Exercise

Solution:

T(n) =T(n/2]) +T(In/2]) +1
1. GuessT(n) =0(n)
2. Prove:T(n) <cn — b:
® Base case: Whenn =1,T(1) =1 < c— b, forchoosinganyc =1+ b.

= |nductive step: Suppose T(|n/2]) < c|n/2] —band T([n/2]) < c[n/2] — b.
T(n) <c|n/2]—b+c[n/2]—-b+1
=cn—2b+1
<cn-—>b(forb=1)

®» T(n) < cn — b can derive T(n) < cn. Therefore T(n) = 0(n) is proved.
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Substitution Method

Example 8

T(n) = 8T(n/2) + 5n*
1. GuessT(n) = 0(n3).
2. Prove: T(n) < cn3:
m Base case: Whenn =1,T(1) =1 < ¢, for choosing any ¢ > 1.

= |nductive step: Suppose T(n/2) < c(n/2)3.
T(n) < 8c(n/2)3 + 5n?
= cn® + 5n?

= T(n) < cn® + 5n?can’t prove T(n) < cn3. We should subtract a lower-order
term.

@) BITARESE
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Substitution Method

Example 8 (cont’d)

T(n) = 8T(n/2) + 5n*
1. GuessT(n) = 0(n3).
2. Prove: T(n) < cn® — bn?:

® Base case: Whenn =1,T(1) =1 < c— b, forchoosinganyc =1+ b.
= |nductive step: Suppose T(n/2) < c(n/2)> — b(n/2)2.

T(n) < 8[c(n/2)3 — b(n/2)?] + 5n?
= cn3 — 2bn? + 5n?
= cn3 — bn? — bn® + 5n?
< cn3 — bn? (for b = 5)

= T(n) < cn3 — bn? can derive T(n) < cn3. Therefore T(n) = 0(n?) is proved.

ty) BITAZ(EREER
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Substitution Method

Example 9

T(n) =2T(n/2]) +n
1. GuessT(n) =0(n).
2. Prove:T(n) < cn:
® Base case: Whenn =1,T(1) =1 < c1, for choosing ¢ > 1.

® |nductive step: Suppose T'(n/2) < 2c(n/2).
Tn)<cn+n
=0(n)?

= Wrong! The error is that we haven‘t proved the exact form of the inductive
hypothesis, i.e. T(n) < cn.

® Try subtracting a lower order term?

@) BITARESE
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Substitution Method

Example 9 (cont’d)

T(n) =2T(n/2]) +n
1. GuessT(n) =0(nlgn).
2. Prove:T(n) < cnlgn:
= Base case: Whenn =2,T(2) =2T(1) + 2 =4 < c21g2, for choosing ¢ = 2.

= |nductive step: Suppose T(|n/2]) < c(In/2D1g(In/2)).
T(n) < 2c(In/2DIg(In/2]) +n
<cnlg(n/2)+n
=cnlgn—cnlg2 +n
=cnlgn—cn+n
<cnlgn (forc=>1)

ty) BITAZ(EREER
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Substitution Method

Example 9 (cont’d)

" In the above proof, we set n = 2 at the base case.

= Actually, we usually don’t need to set n = 1 for all base cases,
because it sometimes doesn’t work.

= eg.can'tproveT(1) =1<cllgl=0.

" The asymptotic analysis only requires us to prove for some n =
ng. Therefore, itis ok to set n = 2 or n = 3 at the base case.

@) BITRHERER
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Substitution Method: Changing Variables

Sometimes, a little algebraic manipulation can make an unknown
recursion similar to one you have seen before.

Example 10
T(n) = 2T(|vn]) +1gn

= Renaming m = Ign yields n = 2™ and:
T(2™) = 2T(2"™/?2) + m.

= We can now rename S(m) = T(2™) to produce the new recursion:
S(m) =25(m/2) + m,

which has a solution of S(m) = O(mlgm).
= Changing back from S(m) to T (n), we obtain:
T(n) =TQR2™)=S(m)=0(mlgm) =0(gnlglgn).
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Substitution Method

How to make a good guess:

= Bad News:
= No general way to guess the correct solutions to recursion.
= Good guess = E (experience) + C (creativity) + L (luck).

= Good News:

= Recursion tree often generates good guesses.

6y BIIXFERFER
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Recursion Tree

® The recursion-tree is a straightforward way to devise a good guess.

m Recursion trees are particularly useful when the recurrence describes
the running time of a divide-and-conquer algorithm.

® |n a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations.

1.  We sum all the per-node costs within each level of the tree to obtain a set
of per-level costs;

2. We sum all the per-level costs to determine the total cost of all levels of the
recursion.

= Notice: Recursion tree only provides a guess. It is not a strict proof.
Substitution method is still needed after we guess a bound by
recursion tree.
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Recursion Tree

Example 11

T(n) = 3T(In/4]) + cn?

4
What is the
/’\ /[\ /I\ - height of
the tree?
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Recursion Tree

Example 11 (cont’d)

" The cost sequence of each level is:
cn?, c(n/4)?, c(n/4%)?, ..., c(n/44)?
= Denote height of the recursion tree as k.

= The node at the leaf of the tree is 1. Therefore the leaf is

achieved when (n/4k)2 = 1 and thus k = log, n\

We can simply assume that
n is an exact power of 4.
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Recursion Tree

Example 11 (cont’d)

= Summing up all levels, the total cost is:

T(n) = cn? + 3¢ (%)2 +9c¢ (%)2 +27¢ (6"_4)2 Lo
2 3 log, n

3 3 3 3
T (16) o (16) o (16> o

EENPEN = /3! 1
— o 2<2(_) 2 2:0 2
_Z (16) o 16) " 7 1=3/16" = 0

l

=0 1=0

Formula of infinity geometric

series (Jo %5 JUI 2 40)
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Recursion Tree

Example 11 (cont’d)

= Notice again: Recursion tree only provides a guess. It is not a strict
proof. We still need substitution method:

1. GuessT(n) = 0(n?).
2. Prove: T(n) < dn?:
= Base case: Whenn =1,T(1) =1 < d1?, for choosingd > 1.
= |nductive step: Suppose T(n/4) < d(n/4)>.

Why do we use d here rather than c?

T(n) < 3d (%)2 + cn?

= Edn2 + cn?

< dn? (f d>16)
n or —C
- ~ 13
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Recursion Tree

Example 12
T(n)=TMn/3)+T(2n/3) +n
N = e e e > n -
n/3 2N[3 e » N
What is the

/ \ / \ * - height of
n/9 2n/9 2n/9 An/9 -----------eeeeeeo-- > n the tree?

=
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Recursion Tree

Example 12 (cont’d)

= |f there are different decreasing rate, e.g. n/3 and 2n/3 in this example, we
should determine the slowest deceasing rate.

" The one with slowest deceasing rate goes deepest.

= 2n/3 is the slowest one. Therefore, the height is calculated by:

B

k =logz,n

= As observed from the tree, the cost of each level is n. But not all levels have
cost n because some branches with faster decreasing rate may reach the
leaves earlier. The total cost is:

T(n) <n(k+1) <n(logz,,n+1)=0(nlgn).
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Classroom Exercise

Use recursion tree to guess the asymptotic bound of the
following recursion equation:

Tm)=Tn/4)+Tn/2)+n

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

57




Classroom Exercise

Solution: /n\ __________________________ "
n/4 nf2 - » 3n/4
n/16 n/8 n/8 n/4 -------------- +> 9n/16

= The slowest deceasing rate is n/2.
= The height is calculated by: (1/2)*n = 1 and k = Ign.

< — — LN ) —
T(n)_n+14n+(4) n+ +(4) n
=4n = :
<1_3/4n n=0(n)
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Master Method

" The master method provides a "cookbook" method for solving
recurrences of the form

T(n) =aT(n/b) + f(n).

= g > 1and b > 1 are constants and f(n) is an asymptotically positive
function.

" The recursion form describes the running time of an algorithm
that divides a problem of size n into a subproblems, each of
sizen/b.

" The cost of dividing the problem and combining the results of
the subproblems is described by the function f (n).
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Master Method

The Master Theorem

Leta = 1 and b > 1 be constants, let f(n) be a function, and let T(n) be
defined on the nonnegative integers by the recursion

T(n) =aT(n/b) + f(n)

where we interpret n/b to mean either |n/b| or [n/b]. Then T(n) can be
bounded asymptotically with three cases:

1. If f(n) = 0(n'°82 =€) for some € > 0, then T(n) = O(n!°8» ),
2. If f(n) = O(nl°8r @), then T(n) = O(n'°8» ¢ 1gn).

3. If f(n) = Q(nl°8» ¢*€) for some € > 0, and if af (n/b) < cf (n) for
some constant ¢ < 1 and all sufficiently large n, then T(n) = @(f(n)).
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Master Method

What does the master theorem mean?

= In each of the three cases, we are comparing f (n) with nl°8» @,

" Intuitively, the solution to the recursion is determined by the
order of these two functions.

= If asin case 1, nl°8b @ has high order, then the solution is T(n) =
O(nlosr @),

= |f, asin case 2, the two functions are the same order, we multiply by a
logarithmic factor, and the solution is T(n) = ©(n!°8 2 1gn).

= If, as in case 3, f(n) has high order, then the solutionis T(n) = @(f(n)).
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Master Method

In short:

log, a

= Comparing f (n) withn , choose the larger order one with

big 0.

= |f they have the same order, multiply with Ign.
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Master Method

Take a deeper look of the master theorem. Beyond this intuition of

comparing order of functions, there are some technicalities that must
be understood.

= In case 1, not only must f(n) have lower order than n'°8v @ its order
must be polynomially lower.

= The order of f(n) must be asymptotically lower than n'°8b @ py a factor of n¢
for some constant € > 0.

= In case 3, not only must f(n) have higher order than n!°8» ¢, its
order must be polynomially higher, and in addition satisfy the
"regularity" condition that af (n/b) < cf(n).

= The order of f(n) must be asymptotically higher than n'°8b @ py a factor of n¢
for some constant € > 0.

= No worry about af (n/b) < cf(n), it holds for most of the cases.
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Master Method

Example 13

T(n) =9T(n/3) +n

= Wehavea =9, b = 3, f(n) = n, and thus we have n!°8 ¢ =
nlogs 9 — 2

= We thus compare n and n?.

= Since f(n) = n = 0(n'°83 °=€) for € = 1, we can apply case 1
of the master theorem and conclude that the solution is
T(n) = 0(n'°8» @) = @(n?).
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Master Method

Example 14

T(n) = T(2n/3) + 1

= Wehavea =1,b =3/2, f(n) =1, and thus we have
logb a _ nlogg/z R

" We thus compare 1 and 1.

= Since f(n) = 1 = ©(1), we can apply case 2 and thus the
solution to the recursionis T(n) = O(lgn).
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Master Method

Example 15

T(n) =3T(n/4) +nlgn

= We havea = 3,b = 4, f(n) = nlgn, and thus we have nl°8» @ = nlogs 3 ~
0.793
n0793,

= We thus compare nlgn and n'84 3.

= Since f(n) =nlgn = Q(n) = Q(n'°843%€) for € ~ 0.2, case 3 applies if we
can show that the regularity condition holds for f(n).

= For sufficiently large n,
af(n/b) =3(n/4)Ig(n/4) < (3/4)nlgn = cf(n) for c = 3/4.

= Consequently, by case 3, the solution to the recursion is T(n) = O(nlgn).
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Master Method

= The three cases do not cover all the possibilities for T (n).

= There is a gap between cases 1 and 2 when the order of f (n) is
lower than nl°8v @ but not polynomially lower.

= Similarly, there is a gap between cases 2 and 3 when the order
of f(n) is higher than n'°8> @ but not polynomially higher.

= |f the function f (n) falls into one of these gaps, or if the
regularity condition in case 3 fails to hold, the master method
cannot be used to solve the recursion.
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Master Method

" Master method is used for the following form of recursion
equation

T'(n) = aT(n/b) + f(n)
= We compare n!'°8b @ with f(n) and select the larger one.

" Therefore, to reduce the cost of a recursive algorithm, we can:
= Reduce f(n): reduce the cost of computation in each recursion call.
= Reduce a: reduce the number of recursion calls.

®= |ncrease b: reduce the size of small instance.

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

68




Classroom Exercise

Can we use master method to give the asymptotic bound of the
following recursive equation?

T(n) =2T(n/2) +nlgn
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Classroom Exercise

Solution:

The master method does not apply to the recursion in the following
example.

T(n) =2T(n/2) +nlgn

= Even though it has the proper form:a =2,b = 2, f(n) = nlgn, and
nlogp ¢ =

= We thus compare nlgn and n.

= |t might seem that case 3 should apply, since the order of f(n) = nlgnis

asymptotically higher than n. The problem is that it is not polynomially
higher.

= We can’t find a constant € > 0 such that f(n) = nlgn = Q(n'*€) = Q(n -
nt)

Try to compare the order
between Ign and n€
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Empirical Experiment

Example 16: Polynomial Evaluation

= Given a polynomial function
p(x) =ay+ ayx + a,x? + -+ a,_x" 1,
We want to calculate the value of p(x) at some point x,.

= We can use Horner’s rule (R JUEBEE, Y11 M|) recursively
evaluates the polynomial function by rewriting as:

p(x) =ay+ x(a1 +x(a, + -+ x(a,—, + xa,_1) ))
Let

A = An-1 =1
' Ai_qxgt+a,_; 1>1
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Empirical Experiment

Example 16 (cont’d)

Horner(4, xg, )
1ifi = 1 then return a,,_4
2 else

3 return a,_; + xo * Horner(4, xg, i — 1)

DirectPloy(A4, xg)
1 total < ay
2 fori <« 1ton—1do

3 total < total + a; * power(xg, i)

4 return total
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Empirical Experiment

Example 16 (cont’d)

= Running-time comparison of DirectPloy and Horner:

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

n 600 800 1000 | 2000 |4000 6000 8000 10000
DirectPloy | 0.0 0.015 | 0.018 [0.046 { 0.141 |[0.312 |0.515 |0.785
Horner 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 Running-time
0.9 :
0.8 e ] 7
U: 6 /
0.5 /
0.4 // Why?
o2 =
0.1 —
0 = =" l’_'_'-_'_—-'/’—: ™ 1 = ™ = >
600 a00 1000 2000 4000 6000 8000 10000 bed
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Conclusion

After this lecture, you should know:
" How to devise a recursive algorithm?
" What is a recursive equation?

" How to derive the asymptotic result from the recursive
equation?

" How to draw a recursive tree?
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Homework

= Page 48-49
4.3
4.5
4.7
4.12
4.15
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