B AT

Lecture 6: Dynamic Programming

it

TR EAE B b AR A &

luyang@xmu.edu.cn

Fibonacci Sequence Reuvisit

= Fibonacci sequence is defined by
Fo=0
F,=1
E,=F,_{—F,_,, forn > 2

Fibl(n)

1 ifn <1 then

2 return n

3 else

4 return Fib1(n — 1) + Fib1(n — 2)

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

A [% M A .}, HRENESER 1

F6 __F's
e 8 o
Fso & F4 o3
/ { 1Y ®, F3 e EZ o, F3) O F2 | /' Fg A
LBy F3 Q QL F> Fl FU Fg EF; Fo F7 E)
A N ‘ F/ A\ \O) E1 A\O F3
,F_g F2 F ";Fl Fo F7 F

& /
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Fsa g F4 o3
‘1. X RIE3) EZ QUE'3 F2,: E'5 O
LBy F3 Q ‘.FQ Fl F F Fy Fo EF7 Fy
A A “ F/ \ F O F
pée F3 i F2 F2 ";Fl FO Fl ‘FO
L ON\\F; Fo F; F
F, \o 1 0 L1 0
= ! Computation of F; is repeated 8 times!
1 0

6y BIIXFERFER

S %
m»/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

4 4 .‘ ‘,. /
SO RED QUE

\\F; Fyp F; Fo

Computation of F3 is repeated 5 times!

6y BIIXFERFER

\))
m»/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Fibonacci Sequence Reuvisit

" |dea of improvement: record the values somewhere!

= Store F; somewhere after we have computed its value.

= Afterward, we don’t need to re-compute F;. We can retrieve its value
from our memory.

Fib2(n) Main()
1 if F[n] < 0 then L F0]=F[1] <1

2 fori « 2tondo
2 Fn] « Fib2(n — 1) + Fib2(n — 2) 3 Fli] = -1

3 return F[n] 4 print Fib2(n)

@) BITARESE

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

A [% M A .}, HRENESER 5

Fibonacci Sequence Revisit

A Fo] | 1
. = - Fr1 | o1
” F|2
i B 21| 2
| F31 | 3
Fla] | s
Ey F'3
- Fist | s
E'3 >
A\ Fiel | 13
"Fg ‘—7
Fi F71 | 2

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 6

Fibonacci Sequence Reuvisit

= Can we do even better?

= Although we didn’t waste time

on repeated computation, we Fib3(n)
make a lot of recursive function 1 F[0] « 1
calls.
2 F[1] <1
= Must we use recursion? 3 fori < 2 tondo
= |dea to further improve 4 Fli] « F[i = 1]+ F[i — 2]
= Compute the values in bottom- 5 return Fn|
up fashion. This new implementation
= Thatis, compute F, (we already saves lots of overhead.
know Fy = F; = 1), then F3,
then Fy...

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Recursion vs. Dynamic Programming

® Recursion:
= Too slow.

= Time complexity: 0(2™).

Fibl(n)

1 ifn <1 then

2 return n

3 else

4 return Fib1(n — 1) +
Fibl(n — 2)

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

= Dynamic Programming:

= Efficient!

= Time complexity: O(n).

hn B W =

Fib3(n)

F[0] « 1

F[1] « 1
fori <« 2tondo

Fli] « F[i — 1]+ F[i — 2]
return F[n]

AT [% MDA .}, it ENESYR

Dynamic Programming

= Write down a formula that relates a solution of a problem
instance with those of small instances.

mEg. Fm)=Fn—1)+F(n—2).

" Index the sub-problems so that they can be stored and
retrieved easily in a table (i.e., array).

= Fill the table in some bottom-up manner; start filling the
solution of the smallest instance.

= This ensures that when we solve a particular instance, the solutions of all
the smaller instances that it depends are available.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Dynamic Programming

= For historical reasons, we call such
methodology Dynamic Programming

(BHZSALR).

" |t was developed by American
applied mathematician Richard
Ernest Bellman in 1950s.

® |t is also called Bellman equation in
optimization field.

Richard Ernest Bellman
(1920-1984)

BIIXZFERBFER (=) &0 »T sz 10

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

SN
ST RN
for O\
x| *|
% / ’,/

o/

Image source: https://en.wikipedia.org/wiki/Richard E. Bellman

https://en.wikipedia.org/wiki/Richard_E._Bellman

Divide-and-Conquer vs. Dynamic Programming

= Common: Problem is partitioned into one or more subproblem, then
the solution of subproblem is combined.

= Divide-and-conquer method
1. Subproblem is independent.
2. Subproblem is solved repeatedly.
= Dynamic programming
1. Subproblem is not independent.
2. Subproblem is just solved once.
® DP reduces computation by
1. Solving subproblems in a bottom-up fashion.

2. Storing solution to a subproblem the first time it is solved.
3. Looking up the solution when subproblem is met again.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

11

Dynamic Programming

" Key idea:

= Top-down design: Determine structure of optimal solutions.

m Bottom-up solve: Avoid repeated computation.

® Dynamic programming is typically applied to optimization
problems. It is broken into a sequence of four steps.

1.
2.
3.

Characterize the structure of an optimal solution.
Recursively define the value of an optimal solution.
Compute the value of an optimal solution in a bottom-up fashion.

Construct an optimal solution from computed information.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

12

Examples in This Lecture

= Assembly-line scheduling

® Matrix-chain multiplication

" The longest-common-subsequence problem
= 0/1 knapsack problem

® Optimal binary search tree

= Traveling salesperson problem

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 13

ASSEMBLY-LINE SCHEDULING

Assembly-Line Scheduling

Assembly-line scheduling (ZEfid
2%1)f) problem:

= There are two assembly lines
(BEfidZk), each with n stations
(ML).

= An automobile chassis (5.2

JE#E) enters the factory needs
to go though all n stations.

) BIIRFERFER () ZHrTdHanuss

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

15

Image source: http://www.auto-assemblyplants.com/sale-11709073-vehicle-assembly-line-automotive-manufacturing-equipment-business-partners.html

http://www.auto-assemblyplants.com/sale-11709073-vehicle-assembly-line-automotive-manufacturing-equipment-business-partners.html

= The jth station on line i (i = 1 or 2) is denoted S;[j] and the
assembly time at that station is a;[J].

= At the beginning, a chassis takes e; time to enter the factory.

= After going through the jth station on a line, the chassis goes
on to the (j + 1)st station on either line.

" There is no transfer cost if it stays on the same line, but it takes
time t;[j] to transfer to the other line after station S;|[j].

= After exiting the nth station on a line, it takes x; time for the
completed auto to exit the factory.

" The problem is to determine which stations to choose from line
1 and line 2 in order to minimize the total time.

= S;|j]:The jth stationon linei (i = 1 or 2).
= q;[j]:The assembly time required at station S;[j].
= t;[j]: The transfer cost from S;[j] to another line.

= ¢; :Entry time.

= x;: Exit time.

Brute-Force Solution

Brute-force solution (& J] fi#%):

= Enumerate all possibilities of selecting stations.

= Compute how long it takes in each case and choose the minimum

one.
Assembly line 1 2 3 4 n
Choice 211 1| 2 | ---}---- --- | 2
choose line 1 at station 3 choose line 2 at station n

= How many possible ways? 2"

= |s it possible for large n? No!

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

19

Structure of an Optimal Solution

" Let’s consider the fastest way possible to get from the starting

point through station S [/].

= |f j = 1: determine how long it takes to get through S;[1].
= |f j = 2, have two choices of how to get to 54 [/]:
= Through S;[j — 1], then directly to S; [J].

= Through S,[j — 1], then transfer over to S; [/].
= Similar for the case through S,[j — 1].

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

20

Structure of an Optimal Solution

= Suppose that the fastest way through station S;[j] is through
station S;[j — 1]. The chassis must have taken a fastest way
from the starting point through station S;[j — 1].

= |f from S{[j — 1] to S1[j] is optimal, S{[j — 1] is also optimal.
" Why?
" Prove by contradiction: If there were a faster way to get

through station S;[j — 1], we could substitute this faster way to
yield a faster way through station S;[j] : a contradiction.

= |f S;[j — 1] is not optimal, from S;[j — 1] to S1[j] is also not optimal,

21

\\ 2
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

® Generalization: an optimal solution to the problem find the
fastest way through S;[j] contains within it an optimal solution
to subproblems: find the fastest way through S;[j — 1] or

Solj — 1].

= This is referred to as the optimal substructure property (F/4LF
AT J5T).

® Optimal substructure property is one of the hallmarks of the
applicability of dynamic programming.

= We use this property to construct an optimal solution to a problem from
optimal solutions to subproblems.

(ty) BIIRFERFR 22

&)
N3/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

= Denote f;[j] as the fastest time to get from
the starting point through station S;[/].

= Fastest way through S;[j] is either: -

= fastest way through S;[j — 1] then directly
through S [J]:

il = AU — 1] + a41lj]

= fastest way through S,[j — 1], transfer from line 2
to line 1, then through S4j]: -

Ul = LU -1+ [— 1] + a4[j] Sl —1]
= |n summary:
filil = min(fi[j — 11+ a.J], LU — 1 + 6. — 1] + a1 j]D)
/

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 23

Similar for f,[J]

Recursive Equation

= The recursive equation:
(

fvl[j]:< a1[1]+el]:
min(filj — 1]+ a.[jl. LU — U+t -1+ a[jD j>1°

fz[f]=*(a,[1] + e, j= |
(min(fz[j — 11 + ax[j], Al — 11+ &1 [j — 1 + ax[jD j>1

= The optimal solution when finishing:

f* =min{f[n] + x1, frln] + x,}.
= How to solve? How about recursion?
1 2 3 4 5

7~ -~ 7~ ~

1 2 3] « 4] 4 5
|| ne] Bl Ay A0 |
running time!
fal1l | fad2l || £2I31440 fo14 4P fols]
4times 2 times
6y) BIIKHERFR & *§ AENRER ”

Computing the Optimal Solution

= Forj = 2, each value f;[j] depends only on the values of:

fili — 1] and f5[j — 1].

= Compute the values of f;[j] in increasing order of j.

| 2 3 4 5

filj] OO
AN O1

Calculate column by column in increasing order of j

= Bottom-up approach:
® First find optimal solutions to subproblems.

" Find an optimal solution to the problem from the subproblems.
6y BITKAERER AT HBENHER 25

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Additional Information

= f* only records the optimal cost. How can we know the decisions at
each step?

= To construct the optimal solution, we need the sequence of what line
has been used at each station:

= [;[j]: the line number (1 or 2) whose previous station (j — 1) has been used
to get in fastest time through S;[j],j = 2,3, ..., n.

= [*:the line whose station n is used to get in the fastest way through the
entire factory.

2 3 4 5

L1[/]
L21]
—

Calculate column by column in increasing order of j
) BIIRFEESER & r T tRNHeS ’6

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

DPFastestWay(a, t, e, x, n)

I f1[1] « er + a1[1]; f2[1] « ez + az[1]
2 for j < 2tondo

3 if fi[j —1] < faJ —1] +t,[j — 1] then

4 filil < fili — 1] + a4 [J] «— From line 1 toline 1 |7

5 Ljl <1 - S11]
0 else il < 2=+ 6I =11+ all < From line 2 to line 1 |-

7 Lj] <2

8 if f,[j —1] < filj — 1]+ ¢41[j — 1] then

9 fz[]] f[]—1]+a2[]'] < From line 2 to line 2 | 7

10 L] < - S, []
1 else f2l/] < fl[]_l]+t1[j_1]+a2[j] “ From line 1 to line 2 | 4

12 L[] <1

13 if fl[n] + X1 < fz[n] + Xy then
14 [T < filn]+x
15 " <1 Running time: ®(n)

16 else f* — fz[n] + X9 27
17 [* <2

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

28

Construct an Optimal Solution

® After calculating, how can we know the optimal solution?

PrintStations(l, n) Output:

1 iel” line 1, station 6
2 print “line ” [“, station ”’ n

3 for j < n downto 2 do line 2, station 5
4 L L[]

5 print “line ” { “, station ” j — 1 line 2, station 4

line 1, station 3

line 2, station 2

£

Ll |1 2 1
LT | 1 2 =2 2

line 1, station 1

6y BIIXFERFER

Q
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT HRENHSER 29

Construct an Optimal Solution

The fastest assembly way: f* = 38

) BITARERSR (7
EN a5
\")

Lo S SCHOOL OF INFORMATICS XIAMEN UNIVERSI

TY

M *T RN HYS 30

Optimal Solutions

® Dynamic programming not only solves the optimal solution for
n =6, butforalln(n <6).

m Each cell in the table records the optimal solution.

® Every optimal solution is built upon previous optimal solutions.
Thus, everything in the table is an optimal solution!

Fili1] 9 | 18 | 20 | 24 | 32 | 35 L |t 2 1] 2
201112 116 | 22 | 25 | 30 | 37 LT | 1 2 1 2 2

@) BTSSR 31

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Write the table of f[j] and [[j] for the following problem and
determine the optimal solution:

32

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

J 2 3
£ 8 | 17| 22 Ll 1|l
f2l1 | 11 | 17 | 20 LT | 1 | 2

f*=22 " =2

) BIIRFERFRH

- / SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

33

MATRIX-CHAIN MULTIPLICATION

Matrix-Chain Multiplication

Matrix-chain multiplication (%5 P4 4%3f %) problem:

= Given achain A4, A4,,..., A, of n matrices, where fori =
1,2, ...,n, matrix A; has dimension p;_1 Xp;.

Ay - Ay Ay - Ay - Ay

PoXP1 P1XP2 Pi-1XPi PiXPi+1 Pn-1XDPn
= Matrix production satisfies the associative law (55 f#). Thus,

the order of calculation doesn’t influence the production result,
but influence the efficiency.

= Goal: fully parenthesize (fll#5 %) the product 4,4, ...A, in a
way that minimizes the number of scalar multiplications.

6y B chahf" %aLB;E

\o\ A
\&z=” SCHOOL OF INFOR

35

Matrix Multiplication

= To multiply an nXm matrix with a pXqg matrix using the
standard method, it is necessary to do nXmXq elementary
multiplications.

MatrixMultiply(A4, B)
1 if m # p then
2 print “Two matrices cannot multiply"

3 elsefori < 1ton

-+ for j < 1toqgdo Running time:
5 Cli,j] < O ©(nmq)

6 for k <« 1tomdo

/ Cli,j] < Cli,j] + Ali, k]B|k, j]

8 return C

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

36

= Consider the chained matrix multiplication:
A X B x € x D
20X 2 2x30 30x12 12X8

= The total number of elementary multiplications depends on the
multiplication order.

A(B(CD)): 30%x12x8+ 2x30%x8 4+ 20x2x8 = 3,680
(AB)(CD): 20%x2x30+ 30x12x8 4+ 20x30x8 = 8,880
A((BC)D): 2x30%x12 + 2Xx12x8 4+ 20x2x8 = 1,232

((AB)C)D: 20%x2x30 + 20x30x12 + 20x12x8 = 10,320
(A(BC)D): 2x30%x12 4 20x2x12 + 20x12x8 = 3,120

6y BIIXFERER AT HRNHER 37

3=/ SCHOOL OF INFORMATI

Counting the Number of Parenthesizations

" Brute-force solution: Find them all and pick the smallest!

" How many ways can we parenthesize the product of a matrix
chain?

= Denote P(n): The number of alternative parenthesizations of a sequence
of n matrices.

= We can split a sequence of n matrices between the kth and (k + 1)st
matrices for any k = 1,2, ...,n — 1 and then parenthesize the two
resulting subsequences independently.

(A14z .. Ak)(Ag+14k+2 - An)
= Sumoverallk = 1,2,...,n — 1 with recursive calculation.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

38

Counting the Number of Parenthesizations

= \We obtain the recursive equation:

(1 n=1

n—1
PM) =N pioyp(n—k) n=2

\
= The solution to the above recursive equation is Q(2™).

39

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

= Assume we have found an optimal solution for parenthesizing
A{A, . Ay

= The optimal parenthesization must be with some k, for 1 <
k<n-—1:

(A1 - Ai) (Ag41 - An)

= Then, the parenthesization for A; ... A;, and Ay ... A;; must
also be optimal.

= Why? Prove by contradiction again!

= We find the optimal substructure: An optimal solution to an
instance of the matrix-chain multiplication is constructed by
the optimal solutions to subproblems.

) BIIRFEREM f DR A RNEER 40

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

Ay Ay

N

(A1 - Ai) (Ag41 - An)

((A1 AN Ay, ...Ak))((Ak+1 A) (At ...An))

" Therefore, we need to consider the optimal solution for
AiAiyq - Aj, forarbitrary1 <i < j <n.

AT [% MDA .}, it ENESYR 41

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Recursive Equation

= We define 4; j = A;jA;+1 - Aj and let m[i, j|=the minimum
number of multiplications needed to compute 4;_;.

= Suppose that an optimal parenthesization of 4;_; splits the
product between Ay, and Ay, wherei < k < j:

mli,j] = mli, k] + m[k+1,j] + pi—1pkp;
Optimal cost to Optimal cost to Cost to calculate
calculate 4; calculate A1 (Ai k) Aks1..5)

" Now, if we have known all the optimal costs to the small
instances, how to construct the optimal cost to the current
instance?

Iterate over all k for i < k < j and select the minimum one!

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

42

Recursive Equation

= There are j — i possible valuesfork: k =1i,i+1,...,j — 1.

= Minimizing the cost of parenthesizing A; ; becomes:

(0 i = j

mli, j] = 1 _rrkig_m[i, k]l +mlk +1,j] +pioapep; 1<)
i<k<j
\

= The original problem is solved by calculating m[1, n].
" How to calculate?

Recursion does lots of repeated computation, which isn’t faster
than brute-force approach. We should apply bottom-up
approach with dynamic programming!

6y BIIXSERFMKR AT HRNHER 43

&)
3=/ SCHOOL OF INFORMATICS XIAMEN

Filling Table

" To avoid repeated computation, we use a table to store
computed values of m|i, j|.

" Given the recursive equation

mli,j] = irsr;{igj mli, k| + m|k + 1,j] + p;_1pkD;

what components do we need to calculate m|i, j]?
= Fixi,allmli, k] fori <k <j.
= Fixj,allmlk + 1,j] fori <k <.

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

44

Filling Table

= Calculating m|i, j] only requires:

= mlk + 1,j] fori < k < j: The columns behind m[i, j] on the same row.

: K mli, j]
;o / mli,j + 1]

N m[i, i

What are fthe cells
in the shalded area?

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

1 HRNESER 45

= Given the recursive equation: 12 3 4 5 n
min m[i, k] + m[k + 1,j] + p;_1pkDj n
i<k<j 5
= Calculating m|[2,5]: .
(J
3
min< m|2,3] + m[4,5] + pyp3ps k =3 N

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 46

Filling Table

® Can we filling the table in this order?

B

/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

]
(|
)I.
e
i
ol
4

47

Filling Table

= How about this order?

) | N

| 7 =~

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

48

Filling Table

= Filling the table diagonal by diagonal.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

49

1 2 3
= Given:
= A,: 10x100 (pyXp;) 31 7500 | 25000 0
= A, 100X5 (p;xp,) > | s000 0
= Az 5X50 (p,Xps) 1 X
= Calculate:

= m[i,i] =0fori=123.

= (A, 4):m[1,2] = m[1,1] + m[2,2] + pypip, = O + 0 + 10x100x5 = 5,000.
= (A,45): m[2,3] = m[2,2] + m[3,3] + pyp,ps = 0 + 0 + 100x5%50 = 25,000.
= (A1(A243)): m[1,1] + m[2,3] + pop1p3 = 75,000.
+m[3

s ((A145)A3): m[1,2] + m[3,3] + pop2p3 = 7,500.

;) BITARERE

\% 9,
@/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

50

Reconstructing the Optimal Solution

= Again, we need additional information to maintain the optimal
solution to the optimal cost.

" Let s[i, j]=a value of k at which we can split the product 4;__; in
order to obtain an optimal parenthesization.

51

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

DPMatrixChain(p)

1 fori<—1tondo <« First diagonal

2 m[i,i] < 0

3 forc < 2tondo <—— From 2nd to nth diagonal

-+ fori<1ton—c+1do

5 jei+c— 1'§ Given c, determine the
6 m[i,j] « oo Jth column and ith row
7 fork < itoj—1do

8 q < mli, k] +mlk +1,j] + pi—1prp;j
9 if g < m|[i,j] then

10 mli,j] « q; s[i,j] < k

11 returnm and s

Running time: ®(n3)
) BIIRFEREM f DR A RNEER 52

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Construct the Optimal Solution

= s|i,j] stores the value of k such that the optimal solution of
A; j splits the productint A; , and Agyq_ ;-

[
1 2 3 4 5 6
oOBEHOHE
sl 3133 4] - Ai.n = A1 510 As[inl+1.,
41 3 3 3 i, Ay.6 =A1.344.6
/ 3K_ 1) 2 - Aj 3= A1 14, 3
21 1 - Ay g = Ay 544 6
1 -

ty) BITAZ(EREER

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

e /% M~ .}’ HTREN#ESR 53

PrintParens(s, i,)

1 if i = j then print “4;”

2 else print “(”

3 PrintParens(s, i, s[i, j])

4 PrintParens(s, s[i,j] + 1, j)
5 print)”

Ao+
I

W [W | W]W

DO | W W I[WILIN

—_ =W W W=

e \° IS I RV, B e)

Function call Printed value
PrintParens(s, 1, 6) (
PrintParens(s, 1, 3) ((
PrintParens(s, 1, 1) ((A4
PrintParens(s, 2, 3) ((A4(
PrintParens(s, 2, 2) ((A1 (4,
PrintParens(s, 3, 3) ((A1 (A543
PrintParens(s, 4, 6) ((A1(A,43))(
PrintParens(s, 4, 5) ((A1(A243))((
PrintParens(s, 4, 4) ((A1(A243))((As
PrintParens(s, 5, 5) ((A1(A5A43))((A4As
PrintParens(s, 6, 6) ((A1(A2A43))((A4A5)Aq

Finish

((A1(A243))((A445)A46))

54

Classroom Exercise

= Given the following matrices, fill in the table to get the optimal
parenthesization:

m A:2X2
= A,:2%X4
= Az:4X2
" A, 2X6

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 55

Classroom Exercise

I I
1 2 3 4 1 2 4
4148 |40 | 48| 0 41 3 | 3 -
3124116 0 3 1 2 -
J J
2116 | 0 21 1 i}
1| 0 1| -
mli, j] sli, j]
((A1(4243))A,)

Gy BITKEERER A <] HRNEER >

\) %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

THE LONGEST-COMMON-SUBSEQUENCE
PROBLEM

The Longest-Common-Subsequence Problem

= |n biological applications, one goal of comparing two strands of DNA
is to determine how "similar"” the two strands are, as some measure
of how closely related the two organisms are.

= One way to measure the similarity between S; and S, is by finding a
third strand S5: the bases in S; appear in each of §; and S,; these
bases must appear in the same order, but not necessarily

consecutively.

BECEETE A AR RAEE

RECRC AR ECERC]
EI‘J**‘%.%*E f AT HENRYLE 58

\) 5
« SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: https://www.8bitavenue.com/dynamic-programming-longest-common-subsequence/

https://www.8bitavenue.com/dynamic-programming-longest-common-subsequence/

The Longest-Common-Subsequence Problem

= Given a sequence X = (x4, X5, ..., X;), another sequence Z =

(21, Z5, ..., Z}) is @ subsequence (§-J3741]) of X if there exists a
strictly increasing sequence i4, i, ..., [, of indices of X such
that forallj = 1,2, ..., k, we have Xi; = Zj.

" Given two sequences X and Y, we say that a sequence Z is a

common subsequence (AT JFH))of X and Y if Z is a
subsequence of both X and Y.

= |n the longest-common-subsequence (F KA+ F41)
problem, we are given two sequences X = (x{, X5, ..., X;) and
Y = {(y1,¥2, ..., ¥n) and wish to find a maximum-length
common subsequence of X and Y.

59

@) BITARESE

)
i/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

ﬁﬁ¢£> X =(A,B,C,B,D,A, B)

/| /4

Y =(B,D,C,A,B,A) Y =(B,D,C,A,B,A)

" (B,C,B,A)and (B, D, A, B) are longest common subsequences
of X and Y (length = 4).

= (B,C,A)is acommon subsequence, but not the longest.

\ E»-igv [% M~ .}, HTREN#ESR 60

Brute-Force Solution

= For every subsequence of X, check whether it's a subsequence
of Y.

= There are 2™ subsequences of X to check.

= Each subsequence takes ®(n) time to check.

m Scan Y from the first element, and check if it is matched with the
subsequence.

= Running time: ®(n2™).

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 61

Optimal Substructure

= Given two sequences X;,, = (X1, Xp, ..., Xpp) and Y, =
(Y1, V2, «+)» V), assume the Z;, = (24, 25, ..., Z}) is a LCS.

= |f the last element of X,,, and Y}, is same, i.e. x,,, = y,,, they are
also same as the last element of Zj,:

Zk =Xm =Yn = N
Xm — <Xm_1, .>, Yn — <Yn_1, .>, Zk — <Zk—1; .>
® |n this case, Zj,_q isalsoa LCS of X,,,_1 and Y}, .

= Prove by contradiction.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

62

Optimal Substructure

= Given two sequences X;, = (X1, X, ..., Xpp) and ¥}, =
(Y1, Y2, -, Yn), assume the Z;, = (z4, Z5, ..., Z}) is a LCS.
= |f the last element of X,,, and Y,, is different, i.e. x,;; # yy:
w |fz, # X,
Xm = (Xip—1, W), Yo, Zy =Zk-1,®)
no matter z, = y,, or not, Z, is a LCS of X,,,_1 and V},.

= |f Zy * Yn,
Xm, Yn — <Yn_1, .>, Zk — <Zk—11 ‘>

no matter z;, = x,,, or not, Z isa LCS of X,,, and Y,,_.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

63

Optimal Substructure

= Denote c|[i, j] as the length of a LCS of the sequences X; =
(X1, X2, e, Xi) and Y = (Y1, Y2, o, Vj)-
= If x; = yj, the LCS composes of the LCS of X;_; and Y;_; with x;:
cli,jl=cli—1,j —1] + 1.

= If x; # yj, the LCS is either the LCS of X;_4 and Y}, or the LCS of
Xiand Y;_;. We choose the longer one:

cli,j] = max{cli —1,j],c[i,j — 1]}.

AT [% MDA .}, it ENESYR 64

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

= Case 1: x; = y;
X;i =(A,B,D,E), Y, =<(Z,B, E), Z, =(B,E)
Xi—l — <A, B,D>, Y]'—l = <Z,B>, Zk—l —

= Case 2: x; # Yj
X;i =(A,B,D,G), Y, =<{Z,B, D), Z, =(B,D)

Zy is either the LCS of X;_; and Y; ((B, D)) or the LCS of X; and
Yi_1 (B)).

AT [% M~ .}, HTREN#ESR 65

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Recursive Equation

" The recursive equation:

(0 i=0o0rj=0
cli, j] = < cli—1,j—1]+1 i,j >0andx; =y;
max{cli — 1,j],c[i,j — 1]} i,j > O0andx; #y;

\
= |Inthe case of i = 0 orj = 0, the length of LCS is O because it is empty.

® Using recursion, is there any repeated computation?

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

66

Filling Table

(0 i=0orj=0
cli,j] = cli—1,j—1]+1 i,j >0andx; =y;
\max{c[i —1,jl,cli,j—1]} i,j>0andx; #y;
0 1 2 J n
. 0 0 0 0 0 0
0
1 —
0
2 I
0 < cli—=1,j=1] | c[i5LJ]
0 ‘ cli,j—1] «— clij]
0
m
BIXZEERER (=) »Tianuss 67

Additional Information

= c[i, j] only records the length of LCS, we need to record
additional information for constructing LCS.

= p|i,j] records the choices made to obtain the optimal value.

J

o 1 2 n

ifxl.zyj Oto o | o0 0] 0] O
blij] =" N\’ Lo
elselfc[l—1]]2 cli,j—1] | 2|0
bli,jl=“1" 0

else 0 ~{

bli,jl ="«" m [o

EI Jdcahf" %abﬂ?u

N3/ SCHOOL OF INFOR|

A [2 M A ii"’ﬁ-ﬂﬂ#* 68

LCSLength(X,Y,m,n)

1 fori < 1tomdoc[i,0] <0
2 forj<0tondo c[0,j] <0
3 fori < 1tomdo

4 forj <« 1tondo

5 if x; = y; then

6 cli,jlecli—1,j—1]+1 Running time:
7 bli,jl] < “\" ®(nm)

8 elseif c[i — 1,j] = c[i,j — 1] then

9 cli,j] « cli—1,]]

10 bli,jl<“1"

11 else c[i,j] < c[i,j — 1]

12 bli,jl « “«”

13 return c and b

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

69

J
0 | 2 3 4 5 6
i B D cC 4 B A
0 x| 9 0 0 0 0 0 0
AN AN
I 4 0 g (T) (T) 1 | «1 1
N T o\
2 B 0 I | «1 |«1 1 2 |2
X=(B,D,C,A B,A) 2 AN 1
- 3 C 0 1 1 2 | «2 2 2
Y={@A,B,C,B,D,A) ; 3 7 T %
4 B 0 1 1 2 2 3 <3
AN
5 D 0 I 2 /Zr /21\ /3r ;)r
0 0 N N RN
6 A 0 1 2 2 3| 3 4
N 0 0 TN T
7 B 0 | 2 2 3 4| 4
Gy BITRFEEEER 70

O #
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: 0 1 2 3 4 5 6
= Constructing a LCS: Start at v s b e R p
b[m,n] and follow the -
arrows. When we 0 x| o 0 0 0 0 0 0
encounter a “\“in bl[i,], U 2 2 MHEN %
it means x; = y; and itis () [0 |0 0 I |« !
an element of the LCS. 2 B | @ L) | < I \2)
T T T T
PrintLCS(b, X, i, j) 3C L o 1 1 'G) H) 2 | 2
1 ifi=0o0rj=0thenreturn0 |, , '\1 I g g '(3)
2 if b[i,j] ="~ "then 0 - <3
30 PrindCSG.Xi-1Lj-Dsp |, | 1 [3|1 ||}
T printx N EERN
5 elseif b[i,j] ="1T" then 6 4 0 1 2 2 3 3 4
6 PrintLCS(b, X,i — 1,) = R @
7 else PrintLCS(h, X,i,j—1) | 7 8 L ! 2 | 2 > 41 \4

Output: BCBA
Gy) BIIRAERFR ()0 »7tanues 71

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Uniqueness

" This algorithm is deterministic. However, the LCS is not unique.
Why?

= Weset b[i,j] <« “T”whencl|i —1,j] = c[i,j — 1]. However,
bli,]] « “ <« ”is also optimal in this case.

5if x; = y; then

6 cli,jlecli—1,j—1]+ 1

7 b[i’j] «— «“ \ »

8 elseif c[i — 1,/](X)c[i,j — 1] then

9 cli,jl < cli = 1,j]

10 bli,jl]<"“T"

11 else c[i,j] « c[i,j — 1]
12 bli,jl < “<«"”

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

72

Unigqueness

0 1 2 3 4 5 6
Y B D c 4 B 4
0 x| o 0 0 0 0 0 0
. HEEEER ~
0 «~—0 «0 «~—0 1 «1 1
0 AN
2 B 0 b @ «1 |« 2 | <2 BCBA
0 T 0 0
3¢ (o) | 1 |« v@) £2)|<2 |2 BCAB
0
* 8o EH BDAB
T
> bl o 1 ‘G)
0 0
6 4 | o 1 2
AN 0
78 | o 1 2

6,y) BIIKFERER

\) %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

73

Space Improvement

= How each entry c[i, j| is computed?

= |tdependsonlyonc|i—1,j —1],cli —1,j],and c[i,j — 1].

= |[f we only need the length of the LCS, we only need the row
being computed and the previous row.

= \We can reduce the asymptotic space requirements by storing only these
two rows.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 74

Classroom Exercise

Draw the table of LCS of the following sequences, and find a LCS:
X={(A/._C,D,A Y={A,D,C,A

75

Classroom Exercise

0 1 2 3 4
Y A4 D c 4
N 0o | o 0o | o0
1 4 0 v\1 1 | «1 v\1
2 C 0 T I \2 2
3D o T v\2 g g
4 4 0 \1 g g \3
ACA

ty) BITAZ(EREER

\\ 2
&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

76

0/1 KNAPSACK PROBLEM

0/1 Knapsack Problem

0/1 knapsack (0/17541) problem:

= There are n items: the ith item is
worth v; dollars and weights w; kg.

" The capacity of knapsack is W kg.

® [tems must be taken entirely or left
behind.

= Which items should we take to
maximize the total value?

6y BITKAERER AT HBENHER 78

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Image source: https://en.wikipedia.org/wiki/Knapsack problem

https://en.wikipedia.org/wiki/Knapsack_problem

0/1 Knapsack Problem

= Mathematical description: Given an item set s = (1,2, ..., n),
and two n-tuples of positive numbers (v4, V5, ..., 1) and

(Wq, Wy, ..., Wp,), and W > 0, we wish to determine the subset
s'€{1,2,...,n} that

maximize Z V;
LES/

subject to z w; < W

LESY

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 79

= Weight capacity W = 5kg.

" The possible ways to fill the
knapsack:

= {1, 2, 3} has value $37 with weight 4kg.

= {3, 4} has value S35 with weight 5kg.

= {1, 2, 4} has value $42 with weight 5kg.

(optimal)

6y BIIXFERFER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

i v | wi

1
2
3
4

$10
$12
$15
$20

1kg
1kg
2kg
3kg

80

Optimal Substructure

" The variables we should use in recursive equation must be the
maximum profit V.
" How a V' can be decomposed into the I/'s with smaller instance?

= |[tem subset?

= Smaller weight?

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

81

Optimal Substructure

® Consider the most valuable load that weights at most w kg.

" [fitem i isin the load and we remove it, the remaining load
must be the most valuable load weighing at most w — w; that
can be taken from the remaining i — 1 items.

= Prove by contradiction: if the remaining load is not the most valuable,

there exists a more valuable load and adding item i into it makes the
original load not the most valuable.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

82

Optimal Substructure

= I/|i, w]: the maximum profit that can be obtained from items 1
to i, if the knapsack has size w.

m Case 1: take item i
Vii,wl=V][i—1,w—w;| + v;
m Case 2: do not take item i
Viiw]=VI[i—1,w]
= How to decide whether take item i or not?

Simply compare and select the maximum one.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

83

Recursive Equation

" The recursive equation:

Vii,w] = {

= w; > w: we can’t take w; more than capacity w.

Vii—1,w] w; > w
max{V[i—1,w],V[i—-1Lw—-w;]+v;} w;<w

= w; < w: decide whether to take item i or not.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

84

Additional Information

= I/|i,w] only records the optimal value, we need to record
additional information to record the items we take.

= h|i,w] records the choices made to obtain the optimal value.

m Case 1: take item i

bli,w]="X"
m Case 2: do not take item i
blijw]="1"
) BIIKRERER (9) A »Tdannes 85

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Filling Table

Vii,w] = max{V[i — 1,w],V][i — 1,w — w;] + v;}

0 1 W — W; w w

o000 O0O[O[O0O]O0]0]0]0]O0
O —
0.4‘7

i—1 0 .

i |0 '
0

n |0

) & D AT RN SR 86

DPKnapsack(S, W)

1 forweO0tow; —1doV[l,w] <0

2 forwewitoWdoV|[l,w] « vq

3 fori< 2tondo

4 forw < 0 to W do

5 if w; > w then

6 Vii,w] <« V[i—1,w]

7 bli,w]<"T"

8 elseif V'[i —1,w]|>V[i—1,w—w;] + v; then
9 Vii,w] «V[i—1,w]

10 bli,w] <" T"

11 else

12 Viiw] < V[i—1Lw—w;]+v;
13 bli,w] «" N\ "

14 returnV and b

Running time: ®(nW)

87

Vi w] = Vii—1,w] w; > w
LWI= max{V[i — L,w],V[i—-1Lw—-w]]+v;} w;<w
w
i 0 1 2 3 4 5
0 0,0l 0wd Gy O 0 V[1,1] =
SRR TENEANREAE V[1,2] =
|
2 0 TIO“*T 12,\$ 22 | 22 | 22 V[1,3] =
3| o Jg0 | 12 | 221,30 32 V1, 4] =
“H =
41 0 |10 T~1571T25 | 307 37 V[1,5] =

V[2,1] = max{10 + 0,0} = 10
V(2,2] = max{10 + 0,12} = 12
V(2,3] =max{10 + 12,12} = 22
V[2,4] = max{10 + 12,12} = 22

V[2,5] = max{10 + 12,12} = 22

V[3,1] = V[2,1] = 10
V[3,2] = V[2,2] = 12

V[3,3] = max{20 + 0,22} = 22

V[3,4] = max{20 + 10,22} = 30

V[4,5] = max{20 + 12,22} = 32

Item { Wi V;

1 2 12

2 1 10

3 3 20

4 2 15
V[0,1]=0

max{12 + 0,0} = 12
max{12 + 0,0} = 12
max{12 + 0,0} = 12
max{12 + 0,0} = 12

V[4,1] = V[3,1] = 10
V[4,2] = max{15+ 0,12} = 15
V[4,3] = max{15 + 10,22} = 25

V[4,4] = max{15 + 12,30} = 30

V[4,5] = max{15 + 22,333 = 37

Reconstructing the Optimal Solution

= Start at V[n, W].
" When you go left-up, item i has been taken.

= When you go straight up, item i has not been taken.

w

i 0 1 2 3 4 5
0 Ol 0«4 0« 0« O 0
\g\\ ——— . Item 4
1| o 2 | 1212 |72
2 0 1 l \ 22 22
TO *%\& i . ltem 2
3| ol 1o 12 | 2233 [32
[— el
al o |10 |15 25 |30 I 37 . ltem 1
Gy BITKEERER

89

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

I
Classroom Exercise

Fill the table to solve the following 0/1 knapsack problem when

W = 3.

| $10 ke
2 $12 ke
3 $15 2kg

90

I
Classroom Exercise

Solution:
W =3 v
o 1 2 3
0] 0,] 0.0
1 $10 lkg ;1| 0,.]710,]710,] 10
2 $12 1kg 2| 0 |j12.22 |22
3 $15 2kg 30 0 |12 |22 |27
() BNIRFERFR (o) &0 r]tanues 91

OPTIMAL BINARY SEARCH TREES

Optimal Binary Search Trees

= A binary search tree (BST) (—
W 52 H) is a binary tree of

keys that come from an @
ordered set, such that

= Each node contains one key. @ @
= The keys in the left subtree of a

given node are less than or equal

to the key in that node. @ @ @ @
= The keys in the right subtree of a

given node are greater than or
equal to the key in that node.

@) BITKHERER

\) /
\&z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

93

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

® The number of comparisons done
by search to locate a key is called
the search time.

= \WWe want to know the average @
search time of a BST while the

keys do not have the same
probability.

= E.g. Tomis a common name is the

United States. It has higher
probability to be a search key.

= Thus, put the node whose key has
high probability to lower depth will
decrease the average search time.

) BITARES SR

\) /
&5/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

94

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

= Given
= asequence K = (kq,k, ..., k;,;) of ndistinct keys in sorted order (so that
kl < k2 < kn)

= n+ 1“dummy keys (I R4:52)"(dy, dq, d>, ..., dy,) when the key is not in
K, such that

d0<k1<d1<k2<<kl<dl<kl+1<<kn<dn

d> ds dy ds
@ EBIIXFEEEER

)
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

95

Optimal Binary Search Trees

" The search key x is not uniformly distributed. It follows the
probability:

= For each key k;, we have a probability p; that a search will be for k;.

= For each d;, we have a probability g; that a search will correspond to d;.

= For each search, either some key k; is found, or some dummy
key d; is found. Therefore, we have:

n n
Z:pi + z q =1
i=1 i=0

Where 2?:1 p; is the probability for a successful search and
?:1 q; is the probability for a failed search.

6, BIIXFERZEKR M AT tRNHER 9

S 4
NG/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Optimal Binary Search Trees

= Assume that the actual cost of a search is the number of nodes
examined, i.e., the depth of the node found by the searchin T,
plus 1.

" Then the expected cost of a search in T is

E(T) =) (dr(k) + Dxpi +) (dr(dy) + Dxg

where dr (k) is the depth of key k in tree T.

" For a given set of probabilities, our goal is to construct a BST
whose E(T) is smallest. This tree is called optimal BST (54—

XAELZW).
ey Bl chabf" %*B';E

&)
Nz’ SCHOOL OF INFORMATICS X|

97

l 0 1 2 3 <l 5

Di 0.15 0.1 0.05 0.1 0.2
qi |0.05 0.1 0.05 0.05 0.05 0.1

E(T) = 2.75

dy || ds || da || ds
d || d
6y) BIIXFAERZER (=) &0 »7itanues 98

node depth probability contribution
ki 1 0.15 0.3
E(T) =28 ks 0.1 0.1
ks 0.05 0.15
ks 0.1 0.2
ks 0.2 0.6
do 0.05 0.15
/ \ dy 0.1 0.3
do | | di d, 0.05 0.2
ds 0.05 0.2
d2 [45 || da || d; dy 0.05 0.2
ds 0.1 0.4
) BIIXRERFER { HRNHYR 99

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Optimal Substructure

optimal!

= |[f a BST is optimal, all its opti

subtrees are also optimal.
= Therefore, we should consider rlipt 7

. . 0 1 5
an arbitrary subtree of this
problem.
op ! d,
d, || d

@) BITKHERER

\) /
w SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

100

Optimal Substructure

= Consider any subtree T' of a BST. It must

contain keys in a contiguous (JEZEH]) /

range k;, ..., kj, forsome1 <i < j <n. T'
" |In addition, a subtree that contains keys

ki, ..., kj must also have as its leaves the

dummy keys d;_q, ..., d;.

di—l d]

101

@ BIIXFEEFR

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Optimal Substructure

T

= |f an optimal BST T has a subtree T’
containing keys k;, ..., k;, then this
subtree T’ must be optimal as well
for the subproblem with keys

k;, ...,k]- and dummy keys
di_1, ...,dj.

= Prove in contradiction. If there were a
subtree T"' whose expected cost is lower
than that of T', then we could cut T’ out
of T and paste in T", resulting in a BST of
lower expected cost than T, thus
contradicting the optimality of T.

@ BIIXFERF5R

\&+27 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

DA T HENHER 102

Optimal Substructure

= The subtree T’ must have a root k.
fori <r <.

= |eft subtree of k,- contains k;, ..., k,_.

= Right subtree of k;. contains k1, ..., kj.

= Given contiguous keys k;, ..., k;, how
to recursively find an optimal
subtree?

= Examine all candidate roots k.., for

I < r < J,and select the one with
minimal cost.

@ BENXFERF5R

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

IA T HRNESE 103

Optimal Substructure

= For example, the subtree T’ has contiguous
keys ks, ..., kg and dummy keys d,, ..., ds.

= \We construct all the subtree cases and select

the one with minimum expected search time.

d, ds

é@
dy

dy || ds dy || ds dy || ds

|
N

r
@ EBIIXFERE

)
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

104

Recursive Equation

= Define e|i, j| as expected search cost of optimal BST for
ki, ..., kj and dummy keys d;_q, ..., dj,

= |fj > [, selectarootk,, forsomei < r < jand recursively
make an optimal BST.
= for k;,.., k,_q as the left subtree, and

= for ky44,.., kj as the right subtree.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 105

= |f k.. is selected as the root of !
the subtree T', e[, j] only

relates to e[i,r — 1] and e[r + e[3,3] e[5,5]
1] 1 |

= |fj =1i—1,the subtree
contains no key but a single
dummy key, then e[i, j] =

qi-1-
= Now, does the following
equation hold? d | | d; dy | | ds
ot . 1 1
eli,jl =eli,r —1] +e[r + 1,/] e[3,2] e[43]] | e[5:4] e[6,5]

ED*+P%+E

SCHOOL OF INFORMATICS X|

106

[\
x| *)
\% 2/

EXEN
#
9

Recursive Equation

® The total search cost is composed by Because the subtrees have

one more depth, we should
add the probabilities of all
their keys and dummy keys.

three parts:

= The search time for the root: p,..

= The search time for the left subtree:
eli,r— 1 HXIZ o+ Zici 1 i

TI

m The search time for the left subtree:
e[r + 1’]] + {:1"+1 pl + Z{:T‘ ql'

= Letwli,j] = Z{zl-pl -+ Z{zi_l q;, the
total is:

eli,jl =eli,r — 1] +e[r + 1,j] + w[i, j].

BIIXZ(ERF5R

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

SN
ST RN
for O\
x| *|
% / &)
o/

l 0 1 2 3 = 5
I —

Di 0.15 0.1 005 0.1 0.2
Example qi 1005 0.1 0.05 005 0.05 0.1

e[3,3] = 1xp; + 2x(q2 + q3)
e[5,5] = 1Xps + 2X(q4 + qs)
e[3,5] = 1xp,
+(1+)Xps + (2 + 1)x(q2 + q3)
+(1+ D)Xps + (2 + 1)%(q4 + q5)
= ¢e[3,3] + e]5,5]

5 5
+ z pr + z q
=3 =2

3[3,3] + 3[5,5] + W[3,5] d, d; dy ds

) BITARES SR

\) /
&5/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

108

Recursive Equation

= We iterate over all k,- and select the one with minimal cost:

o di—1 j=i-1
eli.j] = minfe[i,r — 1] +e[r + Ljl + w[i,j]} i<j

IST<])

= To avoid repeated computation, we can also recursively calculate
wli, j] = qdi-1 j=1i-1
=l j—1+pj+q 1<i<j<n

= Both e[i, j] and w[i, j] are tables withi =1,...,n+1,j =0, ..., n.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 109

O = N W B~ W

S = N W R~ W

eli,j] = l_1<nri<nj{ +elr+1,j] +wli,jl}
% : 2
/K eli,j] eli+1,]] elj+1,j]
\\
NG
wli,j] = +pj+q;
2 3 4 5
7 wlijl
4

110

DPOptimalBST(p, g, n)
1 fori < 1ton+ 1 do<+— First diagonal

2 eli,i=1] « qi—1

3 wli,i —=1] < qi—q

4 for ¢ « 1ton do «—— From 2nd to nth diagonal

5 fori < 1ton—c+1do

6 jei+c—1 A Given ¢, determine the

7 eli,j] « o jth column and ith row

8 wli,jl «wli,j—1] +p; + q;

9 forr < itojdo

10 t —eli,r—1] +e[r +1,j] + w[i, /]
Running time: ®(n?) 1 if ¢ <eli,j] then

12 eli,jl <t

13 root[i,j] < r

14 return e and root

) BIIASHESSR

) &
&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

111

eli,j] = min{eli,r — 1] + e[r + 1,j] + wli, j|}

IST<]
] l
1 2 34 5 6 1 2 3 4 5 6
512751 2.0 1.3 0.9 0.5 0.1 5 1 0.8 0.6 05 035 0.1
4 11.75 1.2 0.6 0.3 | 0.05 41 0.7 0.5 0.3 0.2 | 0.05
j 311.25] 0.7 | 0.25] 0.05 3105510350151 0.05
21 0.9 04 | 0.05 210451 0.25 | 0.05
11045 0.1 11 0.3 0.1
0| 0.05 0| 0.05
e w
i
1 2 3 4 5
i 0 1 2 3 4 5 S|2]4]5]5]5
4121214/|4
D 0.15 0.1 005 01 02 j 32|23
2112
g; |005 01 005 005 0.05 0.1 N

root

Classroom Exercise

Find the optimal BST with the following key probabilities:

p; 025 03 0.15

g; |005 01 005 0.1

6y BIIXFERFER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

113

Classroom Exercise

I l
1 2 3 4 1 2 3 4
31 2 | 125]045] 0.1 30 1 | 07] 03] 01 1 2 3
21313
21135 06 |0.05 21075 | 045 | 0.05 . 1
j j J 2
11055 0.1 1] 04| o1 1
0| 0.05 0| 0.05 root
e w
BIXZEEEZFR 114

#
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

e A SR A b A S B AN B SR, 20l 40 D 3A S
= LA —sk, 2k, =9k
= P W, TR, =R

FEQF R — I AT A 30, (R S e LRI O & BisclE =
JoRg BRI RICR &, Wl U E#ESF L, (B2 T LR %FT)‘B%
LA RICE & AT 283, Bl L=9cm=24, —Jt

CEZL ViF

Gy
s L IR > = > =4Sk)
= =SL> =R

MR ER BT

HAHBR : 30%

— SR /B8 =gl
AL : 80 B : 150 BB - 230
[| AR : 30% TR : 40% AR : 55%
[N N}

6y BIIRFEEFIR ()

\) /
w SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT HENBSR 115

Image source: http://k.sina.com.cn/article_5944198308 1624d44a400100aa8r.html

Classroom Exercise

= RS, B4 RigskAa 2 M R Ak — e
% b AHRL, 0 — TRSLERPT DL B 5 AN 5.
n 2458 _Ligg S 2B I, BT LSRR W R R DL
- BB LR T, MR T, KR Ik T
o BRSE LIGEk T, BB T, XS] SR T
= Rk, Bk H)R %E _Ri gk Ay 9B w5 28K 2% R8s 1A 5
PRI A
f

21 i=0o0rj=0
H(,j) =<ZH(k,j)+ZH(i,k) i>0,j>0
Lk<i k<j

) M RT HENRER 116

T 'Y

&) BITASERER
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

j=0

j=1 1 2 5§ 12
j= 2 5 14 37
j= 4 7 106

©) BIIKSESSE

\\ 2
SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) Z N AT HRNHYR 117

TRAVELING SALESPERSON PROBLEM

Traveling Salesperson Problem

® Given an n vertex network (undirected or
directed), traveling salesperson problem
(Ji€ 47 B [n) i35, TSP) is to find a cycle of

minimum cost that includes all n vertices. @ 2, ,
= Hamiltonian cycle with minimum cost. A o n

" Any cycle that includes all n vertices of a 6 ;
network is called a tour. In TSP, we are to A 11°
find a least-cost tour. For example: @: @
= Tour (1,2,3,4,1) costs 22. 8

= Tour (1,3,2,4,1) costs 26.
= Tour (1,3,4,2,1) costs 21, optimal.

) BITAFESSR

\&=%7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-gv f% M~ .}, HTREN#ESR 119

Traveling Salesperson Problem

TSPAERE : 234106

FE4Z - 31564.651km

@) BITKHERER

2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

120

Image source: https://www.programmersought.com/article/32324255027/

https://www.programmersought.com/article/32324255027/

Optimal Substructure

= Let v be the first vertex after v; on an
optimal tour.

= The subpath of that tour from vy, to v, ,
must be a shortest path that passes @
through each of the other vertices exactly N\

once. 6 ;

= |f k = 3 and tour (1,3,4,2,1) is optimal, 4 v
then the subpath (3,4,2,1) must be @: \4>
optimal. |

= Otherwise, we choose (3,2,4,1) for better
solution.

121

6y BIIXFERFER

S %
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

= letV ={1,...,n} the set of all vertex indices,and A C V.

= Denote D[i][A] the length of the shortest path from v; to v,
passing through each vertex in A exactly once.

= We get the optimal tour:
min (w[1,j] + D[jI[V - {1,}])

2<jsn

122

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Optimal Substructure

= Optimal tour:
min (w[1,j] + D[j][V - {1,/}])

2<j<n
2
" In this example, optimal tour is calculated Cl\u : 12
by: N9 t
W:1,2: + D:2: ;{3,4}; 6 3 . e
min | w|1,3] + D|3][{2,4}] R
w(1,4] + D[4][{2,3} 6/ 8 \O
" The rest problem is to recursively calculate
D[i][A].
BIIXREERFER () ZH»Ttanuses 123

Recursive Equation

" The recursive equation is:

Dli]

DI

A

][9]

L

_ {f}lei;ll(W[i,j] +D[IA-{}]) i¢A
o0 €A
= wli, 1]

= The optimal tour is then D[1][V — {1}].
= D[j][A — {j}] is calculated in bottom-up fashion.

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 124

Recursive Equation

" In this example, optimal tour is calculated

by:
w
min| w
w
® Then,

1,2] + D[2][{3,4} (D —_—
1,3] + D[3][{2,4}] e L%
1,4] + D[4][{2,3})

3 . 71 6

D|2][{3,4}] = min(w

D[3][14}]

min(w

2,3] + D[3][{4}]) @ : \‘D

3,4] + D[4][9])

(w[3,4]

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

+ w|4,1])

125

Filling Table

C\ 2,
1) (2
A 1 A

" The recursive equation is:

D[i][A] = min(wli,j] + D[jI[A—{3D | Ale
JEA f |
= Then, the table can be built: (3/: \D
8
A

0 @2 3 (423 28] 341234

1

2

boog :>(\
4

TR
% £
o *
i/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) Z N AT HRNHYR 126

Filling Table

C\ 2,
1) (2
A 1 A

" The recursive equation is:

Dli][A] = r}lei;ll(W[i,j] +DjIIA=U3D ¢ 3 11,
4 A 4
= Then, the table can be built: (3/: \D
A 8
| 0 | @ 3 W23 24] B4 0234

1 - — — — — - — 21
. 2 1 00 10 00 0 00 20 =
: 3 6 4 o) 00 0o 0o 00 —

4 o) 8 14 00 12 o0 00 —

4

min(w[4,2] + D[2][{3}], w[4,3] + D[3][{2}]) = min(17,12)

*|)

127

Filling Table

" There is only one remaining problem:

A
| o [o] es]es]csles

1
2
3
4

How to represent the subsets?

©) BIIKSESSE

%) 5
2" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) Z N AT HRNHYR 128

State Compression Dynamic Programming

" We can use binary coding for the subsets.

= This technique is called state compression (JRZSE4E).

_ 0|2 | (3} (4 23 248 341234
$

o0 | 4 2 1| 6 5] 3] 7
1
2
3
4

@) BITKHERER

/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

129

Classroom Exercise

= Fill in the table for this TSP instance.

6,y) BIIKFERER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 M~ .}’ HTREN#ESR 130

Classroom Exercise

Q——@

6 10
F—®
A
| 0 @ 3@ 23] 24] 34234
- - - - - - - 33

1
. 2 15 ¢'s) 11 23 ¢'s) ¢'s) 18 —
. 3 6 20 - 15 - 27 - _

4 13 25 8 o0 21 o0 o _

G,y) BIIXZERZ5

2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

131

ELEMENTS OF DYNAMIC PROGRAMMING

Optimal Substructure

Optimal substructure

1.

The solution to the problem consists of making a choice. Making
this choice leaves one or more subproblems to be solved.

For a given problem, you are given the choice that leads to an
optimal solution.

Given this choice, you determine which subproblems follow and
how to best characterize the resulting space of subproblems.

Solutions to the subproblems used within the optimal solution to
the problem must themselves be optimal by proving by
contradiction.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

133

Optimal Substructure

Optimal substructure varies across problem domains in two ways:

1. How many subproblems are used in an optimal solution to
the original problem.

= Assembly line: One subproblem (f;[j — 1] or f,[j — 1])

= Matrix multiplication: Two subproblems (subproducts A; , and A4 ;)

2. How many choices we have in determining which
subproblem(s) to use in an optimal solution.

= Assembly line: Two choices (line 1 or line 2)

= Matrix multiplication: j — i choices for k (splitting the product)

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

134

Optimal Substructure

® Dynamic programming uses optimal
substructure in a bottom-up fashion.

® One should be careful not to assume that
optimal substructure applies when it does not. H }

= Consider the following two problems in which
we are given a directed graph ¢ = (V/, E) and
verticesu,v € V.

135

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure

" Unweighted shortest path: Find a path from u
to v consisting of the fewest edges.

= Such a path must be simple, since removing a cycle
from a path produces a path with fewer edges. ‘ \ }

" This problem has optimal substructure.

= Assume the shortest path from u to v goes through
w. Thenu — wand w = v is also the shortest.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

136

Optimal Substructure

®m Unweighted longest simple path: Find a

simple path from u to v consisting of the most
edges.

= Simplicity is necessary because otherwise we can
traverse a cycle as many times as we like to create
paths with an arbitrarily large number of edges. ‘ \ }

" For unweighted shortest path, the problem
does not have optimal substructure.

= Assume the longest path from u to v goes through w.

Then u = w may not be the longest. u » x - v -
w is the longest.

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

137

Memorization

m Memorization (£5 /538) method stil
values in the table after calculation.

| uses recursion but store

LookUpChain(p, i, j)

1 if m[i,j] < co then return m|i, j|
2 if i = j then

3 ml[i,j]< 0

4 elsefor k < itoj—1do

5 q «<LookUpChain(p, i, k)+
LookUpChain(p, k + 1, j) + pi+1PkP;

6 if g <m][i,j] then

7 mli,j] < q

8 return m|i, j]

MemoizedMatrixChain(p)

1 fori < 1tondo

2 for j <« itondo

3 m[i,j] « oo

4 return LookUpChain(p, 1, n)

Easier to implement because no
diagonal trick is needed, but
more recursive calls are required.

) BIIASHESSR

\&=%7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

138

Dynamic Programming vs. Memorization

® Advantages of dynamic programming

= No overhead (R 4; F44) for recursion, less overhead for maintaining the
table.

= The regular pattern of table accesses may be used to reduce time or
space requirements.

= Advantages of memorization

= Some subproblems do not need to be solved.

6,y) BIIKFERER 139

&
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

® Given an amount N and unlimited supply of coins with
denominations d4, d,, ..., d,;, compute the smallest number of
coins needed to get N.

" Example: _
= For N =86 (cents)andd; =1,d, =2,d; =5,d, = 10,ds = 25,d, =
50,d, = 100.
= The optimal amount is 4 with changes: one 50, one 25, one 10, and one
1.

" Give the recursive equation and draw the table with the case:
dl — 1,d2 =4‘,d3 = 6and N = 8.

6y BIIRRERFR

\) /
°- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

140

Classroom Exercise

= Assume a set of coins d{, d>, ..., d,, (be sorted) and an amount N.

= Use atable C[1...n,0...N], where C[i, j] is the smallest number of

coins used to pay j cents, using only coins d, ..., d;.
= If C|i,j] is optimal and d; is used, then C[i,j — d;] is also optimal.
= Cli,j] is calculated in two ways:

1. Don’t use coin d; (even if it’s possible):

Cli,jl =Cli—1,j]
2. Usecoind; :
Cli,jl =1+ Cli,j —d;]

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

141

Classroom Exercise

" The recursive equation:

il 0 j=0
T Mmin(Cli— Ljl, 1+ Cli,j—d;]) 0<d;<j

" letd; =1,d, =4,d3; =6and N = 8, the dynamic
programming table will be:

J
o 1 2 3 4 5 6 7 8
d, =1 ol 1| 23|45]6]7
dy=4 2|0 1 |2 |31]2]3]|4/][,
d, =6 3o | 1231]2|1]2]"

6y BIIXFERFER

Q
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

142

Conclusion

After this lecture, you should know:

" The difference between divide-and-conquer and dynamic
programming.

= Why is dynamic programming efficient.
= What is optimal substructure.

" The steps of designing a dynamic programming algorithm.

143

&) BITARERSE

9,
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Homework

= Page 92-94
6.2
6.3
6.5
6.7
6.9
6.12

ty) BITAZ(EREER

\) Z
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

144

o SERLER KA I R A EE, I B SCAS DL) 8
" RS RE R fEspoc T #.
» B AHL R 5 R A AU 1 [a) .

) & D AT RN SR 145

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

A T8 B R B 18

BMAT HENHSR 146

G) BITARERSE (7))
=l

o

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

