算法设计与分析

Lecture 5: Divide-and-Conquer

卢杨 厦门大学信息学院计算机科学系 luyang@xmu.edu.cn

Divide-and-Conquer

- The divide-and-conquer (分治) algorithm divides an instance of a problem into two or more small instances.
 - The small instance belongs to the same problem as the original instance.
 - Assume that the small instance is easy to solve.
 - Combine solutions to the small instances to solve the original instance.
 - If the small instance is still difficult, divide again until it is easy.
- The divide-and-conquer is a top-down approach.
 - Recursion is usually adopted.

Divide-and-Conquer

The divide-and-conquer paradigm involves three steps at each level of the recursion:

- Divide the problem instance into a number of small instances.
- Conquer the small instances by solving them recursively. If the sizes of small instances are small enough, just solve them without recursion.
- Combine (optional) the solutions to the small instances into the solution for the original instance.

Analyzing Divide-and-Conquer Algorithms

- When an algorithm contains a recursive call to itself, its running time can often be described by a recursion equation (递归方程).
- We can easily solve them by the methods we have learned in Lecture 4.

Analyzing Divide-and-Conquer Algorithms

- If the instance size is small enough, say $n \le c$ for some constant c, we can simply assume that the straightforward solution takes constant time $\Theta(1)$.
- The running time of a divide-and-conquer algorithm is based on the three steps of the basic paradigm:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

- D(n): the cost of dividing into small instances.
- aT(n/b): conquer a small instances with each size n/b.
- C(n): the cost of combining the solutions of small instances.
- D(n) and C(n) are usually merged into a function f(n) for analysis convenience.

MERGESORT

- Mergesort (合并排序) combines two sorted arrays into one sorted array.
- Given an array with n elements, Mergesort involves the following steps:
 - 1. Divide the array into two subarrays each with n/2 elements.
 - 2. Conquer each subarray by sorting it. Unless the array is sufficiently small, use recursion to do this.
 - 3. Combine the solutions to the subarrays by merging them into a single sorted array.

7 2 9 4 3 8 6 1

Mergesort Visualized Demo

- Call MergeSort(A, 1, len[A]) for the sorting problem.
- Recursive call with different array index:
 - p: starting index
 - *q*: middle index
 - *r*: end index
- Exit condition: p = r, there is only one element.

MergeSort(A, p, r)

- 1 if p < r then
- 2 $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3 MergeSort(A, p, q)
- 4 MergeSort(A, q + 1, r)
- 5 Merge(A, p, q, r)


```
Merge(A, p, q, r)

1 n_1 \leftarrow q - p + 1

2 n_2 \leftarrow r - q

3 for i \leftarrow 1 to n_1 do

4 L[i] \leftarrow A[p + i - 1]

5 for j \leftarrow 1 to n_2 do

6 R[j] \leftarrow A[q + j]

7 L[n_1 + 1] \leftarrow \infty

8 R[n_2 + 1] \leftarrow \infty
```

```
9  i \leftarrow 1

10  j \leftarrow 1

11  for k \leftarrow p to r do

12  if L[i] \leq R[j] then

13  A[k] \leftarrow L[i]

14  i \leftarrow i + 1

15  else A[k] \leftarrow R[j]

16  j \leftarrow j + 1
```

- Line 1-6: L and R are used to store two sorted subarrays with size n_1 and n_2 .
- Line 7-8: Assign infinity at the end of L and R for comparison convenience.
- Line 9-16: For each index from p to r, compare one by one and increase the index of the array with smaller element.

L

R

A

2	3	6	7	11	13	45	57

11	for $k \leftarrow p$ to r do
12	if $L[i] \leq R[j]$ then
13	$A[k] \leftarrow L[i]$
14	$i \leftarrow i + 1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j + 1$

- Loop invariant:
 - At the start of each iteration of the for loop in Lines 12-17, the subarray A[p ... k-1] contains the k-p smallest elements of L and R, in sorted order.
 - L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.
- We show that this loop invariant holds
 - prior to the first iteration of the loop;
 - after the kth iteration of the loop;
 - when the loop terminates.


```
11 for k \leftarrow p to r do
12 if L[i] \leq R[j] then
13 A[k] \leftarrow L[i]
14 i \leftarrow i + 1
15 else A[k] \leftarrow R[j]
16 j \leftarrow j + 1
```

Initialization

- Prior to the first iteration of the loop, we have k=p, so that the subarray $A[p \dots p-1]$ is empty.
- Both L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

11 **for** $k \leftarrow p$ **to** r **do**12 **if** $L[i] \leq R[j]$ **then**13 $A[k] \leftarrow L[i]$ 14 $i \leftarrow i + 1$ 15 **else** $A[k] \leftarrow R[j]$ 16 $j \leftarrow j + 1$

Maintenance

- \blacksquare Hypothesis: Before the kth iteration, the loop invariant holds.
- Let us first suppose that $L[i] \leq R[j]$. Then L[i] is the smallest element not yet copied back into A.
- Because A[p ... k-1] contains the k-p smallest elements, after Line 13 copies L[i] into A[k], the subarray A[p ... k] will contain the k-p+1 smallest elements.
- Before the next iteration, k and i are increased by 1.
 - A[p ... k] contain the k p + 1 smallest elements.
 - L[i+1] and R[j] are the smallest elements of their arrays that have not been copied back into A.
- Therefore, before the (k + 1)th iteration, the loop invariant holds.

11	for $k \leftarrow p$ to r do
12	if $L[i] \leq R[j]$ then
13	$A[k] \leftarrow L[i]$
14	$i \leftarrow i + 1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j + 1$

Termination

- At termination, k = r + 1.
- By the loop invariant, the subarray A[p ... k 1], which is A[p ... r], contains the k p = r p + 1 smallest elements of L and R, in sorted order.
- Therefore, the loop invariant holds. Merge correctly merges two sorted arrays into one sorted array.

Time Complexity of Mergesort

- No matter how different the input is, Merge always does r-p+1=n times of key comparison.
 - For sorting algorithms, we usually only count the number of key comparisons.
- So the recursion equation is:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$$

- By the master method case 2, we have $f(n) = n = \Theta(n) = \Theta(n^{\log_2 2})$.
- Therefore, $T(n) = \Theta(n \lg n)$ for best-, worst- and average-case.

Classroom Exercise

• Write each step of Mergesort to sort the following array: $\langle 27, 10, 12, 20, 25, 13, 15, 22 \rangle$

Classroom Exercise

QUICKSORT

- Mergesort splits the array first, and then combines them by merging.
- Can we roughly sort the array first, and then split it?
 - E.g. put small elements on the left, and large element on the right.
 - If we can do in this way, we don't need to merge.

- Quicksort (快速排序) is developed by British computer scientist Charles Antony Richard Hoare (Tony Hoare) in 1962.
- You can know the main property of Quicksort by its name – quick!
- When implemented well, it can be about two or three times faster than Mergesort.

Tony Hoare in 2011

Steps:

- Randomly select a pivot (支点) element.
 - Conventional use the first or last item.
- Put all the elements smaller than the pivot element on its left, and all the elements greater than the pivot element on its right.
- Recursively sort the left subarray and right subarray.
 - Each subarray is sorted after recursion call. Therefore, there's no need to combine the results.

Quicksort Visualized Demo

- Call QuickSort(A, 1, len[A]) for the sorting problem.
- Recursive call with different array index:
 - p: starting index
 - q: pivot index
 - r: end index
- Exit condition: p = r, there is only one element.

QuickSort(A, p, r)

- 1 if p < r then
- 2 $q \leftarrow \text{Partition}(A, p, r)$
- 3 QuickSort(A, p, q 1)
- 4 QuickSort(A, q + 1, r)

- Line 1: Simply select the last element A[r] as the pivot.
- Line 2: Use *i* to store the index for switching.
- Line 3-6: iterate over *j* to find elements smaller than *x* and switch them to the front.
- Line 7: put pivot at the proper position.

Partition(A, p, r)

- 1 $pivot \leftarrow A[r]$
- $2 \quad i \leftarrow p-1$
- 3 for $j \leftarrow p$ to r 1 do
- 4 if $A[j] \le pivot$ then
- 5 $i \leftarrow i + 1$
- $6 A[i] \leftrightarrow A[j]$
- 7 $A[i+1] \leftrightarrow A[r]$
- 8 return i + 1

Time Complexity of Quicksort

- In Partition, each element in *A* is compared with the pivot except itself.
- Therefore, the number of comparisons in Partition is n-1.

Partition(A, p, r)

- 1 $pivot \leftarrow A[r]$
- $2 \quad i \leftarrow p-1$
- 3 for $j \leftarrow p$ to r 1 do
- 4 if $A[j] \le pivot$ then
- $5 \qquad i \leftarrow i + 1$
- $6 A[i] \leftrightarrow A[j]$
- 7 $A[i+1] \leftrightarrow A[r]$
- 8 return i+1

Worst-Case Time Complexity of Quicksort

- The worst-case occurs when he array is already sorted (in either nondecreasing or nonincreasing order).
- In each recursion step, the pivot element is always the smallest or largest item.
 - Thus, n elements are divided into n-1 and 0 elements during recursive call.
- The recursion equation is:

$$T(n) = T(n-1) + T(0) + n - 1$$

Using recursion tree, we can easily get

$$T(n) = n(n-1)/2 = \Theta(n^2)$$

Worst-Case Time Complexity of Quicksort

- The closer the input array is to being sorted, the closer we are to the worst-case performance.
 - Because the pivot can't fairly separate two subarrays.
 - Recursion loses it power.
- How to wisely choose the pivot?
 - Random.
 - Median of A[1], A[[n/2]], and A[n]. Safe to avoid the worst-case but more comparisons are needed.
- What will be the best case?

Best-Case Time Complexity of Quicksort

- The best-case occurs when the Partition almost evenly splits the array:
 - Array has odd number of elements: Both subarrays have $\lfloor n/2 \rfloor$ elements.
 - Array has even number of elements: One subarrays has $\lfloor n/2 \rfloor$ elements and another has n/2.
- In both case, the size of the subarray is no more than n/2.
- The recursion equation is:

$$T(n) = 2T(n/2) + n - 1 = O(n \lg n).$$

What is the best case input for Quicksort when n = 12?

Solution:

The best case occurs when each pivot evenly split the array:

Think: how to write a best-case input generator for Quicksort?

- The worst-case of Quicksort is no faster than insertion sort (also $\Theta(n^2)$), and slower than Mergesort ($\Theta(n \log n)$).
- The best-case of Quicksort is slower than insertion sort $(\Theta(n))$.
- How dare it name itself "quick"?
 - The average-case behavior earns its name!

- To analyze the average-case time complexity, we can add randomization.
 - Randomly permutate the input array (uniform distributed input).
 - Randomly choose the pivot item.

By randomization, now the probability of pivot being any item in the array is 1/n.

$$T(n) = \sum_{p=1}^{n} \frac{1}{n} [T(p-1) + T(n-p)] + n - 1$$

$$T(n) = \frac{2}{n} \sum_{p=1}^{n} T(p-1) + n - 1$$

$$nT(n) = 2 \sum_{p=1}^{n} T(p-1) + n(n-1) \text{ (multiply by } n)$$

$$(n-1)T(n-1) = 2 \sum_{p=1}^{n-1} T(p-1) + (n-1)(n-2) \text{ (apply to } n-1)$$

$$nT(n) - (n-1)T(n-1)$$
= $2T(n-1) + 2(n-1)$ (subtraction)
$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$

Let
$$a_n = \frac{T(n)}{n+1}$$
, Harmonic series
$$a_n = a_{n-1} + \frac{2(n-1)}{n(n+1)} = \sum_{i=1}^n \frac{2(i-1)}{i(i+1)} \approx 2 \sum_{i=1}^n \frac{1}{i} \approx 2 \ln n$$
.

■ Therefore, $T(n) \approx (n+1)2 \ln n = (n+1)2 \ln 2 \lg n \approx 1.38(n+1) \lg n = \Theta(n \lg n)$.

LARGE INTEGER MULTIPLICATION

- Suppose that we need to do arithmetic operations on integers whose size is very large.
- In cryptography (密码学) and network security, encryption and decryption need to multiply very large numbers.
- How to do arithmetic for those large integers?

- Tradition algorithm is nothing but what we have learned in primary school.
- It takes $\Theta(n^2)$ bit operations.

- Use n-bit binary representation for u and v.
- We can use divide-and-conquer: Each integer is divided into two parts of n/2 bits each.

lacktriangle Therefore, integers u and v can be represented as:

$$u = w2^{n/2} + x$$
, $v = y2^{n/2} + z$.

Then, we have:

$$uv = (w2^{n/2} + x)(y2^{n/2} + z) = wy2^n + (wz + xy)2^{n/2} + xz.$$

• We need 4 recursive multiplications with size n/2 to calculate

$$wy2^n + (wz + xy)2^{n/2} + xz$$

- Multiply with 2^n is to simply shift by n bits to the left with cost $\Theta(n)$.
- 3 times of addition is also with cost $\Theta(n)$.
- The recursion equation is:

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 4T(n/2) + cn & n > 1 \end{cases}$$

- By the master method, we get $T(n) = \Theta(n^2)$.
- It is still quadratic. Why?

- We decompose the instance of n into 4 small instances with size n/2.
- If we can decrease 4 to 3, by the master method we get $T(n) = \Theta(n^{\lg 3})$.
- As before, we need to calculate

$$wy, wz + xy, xz$$

If instead we set

$$r = (w + x)(y + z) = wy + (wz + zy) + xz$$

we have

$$wz + xy = r - wy - xz$$

Then, we only need to calculate


```
Multiply2int(u, v)

1 if |u| = |v| = 1 then return uv

2 else

3 Split u into w and x; split v into y and z

4 A_1 \leftarrow \text{Multiply2int}(w, y)

5 A_2 \leftarrow \text{Multiply2int}(x, z)

6 A_3 \leftarrow \text{Multiply2int}(w + x, y + z)

7 return A_1 2^n + (A_3 - A_1 - A_2) 2^{n/2} + A_2
```

The above method yields the following recursion equation:

$$T(n) = 3T(n/2) + cn.$$

■ By the master method, we get $T(n) = \Theta(n^{\lg 3}) \approx \Theta(n^{1.59})$.

Write the pseudocode of binary search algorithm:

- Given a sorted array A,
 - If x equals the middle item, quit.
 - \blacksquare Otherwise, compare x with the middle item.
 - If x is smaller, search the left subarray.
 - If x is greater, search the right subarray.
- What is the time complexity?

Solution:

```
BinarySearch(A, x)

1 p \leftarrow 1

2 r \leftarrow n

3 k \leftarrow 0

4 while p <= r and k = 0 do

5 m \leftarrow \lfloor (p+r)/2 \rfloor

6 if A[m] = x then return m

7 else if x < A[m] then r \leftarrow m - 1

8 else p \leftarrow m + 1

9 return 0
```

```
RecursiveBinarySearch(A, p, r)

1 if p > r then return 0

2 else

3 m \leftarrow \lfloor (p+r)/2 \rfloor

4 if A[m] = x then return m

5 else if x < A[m] then

6 RecursiveBinarySearch(A, p, r-1)

7 else

8 RecursiveBinarySearch(A, p+1, r)
```

Divide-and-conquer algorithm is not necessarily implemented by recursion.

The recursion equation is:

$$T(n) = T(n/2) + 1.$$

■ By using master method case 2, we have $T(n) = \Theta(\lg n)$.

MATRIX MULTIPLICATION

Matrix Multiplication

- Given matrices A and B with size $n \times n$, compute the matrix product C = AB.
- The formula we have learned in linear algebra for doing this is:

$$C(i,j) = \sum_{k=1}^{n} A(i,k)B(k,j).$$

■ Calculating each C(i,j) takes O(n). Thus, calculating total $n \times n$ elements in C takes $O(n^3)$.

Matrix Multiplication

■ Suppose we want to product C of two 2×2 matrices, A and B, That is,

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}.$$

■ The divide-and-conquer version consists of computing *C* as defined by the following equation:

$$C = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}.$$

Matrix Multiplication

- Will it be better?
- The cost of multiplying two $n \times n$ matrices consists of:
 - 8 times the cost of multiplying two $n/2 \times n/2$ matrices;
 - 4 times the cost of adding two $n/2 \times n/2$ matrices.
- The recursion equation is:

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 8T(n/2) + 4(n/2)^2 & n > 1 \end{cases}$$

- Make use of the master method, $T(n) = \Theta(n^3)$. And thus this method is no faster than the ordinary one.
- What can we do?

Matrix Multiplication with Strassen's algorithm

- Strassen's algorithm (斯特拉森算法) reduces the number of multiplications from 8 to 7.
- Strassen determined that if we let

$$m_{1} = (a_{11} + a_{22})(b_{11} + b_{22})$$

$$m_{2} = (a_{21} + a_{22})b_{11}$$

$$m_{3} = a_{11}(b_{12} - b_{22})$$

$$m_{4} = a_{22}(b_{21} - b_{11})$$

$$m_{5} = (a_{11} + a_{12})b_{22}$$

$$m_{6} = (a_{21} - a_{11})(b_{11} + b_{12})$$

$$m_{7} = (a_{12} - a_{22})(b_{21} + b_{22})$$

the product C is given by

$$C = \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

Less multiplication, at

and subtraction.

expense of more addition

Matrix Multiplication with Strassen's algorithm

- To multiply two 2×2 matrices, Strassen's method requires 7 multiplications and 18 additions/subtractions.
 - The standard method requires 8 multiplications and 4 additions/subtractions.
 - Use 14 more additions/subtractions to save 1 multiplication. It that worthy?
- Recursion equation:

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 7T(n/2) + 18(n/2)^2 & n > 1 \end{cases}$$

- Use the master method case 1, $f(n) = \frac{18}{4}n^2 = O(n^{\log_2 7 \epsilon}) \approx O(n^{2.81 \epsilon})$ for $\epsilon \approx 0.81$.
- Therefore, we have $T(n) = \Theta(n^{2.81})$.

DEFECTIVE CHESSBOARD

■ A chessboard is an $2^n \times 2^n$ grid, for $n \ge 0$:

■ A defective chessboard (残缺棋盘) is chessboard that has one unavailable (defective) position.

- A triomino (三格板) is an L shaped object that can cover three squares of a chessboard.
- A triomino has four orientations.
- You can use infinite number of triominoes.

■ Task: Place triominoes on an $2^n \times 2^n$ ($n \ge 1$) defective chessboard so that all $2^n \times 2^n - 1$ nondefective positions are covered.

■ Totally, we place $(2^n \times 2^n - 1)/3$ triominoes.

How to use divide-and-conquer?

■ If we divide it into $4 \ 2^{n-1} \times 2^{n-1}$ chessboard, only one is defective.

Put one triomino at their common corner, which makes all 4 small chessboards have a defective position.

Then, simply recursively solve this problem.


```
TileBoard(tr, tc, dr, dc, size)
               if size = 1 return ok
                                                                  - When size = 1, the board is 1 \times 1.
              tile \leftarrow tile + 1; t \leftarrow tile
              s \leftarrow size/2
                                                                     Check if defective position in this
            \Gamma if dr  and <math>dc < tc + s then
                                                                     region.
                  TileBoard(tr, tc, dr, dc, s)
Left
              else Board[tr + s - 1, tc + s - 1] \leftarrow t \leftarrow

    Record triomino t on the board.

top
                  TileBoard(tr, tc, tr + s - 1, tc + s - 1, s)
             if dr  and <math>dc \ge tc + s then
         9
Right
                  TileBoard(tr, tc + s, dr, dc, s)
top
          10
               else Board[tr + s - 1, tc + s] \leftarrow t
                   TileBoard(tr, tc + s, tr + s - 1, tc + s, s)
                                                                    tr: row of left-upper square
          12 if dr > tr + s and dc < tc + s then
                                                                    tc: column of left-upper square
          13
                    TileBoard(tr + s, tc, dr, dc, s)
Left
                                                                    dr: row of defective square
               else Board[tr + s, tc + s - 1] \leftarrow t
          14
bottom
                                                                    dc: column of defective square
          15
                   TileBoard(tr + s, tc, tr + s, tc + s - 1, s)
                                                                    tile: accumulated triomino number
               if dr \ge tr + s and dc \ge tc + s then
                                                                    t: current triomino number
          17
                   TileBoard(tr + s, tc + s, dr, dc, s)
Right
bottom
          18
               else Board[tr + s, tc + s] \leftarrow t
                                                                                                       70
          19L
                   TileBoard(tr + s, tc + s, tr + s, tc + s, s)
```

Write down the triomino number in the following defective chessboard.

Solution:

3	3	4	4	8	8	9	9
3	2	2	4	8		7	9
5	2	6	6	10	7	7	11
5	5	6	1	10	10	11	11
13	13	14	1	1	18	19	19
13	12	14	14	18	18	17	19
15	12	12	16	20	17	17	21
15	15	16	16	20	20	21	21

Time Complexity

The recursion equation is:

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 4T(n-1) + c & n > 1 \end{cases}$$

where

$$4T(n-1) + c$$

$$= 4[4T(n-2) + c] + c$$

$$= 4^{2}T(n-2) + 4c + c$$

$$= 4^{3}T(n-3) + 4^{2}c + 4c + c$$

$$= 4^{n-1}T(1) + 4^{n-2}c + \dots + 4c + c$$

$$= \Theta(4^{n-1})$$

DETERMINING THRESHOLD

Determining Thresholds

- For matrix multiplication and large integer multiplication, when n is small, using standard algorithm will be even faster.
- For Mergesort, using recursive method on small array will also be slower than quadratic sorting algorithm like exchange sort.
- How to determine the threshold?

Determining Thresholds

If we have the recursive equation of Mergesort measured by computational time:

$$T(n) = 32n \lg n \ \mu s$$

and selection sort takes

$$T(n) = \frac{n(n-1)}{2}\mu s$$

We can compare and get the threshold:

$$\frac{n(n-1)}{2} < 32n \lg n$$

$$n < 591.$$

When Not to Use Divide-and-Conquer

- An instance of size n is divided into two or more instances each almost of size n.
 - nth Fibonacci term: T(n) = T(n-1) + T(n-2) + 1.
 - Worst-case Quicksort is also not acceptable: T(n) = T(n-1) + n 1.
- An instance of size n is divided into almost n instances of size n/c, where c is a constant.
 - E.g. $T(n) = T(n/2) + T(n/2) + \cdots + T(n/2)$.

Conclusion

After this lecture, you should know:

- What is the key idea of divide-and-conquer.
- How to divide a big problem instance into several small instances.
- How to use recursion to design a divide-and-conquer algorithm.
- How Mergesort and Quicksort work and what are their complexity.

Homework

■ Page 63-65

5.1

5.3

5.8

5.10

5.18

Experiment

■ 5.19和5.20中选一题

谢谢

有问题欢迎随时跟我讨论

