B AT

Lecture 5: Divide-and-Conquer

it

TR EAE B b AR A &

luyang@xmu.edu.cn

Divide-and-Conquer

= The divide-and-conquer (4374) algorithm divides an instance of
a problem into two or more small instances.

= The small instance belongs to the same problem as the original instance.

= Assume that the small instance is easy to solve.

= Combine solutions to the small instances to solve the original instance.

= |f the small instance is still difficult, divide again until it is easy.

" The divide-and-conquer is a top-down approach.

® Recursion is usually adopted.

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Divide-and-Conquer

The divide-and-conquer paradigm involves three steps at each
level of the recursion:

" Divide the problem instance into a number of small instances.

® Conquer the small instances by solving them recursively. If the

sizes of small instances are small enough, just solve them
without recursion.

= Combine (optional) the solutions to the small instances into the
solution for the original instance.

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 2

Analyzing Divide-and-Conquer Algorithms

® When an algorithm contains a recursive call to itself, its running
time can often be described by a recursion equation (3 5 5

FE).

" We can easily solve them by the methods we have learned in
Lecture 4.

) EITARERSR (7)) a0 r7annuss ’

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Analyzing Divide-and-Conquer Algorithms

= |f the instance size is small enough, say n < ¢ for some constant c,
we can simply assume that the straightforward solution takes
constant time ©(1).

= The running time of a divide-and-conquer algorithm is based on the
three steps of the basic paradigm:

. - 0(1) ifn<c
(n) = aT(n/b) + D(n) + C(n) otherwise

D (n): the cost of dividing into small instances.

aT (n/b): conquer a small instances with each size n/b.

C (n): the cost of combining the solutions of small instances.

D(n) and C(n) are usually merged into a function f(n) for analysis
convenience.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

MERGESORT

= Mergesort (5 3FHE)7) combines two sorted arrays into one
sorted array.

® Given an array with n elements, Mergesort involves the
following steps:

1. Divide the array into two subarrays each with n/2 elements.

2. Conguer each subarray by sorting it. Unless the array is sufficiently
small, use recursion to do this.

3. Combine the solutions to the subarrays by merging them into a single
sorted array.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Mergesort Example

/72943861

6y BIIXRFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Mergesort Example

7294|3861

Dlvge/

6,y) BIIKFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Mergesort Example

7294|3861

6,y) BIIKFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Mergesort Example

7294|3861

6,y) BIIKFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

10

Mergesort Example

7294|3861

©) BIIKSESSE

\" 2
-~/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@) &N KT HRANHER 11

Mergesort Example

7294|3861

@) BITKHERER

\\ 2
>/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@) &N KT HRANHER 12

Mergesort Example

7294|3861

Luvers
B2 (B (KD (EX

&) BITARERER
: 4 =

\%

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@) AN AT HRNEER 13

Mergesort Example

7294|3861

729452479

@) &N KT HRANHER 14

&) BITARERER
: 4 =

\%

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Mergesort Example

7294|3861

/729452479 386151386

/ Merge\

945409 38->338 61516

Mergesort Example

/72943861-512346789

”””" Merge ‘\\\\\‘

/729452479 386151386

945409 38->338

Mergesort Visualized Demo

4
44 38 47 15 36 26 27 2 46 19 50 48

17

/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: https://thumbs.gfycat.com/ZealousAdolescentBellsnake-size_restricted.gif

= Call MergeSort(4, 1, len[A])

for the sorting problem. MergeSort(4, p, 1)
= Recursive call with different |1 if p < r then

array index:

- 2 q < [(p+71)/2]

= p: starting index

= g: middle index 3 MergesSort(4, p., q)

= 7 end index } MergeSort(4,q + 1,1)
= Exit condition: p = 7, there S Merge(4,p, q,7)

is only one element.

BIIXREERFER () ZH»Ttanuses 18

Merge(4,p,q, 1)

Il nfeqgq—p+1 9 1«1

2 n,«<r—q 10 j«1

3 fori«< 1tongdo 11 for k < ptordo

4 L[i] <« Alp +i— 1] 12 if L[i] < R[j] then
5 forj < 1ton,do 13 Alk] < L[i]

6 R[j] < A[q +j] 14 l—i+1

7 Ling+ 1] « oo 15 else Al[k] < R]|j]
8 R[n, +1] « 16 jej+1

= Line 1-6: L and R are used to store two sorted subarrays with size n; and n,.
= Line 7-8: Assign infinity at the end of L and R for comparison convenience.

= Line 9-16: For each index from p to r, compare one by one and increase the
index of the array with smaller element.

@) BITARESE

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

19

13

11

57

45

~

11

45

6y BIIXFERFER

\)
3=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

20

11 fork <« ptordo
12 if L[i] < R[j] then

The Correctness of Merge 13 Alk] « L[i]
14 i—i+1
15 else A[k] < R[j]
® Loop invariant: 16 jej+1

= At the start of each iteration of the for loop in Lines 12-17, the subarray

Alp ...k — 1] contains the k — p smallest elements of L and R, in sorted
order.

= L[i] and R[j] are the smallest elements of their arrays that have not been
copied back into A.

= We show that this loop invariant holds
= prior to the first iteration of the loop;
= after the kth iteration of the loop;
= when the loop terminates.

) BIIASHESSR

'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv f% MDA ’}, it ENESYR 21

11 fork <« ptordo
12 if L[i] < R[j] then

The Correctness of Merge 13 Alk] « L[i]
14 i—i+1
15 else Alk] < R[j]
16 jej+1

Initialization

= Prior to the first iteration of the loop, we have k = p, so that
the subarray A[p ...p — 1] is empty.

= Both L[i] and R[j] are the smallest elements of their arrays
that have not been copied back into A.

22

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

11 fork <« ptordo
12 if L[i] < R[j] then

The Correctness of Merge 13 Alk] « L[i]
14 i—i+1
15 else Alk] < R[j]

Maintenance 16 jej+1

= Hypothesis: Before the kth iteration, the loop invariant holds.

= Let us first suppose that L[i] < R]j]. Then L[i] is the smallest
element not yet copied back into A.

= Because A[p ...k — 1] contains the k — p smallest elements, after

Line 13 copies L[i] into A[k], the subarray A[p ... k| will contain the
k —p + 1 smallest elements.

= Before the next iteration, k and i are increased by 1.
= A[p ...k] contain the k — p + 1 smallest elements.

= L[i + 1] and R][j] are the smallest elements of their arrays that have not
been copied back into A.

= Therefore, before the (k + 1)th iteration, the loop invariant holds.

) BIIASHESSR

\&=%7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-i-gv f% MDA ’}, it ENESYR 23

11 fork <« ptordo
12 if L[i] < R[j] then

The Correctness of Merge 13 Alk] « L[i]
14 i—i+1
15 else Alk] < R[j]
16 jej+1

Termination
= At termination, k = r + 1.

= By the loop invariant, the subarray A[p ... k — 1], which is

Alp ...T], contains the k — p = r — p + 1 smallest elements of
L and R, in sorted order.

= Therefore, the loop invariant holds. Merge correctly merges
two sorted arrays into one sorted array.

24

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Time Complexity of Mergesort

= No matter how different the input is, Merge always does r —
p + 1 = n times of key comparison.

= For sorting algorithms, we usually only count the number of key
comparisons.

= So the recursion equation is:
T(n) =T(n/2]) +T(n/2]) +n

= By the master method case 2, we have f(n) =n =0(n) =
@(nlogZZ).

= Therefore, T(n) = O(nlgn) for best-, worst- and average-case.

25

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

= Write each step of Mergesort to sort the following array:
(27,10,12,20,25,13,15, 22)

26

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Divide
27 10 12 20 25 13 15 22
/ Divide \ / Divide \

27 10 12 20 25 13 15 22
Divide Divide Divide Divide
Merge Merge Merge Merge

10 27 12 20 13 25 15 22

Merge Merge
10 12 20 27 13 15 22 25
Merge

10 12 13 15 20 22 25 27

BIIXZ(ERF5R

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

27

Image source: Figure 2.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

QUICKSORT

" Mergesort splits the array first, and then combines them by
merging.
® Can we roughly sort the array first, and then split it?

= E.g. put small elements on the left, and large element on the right.

= |f we can do in this way, we don’t need to merge.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

29

= Quicksort ({415 fEf7) is developed by
British computer scientist Charles

Antony Richard Hoare (Tony Hoare) in
1962.

® You can know the main property of
Quicksort by its name — quick!

= When implemented well, it can be

about two or three times faster than
Mergesort. Tony Hoare in 2011

() BITREMERER () A0 rTuanues 30

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Image source: https://en.wikipedia.org/wiki/Tony Hoare

https://en.wikipedia.org/wiki/Tony_Hoare

Steps:

= Randomly select a pivot (3% /%) element.

= Conventional use the first or last item.

® Put all the elements smaller than the pivot element on its left,
and all the elements greater than the pivot element on its right.

® Recursively sort the left subarray and right subarray.

m Each subarray is sorted after recursion call. Therefore, there’s no need to
combine the results.

@) EITRRERER

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

&M rT RN RSEE 31

Image source: http://mrtremblaycambridge.weebly.com/p15-turning-on-a-pivot.html

http://mrtremblaycambridge.weebly.com/p15-turning-on-a-pivot.html

Quicksort Visualized Demo

6y BIIXZERF KR

N =/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

32

Image source: https://en.wikipedia.org/wiki/Quicksort

https://en.wikipedia.org/wiki/Quicksort

= Call QuickSort(A, 1, len|[A]) for
the sorting problem.

m Recursive call with different QuickSort(A, p, 1)
array index: 1 if p < rthen

= p: starting index q < Partition(4, p,)

2
= g: pivot index 3 QuickSort(4, p, g — 1)
= 7: end index 4 QuickSort(4, g + 1,7)

= Exit condition: p = 1, there is
only one element.

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 33

= Line 1: Simply select the last element | Partition(4, p, 1)

Ali + 1] & A[r]

returni + 1

" Line 7: put pivot at the proper
position.

A|r] as the pivot. 1 pivot « A[r]
® Line 2: Use i to store the index for 2 iep—1
switching. 3 forj<—ptor—1do
= Line 3-6: iterate over j to find 4 i Al] < pivot then
elements smaller than x and switch S Lei+1
them to the front. 6 Ali] < A[J]
7
8

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 34

P,

N
2181711
Pl
2181711
Pl J
2181711
pi /—\J
2181711

P '
71813 4
i r
31817 4
i r
30817 4
l /_\r
31817 4
q-1 q qg+1 r
31417 8

Time Complexity of Quicksort

Partition(4, p, 1)
1 pivot « Alr]
= |n Partition, each element in 4 is 2 iep—-1
compared with the pivot except 3 forj—ptor—1do
itself. 4 if A[j] < pivot then
= Therefore, the number of > A h e
comparisons in Partition isn — 1. 6 Ali] < Alj]
7 Ali + 1] & A[r]
8 returni + 1

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 36

Worst-Case Time Complexity of Quicksort

= The worst-case occurs when he array is already sorted (in
either nondecreasing or nonincreasing order).

" |In each recursion step, the pivot element is always the smallest
or largest item.

® Thus, n elements are divided into n — 1 and 0 elements during recursive
call.

" The recursion equation is:
Tn)=T(n—1)+TO0)+n—-1
® Using recursion tree, we can easily get
T(n) =n(n—1)/2 = 0(n?)

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

37

Worst-Case Time Complexity of Quicksort

" The closer the input array is to being sorted, the closer we are
to the worst-case performance.

= Because the pivot can’t fairly separate two subarrays.

= Recursion loses it power.

" How to wisely choose the pivot?

= Random.

= Median of A[1], A[|n/2]], and A[n]. Safe to avoid the worst-case but
more comparisons are needed.

= \What will be the best case?

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 38

Best-Case Time Complexity of Quicksort

" The best-case occurs when the Partition almost evenly splits
the array:

= Array has odd number of elements: Both subarrays have |n/2| elements.

= Array has even number of elements: One subarrays has [n/2] elements
and another has n/2.

" |n both case, the size of the subarray is no more than n/2.

" The recursion equation is:
T(n) =2T(n/2) +n—1=0(nlgn).

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

39

Classroom Exercise

What is the best case input for Quicksort whenn = 127

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 MDA .}’ it ENESYR 40

Classroom Exercise

Solution:

The best case occurs when each pivot evenly split the array:
1,2,4,5,3,7,8,10,12,11,9,6

Think: how to write a best-case input generator for Quicksort?

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

41

Average-Case Time Complexity of Quicksort

= The worst-case of Quicksort is no faster than insertion sort
(also ®(n?)), and slower than Mergesort (0(n logn)).

= The best-case of Quicksort is slower than insertion sort (0(n)).

" How dare it name itself “quick”?

= The average-case behavior earns its name!

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

42

Average-Case Time Complexity of Quicksort

" To analyze the average-case time complexity, we can add
randomization.

= Randomly permutate the input array (uniform distributed input).

= Randomly choose the pivot item.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

43

Average-Case Time Complexity of Quicksort

= By randomization, now the probability of pivot being any item in the array is
1/n.

T(n) =Z [T(p—1)+T(n—p)] +7n—1
p=1

T(n) =EZT(p—1)+n—1
p=1

nT(n) = 2 z T(p —1) +n(n—1) (multiply by n)

p=1
n-—1
m—1DTn-1) = 22 Tp—1)+nm—1)(n—2)(applyton —1)
p=1
6y)) BIIKZERER () ZHr7nnuses 44

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Average-Case Time Complexity of Quicksort

nT(n) —(n—1)T(n—-1)
=2T(n—1) + 2(n — 1) (subtraction)
T(n) Tn-1) 2n-1)

|
n+1 n nn+1)
uleta, = %’ 7rmonic series
2n—-1) w2(i-1 w1
Ap = Qp_1 + =2 zZE—zZInn.
nn+1) _1i(i+1) ,1i
= 1=

= Therefore, T(n) = (n+ 1)2Inn=(MmM+1)2In2lgn =
1.38(n+ 1)Ilgn = 0(nlgn).

AT [% MDA .}, it ENESYR 45

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

LARGE INTEGER MULTIPLICATION

Large Integer Multiplication

® Suppose that we need to do arithmetic operations on integers
whose size is very large.

= |n cryptography (255 472) and network security, encryption and
decryption need to multiply very large numbers.

" How to do arithmetic for those large integers?

47

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Large Integer Multiplication

® Tradition algorithm is nothing but what we have learned in
primary school.

= |t takes ®(n?) bit operations.

>< st sk skoskoskeosie st skoskoskoskook
st sk skoskoskeosieo st skoskoskoskook

st sk skoskoskeosieo st skoskoskoskook
s skoskoskeosieo st s skeskoskoskeosk
st sk skoskoskeosieo st skoskoskoskook
s skoskoskeosieo st s skeskoskoskeosk
st sk skoskoskeosieo st skoskoskoskook
s skoskoskeosieo st s skeskoskoskeosk
st sk skoskoskeosie st skoskoskoskook
st skoskoskoske st sk sk skoskoskeo sk
st st sfeoskoskoskeo sk sk skeskosk ok
st skoskoskoske st sk sk skoskoskeo sk
st st sfeoskoskoskeo sk sk skeskosk ok
st skoskoskoske st sk sk skoskoskeo sk

st sk sk sk sk st sk skeoskoske st sk s skoskesie st skeoskoskoske sk sk sk

6y BIIXFERFER

S %
m»/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

48

Large Integer Multiplication

= Use n-bit binary representation for u and v.

= We can use divide-and-conquer: Each integer is divided into two parts of
n/2 bits each.

n/2 bits n/2 bits
\ \
[| [|
u = W x Example:
(110011),
= (110),x23 + (011),
v = y Z

Therefore, integers u and v can be represented as:
u=w2"2 4 x, v=y2M2 427

Then, we have:
uv = (W2™?2 4+ x)(y2™2 + z) = wy2™ + (wz + xy)2"V% + xz.

6y BIIXFERFER

4 #
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

49

Large Integer Multiplication

= We need 4 recursive multiplications with size n/2 to calculate
wy2™ + (wz + xy)2™"? + xz
= Multiply with 2™ is to simply shift by n bits to the left with cost O(n).

= 3 times of addition is also with cost ©(n).

" The recursion equation is:
- 0(1) n=1
T(n) = {4T(n/2) +m n>1

= By the master method, we get T(n) = 0(n?).
® |t is still quadratic. Why?

50

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Large Integer Multiplication

= \We decompose the instance of n into 4 small instances with size n/2.

= |f we can decrease 4 to 3, by the master method we get T(n) =
O(n'e?).

= As before, we need to calculate
Wy, Wz + Xy, XZ
= |f instead we set
r=w+x)(y+2)=wy+ (Wwz+2zy)+xz
we have
WZ+Xy=1r—wy—XZ
= Then, we only need to calculate
r, Wy, Xz

) BIIRFEREM f DR A RNEER 51

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Large Integer Multiplication

Multiply2int(u, v)

1 if lu| = |[v| = 1 then return uv

2 else

3 Split u into w and x; split v into y and z
A1 < Multiply2int(w, y)

A, < Multiply2int(x, z)

Az <« Multiply2int(w + x, y + 2)

7 return A;2" + (A3 — A; — A,)2™?% + A,

AN DN b~

= The above method yields the following recursion equation:
T(n) =3T(n/2) + cn.

= By the master method, we get T(n) = 0(n'83) =~ O(n'>?).

) BIIRFEREM f DR A RNEER 52

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Write the pseudocode of binary search algorithm:

" Given a sorted array A4,
= |f x equals the middle item, quit.

m Otherwise, compare x with the middle item.
= If x is smaller, search the left subarray.

= |f x is greater, search the right subarray.

= What is the time complexity?

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 53

Classroom Exercise

Solution:

BinarySearch(A, x) RecursiveBinarySearch(4, p, 1)
lp«<1 1 if p > r then return 0
2ren 2 else

3k<0 3 me|(p+1)/2]

4 while p <=7rand k = 0 do 4 if Alm] = x then return m

5 me|(p+1)/2] 5 elseif x < A[m] then

6 if Alm] = x then return m 6 RecursiveBinarySearch(4, p, r — 1)
7 elseifx < Alm|thenr « m—1 |7 else

8 elsep—m+1 8 RecursiveBinarySearch(4, p + 1,)
9 return O

Divide-and-conquer algorithm is not necessarily implemented by recursion.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

54

Classroom Exercise

" The recursion equation is:
T(n)=Tn/2) + 1.

= By using master method case 2, we have T(n) = 0(lgn).

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

55

MATRIX MULTIPLICATION

Matrix Multiplication

® Given matrices A and B with size nXn, compute the matrix
product C = AB.

" The formula we have learned in linear algebra for doing this is:
n
C(i,)) =) AGK)B(k,)).
k=1

= Calculating each C(i, j) takes O(n). Thus, calculating total nxn
elements in C takes O(n3).

57

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Matrix Multiplication

= Suppose we want to product C of two 2X2 matrices, A and B,
That is,

[011 C12]

[a11 a12]x b11 b12]
C21 €22 '

A1 A2 by1 by,

" The divide-and-conquer version consists of computing C as
defined by the following equation:

C = [a11b11 + Qy2b21 A11b12 + Ag2b2;]
az1b11 + by az1b1z + azaby;

58

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Matrix Multiplication

= Will it be better?

" The cost of multiplying two nXn matrices consists of:

= 8 times the cost of multiplying two n/2Xn/2 matrices;

= 4 times the cost of adding two n/2Xn/2 matrices.

" The recursion equation is:
0(1) n=1

I'n) = {8T(n/2) +4n/2)? n>1

= Make use of the master method, T(n) = ©(n>). And thus this
method is no faster than the ordinary one.

= \What can we do?

59

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Matrix Multiplication with Strassen's algorithm

= Strassen’s algorithm (H4e$i 75 5.7%) reduces the number of multiplications
from 8 to 7.

m Strassen determined that if we let

my = (ay1 + azy)(b11 + by)
m, = (a1 + azz)byq

_ Less multiplication, at
ay1(b12 — byy) X .
_ byy — byq) expense of more addition
My = az2(byq 11

3
|

and subtraction.
ms = (ay1 + ay2)by;
me = (az; — agq)(b1g + by2)
m; = (ay2 — az3)(b21 + byy)
the product C is given by
m1+m4—m5+m7 m3+m5

c=|]
m2+m4 m1+m3—m2+m6

) BITARES SR

\) /
&5/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

@) M RT HENHER 60

Matrix Multiplication with Strassen's algorithm

= To multiply two 2X2 matrices, Strassen’s method requires 7
multiplications and 18 additions/subtractions.

= The standard method requires 8 multiplications and 4 additions/subtractions.

= Use 14 more additions/subtractions to save 1 multiplication. It that worthy?

= Recursion equation:
O(1 n=1
T(n) = { (1)

7T(n/2) + 18(n/2)* n>1
= Use the master method case 1, f(n) = 14—8712 = 0(n'°8277€) ~
0(n%817€) for e = 0.81.

= Therefore, we have T(n) = 0(n%31).

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

61

DEFECTIVE CHESSBOARD

Defective Chessboard

= A chessboard is an 2" x2"™ grid, forn = 0:

1x1 2X2 4x4 8%8

(@ BlIIXFEEFER &M T i RNHSE 63

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Defective Chessboard

= A defective chessboard (&AL £E) is chessboard that has one
unavailable (defective) position.

(@ BIIXKFHEEFER & AT tRNHER 64

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Defective Chessboard

= A triomino (=4%47) is an L shaped object that can cover three

squares of a chessboard.
® A triomino has four orientations.

®= You can use infinite number of triominoes.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 65

Defective Chessboard

= Task: Place triominoes on an 2™"x2" (n = 1) defective
chessboard so that all 2" x2™ — 1 nondefective positions are
covered.

= Totally, we place (2"x2™ —1)/3
triominoes.

s O

1x1 2X2 44 8%8
(@ BIIXZEEFER Z M AT HANHYE 66

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Defective Chessboard

" How to use divide-and-conquer?

= |f we divide it into 4 2"~ 1x2"~1 chessboard, only one is defective.

(@ BIIXKFHEEFER & AT tRNHER 67

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Defective Chessboard

® Put one triomino at their common corner, which makes all 4
small chessboards have a defective position.

(@ BlIIXFEEFER &M T i RNHSE 68

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Defective Chessboard

® Then, simply recursively solve this problem.

-
_m

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 69

TileBoard(tr, tc, dr, dc, size)
I if size = 1return ok < When size = 1, the board is 1x1.
2 tile « tile+ 1;t « tile
3 s« size/2 _ _ o .
4 [if dr <tr+sanddc < tc + s then < fehgeigl:]_lf defective position in this
Left 5 TileBoard(tr, tc, dr, dc, s)
top 6- else Board[tr +s—1,tc +s — 1] « t+——— Record triomino t on the board.
7 L TileBoard(tr,tc,tr + s—1,tc+s—1,5s)
8 [if dr < tr +sand dc > tc + s then
Right |9 TileBoard(tr, tc + s, dr, dc, s)
top 10| else Board[tr +s—1,tc+s] < t
11 TileBoard(tr,tc + s,tr +s—1,tc + s,5)
12 if dr = tr + s and dc < tc + s then tr: row of left-upper square
Left 13 TileBoard(tr + s, tc, dr. dc.,) tc: column of Ieft_—upper square
bottoml 14] else Board[tr + s, tc + 5 — 1] — ¢t dr: row of defective §quare
, dc: column of defective square
5L TileBoard(tr + s, tc, tr +5,tc + 5 —1,5) tile: accumulated triomino number
16[if dr > tr + s and dc > tc + s then £+ current triomino number
Right 17_ TileBoard(tr + s, tc + s, dr, dc, s)
bottom| 18| else Board[tr + s,tc +s] « t 70
9L TileBoard(tr + s, tc + s, tr + s, tc + s, 5)

Classroom Exercise

Write down the triomino number in the following defective
chessboard.

(@ BIIXKFHEEFER & AT tRNHER 71

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Solution:

(@ BIIXFERZH5R &N RT HENEER 72

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Time Complexity

" The recursion equation is:

T@):{ 0(1) n=1

ATm—1)4+c n>1

where
AT(n—1)+c
=4[4T(n—2)+c] +c
=4°T(n—2) +4c+c
=43T(n—3) +4%c+4c+c
= 4" IT(1) + 4" %c+ -+ 4c+c
= 04"

AT [% MDA .}, it ENESYR

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

73

DETERMINING THRESHOLD

Determining Thresholds

" For matrix multiplication and large integer multiplication, when
n is small, using standard algorithm will be even faster.

" For Mergesort, using recursive method on small array will also
be slower than quadratic sorting algorithm like exchange sort.

= How to determine the threshold?

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 75

Determining Thresholds

" |f we have the recursive equation of Mergesort measured by
computational time:

T(n) =32nlgn us
and selection sort takes
nn—1)
2

" We can compare and get the threshold:
nn—1)

T(n) =

Us

< 32nlgn
n < 591.

76

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

When Not to Use Divide-and-Conquer

® An instance of size n is divided into two or more instances each
almost of size n.

= nth Fibonacciterm: T(n) =T(n—1)+T(n—2) + 1.
= Worst-case Quicksort is also not acceptable: T(n) =T(n—1) +n — 1.

® An instance of size n is divided into almost n instances of size
n/c, where c is a constant.

m Eg.T(n) =T(n/2)+Tn/2)+ -+ T(n/2).

@) BITARESE

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 77

Conclusion

After this lecture, you should know:

" What is the key idea of divide-and-conquer.

" How to divide a big problem instance into several small
instances.

" How to use recursion to design a divide-and-conquer
algorithm.

" How Mergesort and Quicksort work and what are their
complexity.

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

78

Homework

= Page 63-65
5.1
5.3
5.8
5.10
5.18

79

= 5.19f15.20 3k —I5i

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

80

A T8 B R B 18

M AT RN#SYR 81

G) BITARERSE (7))
=l

o

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

