B AT

Lecture 7: Greedy Algorithms

it

TR EAE B b AR A &

luyang@xmu.edu.cn

Greedy Algorithms

= Algorithms for optimization problems typically go through a
sequence of steps, with a set of choices at each step.

= A greedy algorithm (550> .7%) always makes the choice that looks
best at the moment.

® Greedy algorithm makes a locally optimal choice in the hope that this
choice will lead to a globally optimal solution.

= Don’t think greedy approach is evil due to its name “greedy” with negative
meaning. It often lead to very efficient and simple solution.

® Everyday examples:
= Playing cards
= |nvest on stocks

® Choose a university

6y BIIXRFERER

\32%7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

ACTIVITY SELECTION PROBLEM

Activity Selection Problem

= Schedule n activities S = {a4, ..., a,} that require use of a
common resource.

= \We can only do one activity at the same time.

= gq; needs resource during period [s;, fi).
= 5; = start time and f; = finish time of activity a;.

" 0<s5;<fi <0

= Activities a; and a; are compatible (F%°1#]) if the intervals
[si, fi) and [s;, f;) do not overlap:

fi<s; or fi<si
i j J i

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Activity Selection Problem

= Select the largest possible set of mutually compatible (FH & 3

activities.

= We treat each activity gives same profit.

" For example,

)

i |1 2 3 4 5 6 7 8 9 10 11
ss |1 3 o 5 3 5 6 8 8 2 12
£ l4 5 6 7 8 9 10 11 12 13 14

= Activities are sorted in increasing order of finish times.
= A subset of mutually compatible activities: {as, aq, a;1}.

= Maximal set of mutually compatible activities: {a, a4, ag, a;1} and
{az, a4,0a9,0a11}.

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Representing the Problem

" Define the subproblems:
SijZ{ClkES:fiSSk<kaSj}

as activities whose periods are after a; finishes and before q;
starts.

= Activities that are compatible with the ones in §;;:
= All activities that finish before f;.

m All activities that start no earlier than Sj.

(6, BIIXFERFR &M KT tANEER 5

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Representing the Problem

= Based on the definition of §;;:
Sl-jz{akES: fiSSk<kaSj}

S1n, does not cover the original problem because a; and a,, are excluded.
= \We can add two fictitious (gL 1¥]) activities:

" qy =[—00,0);

" Qpyq = [00,00+1).
= Thus, Son+1) = S covers the entire space of activities ay, ..., ay.

= Assume that activities are sorted in increasing order of finish times

fosfhisfas =< fau<fo+
We only need to consider sets S;; with0 < i <j <n+ 1, because S;; = 0
ifi>].

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Dynamic Programming Solution

® Recall the optimal substructure of matrix-chain multiplication
problem and optimal BST problem, the optimal subproblem
has contains a position k.

" In this problem, assume that a solution to the above a
subproblem includes activity ay,.

= Solution to §;; = (Solution to S;x) U {ay} U (Solution to S;).

= |Solution to §;;| = [Solution to S; | + 1 + |Solution to Sg;|.
' N\
fi sk fr Sj
ai — Ax = a;
Sik Skj

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M A .}, HRENESER 7

Optimal Substructure

= Assume that 4;; is an optimal solution to 5;; and includes
activity a. Sets A;, and Ay; must also be optimal solutions.

= Prove by contradiction.

A
A
'8 Y
fi Sk fr S
| | | |
| | a | |
a; — k — a]
Ajg Ag;j

6y BIIXFERFER

\
\&m=»/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Recursive Equation

" Let c[i, j] = |A;j|as the size of the maximum subset of
mutually compatible activities in §;;.

" IfS;; = 0, thencli,j] = 0.

" If S;; # @ and if we consider that ay is used in an optimal
solution, we have:

cli,j] =cli, k] + clk,j] + 1

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Recursive Equation

" The recursion equation is:

cli,j] =1

/

0 Sij — Q)
max_ {c[i,k] +c[k,j]+1} S;;+®

Ki<k<j,ClkESij

= There are j — i — 1 possible values for k.

sk=i+1,..,/—1

= \We check all the values and take the best one.

= Nothing special, very similar to the matrix-chain multiplication problem
and the optimal BST problem.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

10

Simpler Idea

" |s dynamic programming the most efficient to solve this
problem?

" How about just simply select the activity with earliest finish
time?

i |1 2 3 4 5 6 7 8 9 10 11
ss |1 3 0 5 3 5 g8 2 12

6 8
Fl@® s 6 (@O 8 9 10 () 12 13 (49

" |t seems work. But how to prove the correctness?

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

11

Simpler Idea

Let S;; # @ and a,, be the activity in §;; with the earliest finish
time:

fm = min{fy: a, € 5;;}
Then:
(1) Activity a,, must be in some optimal subset A4;;.

= j.e. there exist some optimal solutions that contains a,,,.

(2) Sim = @, so that choosing a,, leaves S, ; the only nonempty
subproblem.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

12

Simpler Idea

Proof of (1) Activity a,,, must be in some optimal subset 4;;:

= Assume activities in 4;; are in increasing order of finish time,
and let ay be the first activity in A;;: A;; = {ag, ... }.

" |If a;, = a,,, done!

= Otherwise, replace ay with a,, (resultingin a set 4;;")

= Because fp, is the earliest finish time, f;; < fi. The activities in 4;;" will
continue to be compatible.

= A;;" will have the same size with 4;;".

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

13

Simpler Idea

Proof of (2) Si;, = @, so that choosing a,,, leaves Sy, the only
nonempty subproblem:

= Assume S;,,; # @, i.e. there exists an activity a; € Sj;,:
fi <sk<fk <sm<fm

" fi. < fm contradicts with the fact that a,,, has the earliest finish
time.

= Therefore, there is no a; € S;;;,, which implies S;,,, = 0.

14

6y) BIIXRERFMKR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Why is the Theorem Useful?

" Given the theorem, what can we do and how can we improve?

Dynamic programming Using the theorem

Number of subproblems
in the optimal solution

1 subproblem: S,

2 subproblems: S, Sy ; [
im —

Number of choices to i — 1 choi 1 choice: the activity with
consider J =t choices the earliest finish time in §;;

= Making the greedy choice (the activity with the earliest finish time in §;;)
® Reduce the number of subproblems and choices.

® Solve each subproblem in a top-down fashion.

i) BIIKEERER - .

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Greedy Approach

" To select a maximum size subset of mutually compatible
activities from set §;;:

= Choose am a,, € §;; with earliest finish time (greedy choice).
= Add a,, to the set of activities used in the optimal solution.

= Solve the same problem for the set S, ;.

= From the theorem, it is proved that by choosing a,,, we are

guaranteed to have used an activity included in an optimal
solution

= We do not need to solve the subproblem S, ; before making the choice!

= This problem has the greedy choice property (53 .Cr 1265 Ji).

&) BITARERER

\32%7 SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-gv f% MDA .}, itENESYR 16

A Recursive Greedy Algorithm

= Activities are ordered in
increasing order of finish
time.

= Running time: 0(n)
® Each activity is examined only

once.

® |nitial call:
RecursiveTaskSelect(s, f,
O,n+1)

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

RecursiveTaskSelect(s, f, i, j)

Ime<i+1

2 whilem < j and s,,, < f; do

3 mem+1

4 if m < j then return {a,,} U
RecursiveTaskSelect(s, f,m, j)

5 else return @

AT [% MDA .}, itENESYR

17

k Sk fk
[
: : : @—————-—Efz—l ——'i——] —— - — - — -
2 3 5 -
30 6
4 5 7
e -
5 3 8
6 5 9 ' S
7 6 10 '
§ 8 11
9 8 12
0 2 13
112 14 -
7 o . sssss‘sisgssss

o 1 2 3 4 5 6 7T 8

9

10 11 12

13 14

An lterative Greedy Algorithm

" |t totally not necessary to use GreedyTaskSelect(s. f)
recursion. 1 A« {a} |
= Activities are ordered in g ;O:Ti 2 ton do
increasing order of finish time. 4 if s, > f; then
m =—Jli
= Running time: 0(n) > A« AU)
6 [<m
® Each activity is examined only 7 return A
once.

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, itENESYR 19

Designing Greedy Algorithms

1. Cast the optimization problem as: we make a choice and are
left with only one subproblem to solve.

2. Prove that there is always an optimal solution to the original
problem when making the greedy choice.
= Making the greedy choice is always safe.

3. Demonstrate that after making the greedy choice: an optimal

solution = the greedy choice + an optimal solution to the
resulting subproblem.

20

ty) BITAZEREE

%
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Greedy Algorithms

" Greedy choice property

= A globally optimal solution can be arrived at by making a locally optimal
(greedy) choice.

® Optimal substructure property

= \We know that we have arrived at a subproblem by making a greedy
choice.

= optimal solution for the original problem = optimal solution to
subproblem + greedy choice.

ty) BITAZEREE

() &
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

21

Correctness of Greedy Algorithm for Activity Selection

" Greedy choice property

= There exists an optimal solution that includes the greedy choice: The
activity a;, with the earliest finish time in §;;.

® Optimal substructure property

= An optimal solution to subproblem §;; = selecting activity a,, + optimal
solution to subproblem Sy, ;.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

22

Dynamic Programming vs. Greedy Algorithms

= Dynamic programming
= Make a choice at each step.
® The choice depends on solutions to subproblems.

® Bottom up solution, from smaller to larger subproblems.

= Greedy algorithm
= Make the greedy choice.
® Solve the subproblem arising after the choice is made.

® The choice we make may depend on previous choices, but not on solutions to
subproblems.

= Top down solution, problems decrease in size.

= Common: Optimal substructure

6y BIIXFERFER

S 4
NG/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

23

Experiment for Activity Selection Problem

Table 7.1 Running-time comparison of algorithms for activity selection problem

n 100 |200 400 600 800 1000
Dynamic programming(DP) | 0.000 | 0.015 |0.189 0.656 | 1.656 |3.250
RecursiveTaskSelect(RTS) 0.000 { 0.000 | 0.000 0.000 |[0.000 |0.000
GreeyTaskSelect(GTS) 0.000 | 0.000 {0.000 0.000 |[0.000 |0.000
Maximum task number 19 24 30 40 46 52
4 Running-time
3'2 —— P Vs
s - ers //
. o
1 /
0.5 o
0 & . _—/—/ " ' r . —1 5
. IEI‘U 2I2£]- 400 600 _ 800 1000 %
i) BIIKZERZER (=) HrTanuss 24

i/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: [&]7.10, 5K4EH, %305 204, &G oll i ikt 2009.

Classroom Exercise

Use greedy algorithm to solve the following problem:

® Given n integers, concatenate them in a row to constitute a
maximum integer.

" For example:
" n = 3,34331213 is the maximum integer to concatenate 13, 312, 343.
" n=4,7424613 is the maximum integer to concatenate 7, 13, 4, 246.

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

25

Classroom Exercise

Solution 1:

® Simply select the integer with largest first bits.

" How about the following cases:
= 12,121
= 12,123

Solution 2:

= For the numbers with the same first bits, compare a + b with
b + a and use the one with maximum value.

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

26

FRACTIONAL KNAPSACK PROBLEM

Fractional Knapsack Problem

Fractional knapsack (%84 &5 £4)
problem:

= There are n items: the ith item is
worth v; dollars and weights w; kg.

" The capacity of knapsack is W kg.

bahind:

® [tems can be taken fractionally.

= \Which item fractions should we take
to maximize the total value?

() BIXFERRR () 20 #] nnnes ?

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Image source: https://en.wikipedia.org/wiki/Knapsack problem

https://en.wikipedia.org/wiki/Knapsack_problem

= Weight capacity W = 50kg.

= Using the solution of 0/1 knapsack —--

problem, we choose item 2 and 3

. 60 10k

with total value 100 4+ 120 = 220. > 5
_ | 2 $100 20kg

= However, the solution of fractional 3 $120 30kg

knapsack problem is to choose item
1 and 2 plus 2/3 of item 3, with total
value 60 + 100 + 120x2/3 = 240.

AT ELEYR 29

Greedy Strategy

the maximum value. 1 $60 10kg
2 $100 20kg

= This greedy strategy is obviously not
5 y &Y y 3 $120 30kg

optimal.

30

Greedy Strategy

® Greedy strategy 2: Pick the item
with the maximum value per kg

Vi /Wi W = 50kg
= |f the supply of that element is

exhausted and we can carry i v | wi v

more, take as much as possible 1 $60 10kg $6/kg
from the item with the next) $100 20kg S$5/kg

greatest value per kg.
3 $120 30kg $4/kg

" |t is good to order items based
on their value per kg:

v, v v
L N It seems ok! But how to prove?

Wiy W, Wy,

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

e /% M~ .}’ HTREN#ESER 31

Greedy2Knapsack(W, v)
1 order items based on their value per kg: A>2>..>0

Wy W, Wy,
2 l<el:weW

3 while w > 0 and as long as there are items remaining do
x; < min{l, w/w;}

remove item I from list

W & W — X;W;

l<—1+1

~N ON U B~

Running time: ®(n) if items already ordered; else ®(nilgn)

(6, BIIXFERFR &M KT tANEER 32

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Greedy Choice Property

" Now we need to prove that the fractional knapsack problem
has greedy choice property.

" Assume the items are ordered based on their value per kg:
123 .1 ...n

" The greedy solution is
X1 X2 X3 .. X .. Xp

where x; € [0,1] is the fraction to take item i.

33

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Greedy Choice Property

" The greedy solution will always look like this:

Yi Y2 Y3 - Yj-1 JYj
= Now, if the greedy solution is not optimal, there must exists an

optimal solution that looks like this: —
One of the first j — 1

items is not fully
taken, simply assume
. that it is the first item.

x] 1 x] nnn xn

6y BIIXFERFER

S %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

34

Greedy Choice Property

= Now, we can do some transformation to the optimal solution:
Increase the fraction of item 1 and by decreasing item j.

= Moving weight: (y; — x1)wjy.

= Value increased for item 1: (y; — x1)wy Xv1/Wy.

Which one is larger?

= Value decreased for item j: (y; — x1)wy Xv;/w;.

i I

ty) BITAZEREE

&=’ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

35

Greedy Choice Property

= Therefore, given any solution, we can transform it to the
greedy solution for larger value.

" |t means the greedy solution has the largest value.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESER 36

Optimal Substructure

" Consider the most valuable load that weights at most W kg.

= |f we remove a weight w of item j from the optimal load, the
remaining load must be the most valuable load weighing at
most W — w that can be taken from the remainingn — 1 items
plus w; —w pounds of item j.

37

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Can greedy algorithm obtain optimal solution for the coin change
problem?

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 M~ .}’ HTREN#ESER 38

Classroom Exercise

The greedy algorithm:

1. Select the largest coin.

2. Check if adding the coin makes the change exceed the
amount.

a. No, add the coin.

b. Yes, set the largest coin as the second largest coin and go back to step 1.

3. Check if the total value of the change equals the amount.
a. No, go back to step 1.

b. Yes, problem solved.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

39

Classroom Exercise

= Successful example:

= For N =86 (cents)andd, =1,d, =2,d;=5,d, =10,ds = 25,d,; =
50,d, = 100.

® The greedy approach is optimal: 50, 25, 10, 1.

" Failed example:
= For N =6 (cents)and d; =1,d, = 3,d; = 4.
® The greedy approach is not optimal: 4, 1, 1.

= The optimal solution: 3, 3.

® For this problem, the success of greedy approach depends on the
coin currency.

= |t works for canonical coin systems like US, but not for arbitrary coin system.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

40

HUFFMAN CODE

Data Compression by Binary Code

= The problem of data compression ({35 [E4g) is to find an
efficient method for encoding a data file.

= Compress string S into S, which can be restored to S, such that |S’| < |S].

= A common way to represent a file is to use a binary code (i
Hil 2 A5).

" |In such a code, each character is represented by a unique
binary string, called the codeword (h%57).

42

6y BIIXRFEEBFE5R

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Data Compression by Binary Code

There are two ways to use binary code:

= A fixed-length code ([& %€ K & 44 45) represents each character
using the same number of bits.

= For example, suppose our character setis {a, b, c}.
= Then we could use 2 bits to code each character: a: 00, b: 01, c: 11.

= Given this code, if our file is ababcbbbc, our encoding will be
000100011101010111.

" We can obtain a more efficient coding using a variable-length
code (RJAZ K JE 4 h).

= Such a code can represent different characters using different numbers of
bits.

&) BITARERER

\" /
- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

43

Data Compression by Binary Code

" For example, a data file of 100 characters contains only the
characters a-f, with the frequencies:

a b c d e f
Frequency 45 | 13 | 12 | 16 9 5
Fixed-length codeword 000{001(010|011| 100 | 101
Variable-length codeword 0 101100 (111({1101|1100

= How much do we save in this case?
® Fixed-length code: 100x3 = 300 bits.

= Variable-length code: (45X1 4+ 13X3 4+ 12X3 4+ 16X3 + 9%X4 + 5%x4) =
224 bits

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

44

Prefix Codes

® One particular type of variable-length code
is a prefix code (B 2k Zih5).

" No codeword is also a prefix of some other

codeword.

" The advantage of a prefix code is that there a |b |c
is no ambiguity when interpreting the 0 |101|100
codes.

" For example:
= abc - 0-101-100- 0101100
= 010110000 - 0-101-100-0-0 — abcaa

ty) BIIXRERE5 &R HENHER 45

() &
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Binary Tree Representation

" The prefix coding can be represented
by a binary tree, where we put all

characters on leaves. ‘
" Interpret the binary codeword for a 0 &
character as the path from the root to

that character, where O means "go to
the left child" and 1 means "go to the % \
right child."”, then we can construct a

binary tree corresponding to the
coding schemes.

46

6y) BIIXRERFMKR

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Binary Tree Representation

a:45

c:12

&) BITARERSE

i /
\&z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

47

Binary Tree Representation

" Given a tree T corresponding to a prefix code, for each
character c in the alphabet C, let

= f(c) denote the frequency of c in the file;

= dr(c) denote the depth of c's leaf in the tree, also the length of the
codeword for character c.

" The number of bits required to encode a file is thus

B(T) =) f(©)dr(c)
ceC

which we define as the cost of the tree T'.

® |t is similar to the optimal BST problem, but with no constraint
of being a search tree (Kiert < knoge < Krignt)-

6y BITKFERER AT HBENHER 48

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Huffman Code

= Huffman code (W3R & 4ifid/ 8 R 2 2
%) was developed by David A. Huffman

while he was a Sc.D. student at MIT in
1952.

®» Huffman code efficiently builds the
optimal prefix code, given the frequency
of each character.

David Albert Huffman
(1925 —1999)

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

49

Huffman’s Algorithm

® Huffman’s algorithm builds the |
o: , :1

codeword bottom up.
M AT HENHESE 50

= Consider a forest of trees:

= |nitially, one separate node for each
character.

= |n each step, join two trees into a larger
tree.

= Repeat this until only one big tree
remains.

= Which trees to join? Greedy choice
the trees with the lowest
frequencies!

6y BIIXHERF5

Nemwe/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

= Sort with character frequency.

f:5 e:9 c:12 b:13 d:16 a: 45

]
(|
)I.
4
i
ol
4

B

/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

51

= Join two nodes with lowest frequency, and sum up the frequency.

c:12 b:13 d:16 a: 45
0 1

f:5 e:9

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

52

® |nsert into proper position.

c:12 b:13 d:16 a: 45
0 1

]
(|
)I.
4
i
ol
4

B

/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

53

= Join two nodes with lowest frequency, and sum up the frequency.

d:16 a:45
0 1 0 1

c:12 b:13 f:5 e:9

6y BIIXRFEEBFE5R

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

54

® |nsert into proper position.

d:16 a:45
0 1 0 1

f:5 e:9 c:12 b:13

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

55

= Join two nodes with lowest frequency, and sum up the frequency.

a: 45
0 1

c:12 b:13

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

56

® |nsert into proper position.

a: 45

c:12 b:13

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

57

= Join two nodes with lowest frequency, and sum up the frequency.

a: 45

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

58

® |nsert into proper position.

a: 45

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

59

= Join two nodes with lowest frequency, and sum up the frequency.

a: 45

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

60

Minimum priority queue \EliffmanCOde(C)

1 Q«C

2 fori<1ton—1do

3 allocate a new node z
ExtractMin and Insert 4 x < Extr actMin(Q)
are heap operators, 5 Y & ExtractMin(Q)
which take O(lgn). 6 f(Z) «— f(X) + f(y)
Therefore, the total cost I
is O(nlgn). 7 nsert(Q, z)

8 return ExtractMin(Q)

" Greedy algorithm is always easy. What is the difficult part?

6y BITKFERER AT HBENHER 61

N\
3=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Huffman’s Algorithm

We are going to prove two things:

" Greedy choice property: Select the lowest frequency characters
is always correct.

® Optimal substructure property: Greedy choice + optimal
solution of subproblem = optimal solution of original problem.

62

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Huffman’s Algorithm

= We first prove the greedy choice property.

Let C be an alphabet in which each character ¢ € C has
frequency f (¢).

Then there exists an optimal prefix code for C in which the
codewords for x and y have the same length and differ only in
the last bit.

Let x and y be two characters in C having the lowest frequencies.

" In one sentence: To join the lowest frequency characters is
always correct!

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

63

Correctness of Huffman’s Algorithm

Proof: T T’

= |dea: If x and y are not in
the deepest level of an

optimal tree, we can . .
always switch them to
the deepest level, to AN
obtain a better tree. a_;/

B(T) = B(I") =) f(©)dr(c) =) f(©)dp(c)

ceC ceC

= (f()dr(x) + f(a)dr(a)) — (f(x)dr (x) + f(a)d ()

= (f()dr(x) + f(a)dr(a)) — (f(x)dr(a) + f(@)dr(x))

= (f(@) = f())(dr(a) —dr(x)) = 0

EI]**E%%B%) &M AT HENHER 64

Correctness of Huffman’s Algorithm

= Then we prove that the problem of constructing optimal prefix codes has
the optimal substructure property.

The conditions is the same as Theorem 7.4 .

Let C’ be the alphabet C with characters x, y removed and a new character z
added, namely C' = {C — {x,y}} U {z}.

Let f(z) = f(x) + f(y) and other frequencies in C and C’ are same.
Let T' be an optimal prefix code for C'.

Then the tree T for an optimal prefix code for C can be obtained from T’ by
replacing the leaf node for z with an internal node having x and y as children.

= |n one sentence: Merge x and y + optimal solution of C’ = optimal solution
of C.

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

65

Correctness of Huffman’s Algorithm

T T'

= T' is the optimal solution of the subproblem.

= We need to prove: Given the greedy choice and T', we can
obtain the optimal solution T for the original problem.

66

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Huffman’s Algorithm

T T'

\
X Y
Proof:
= Let B(T) and B(T") be the cost of tree T and T’, then
fQo)dr(x) + f(y)dr(y) dr(x) = dr(y)

=(fO+fM)dp @)+ D) | =dp(@)+1
= f(@)dp(2) + (f(x) + ()
= So B(T) = B(T") + f(x) + f():

) B AT HENRSYR 67

Correctness of Huffman’s Algorithm

T T'
Proof (cont’d):
= \We prove it by contradiction: If)
T' is optimal but T is not . N
optimal.

= |f T is not optimal, there must
exist an optimal tree T"' such
that B(T"") < B(T), and x and
y are also at the deepest level
of T"" (Theorem 7.4).

= Then we can construct a tree
T" from T", by removing x and
y and adding zto T".

@) BIIKSERER

i /
w SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Correctness of Huffman’s Algorithm

T T'

Proof (cont’d):

= By the formula we derive

before: ~

B(T") = B(I™) + () + f() L e
B(N) =B +f)+f0) [+] [
B(T") < B(T)

we obtain B(T'"") < B(T"),
yielding a contradiction to that

TII TIII

T' is optimal. S
. Z
® Thus T represents an optimal
prefix code for C. N
X Y
BIIXKFAERBER (o) ZnrTaanuses 69

Correctness of Huffman’s Algorithm

" Theorem 7.4: The greedy choice property.
" Theorem 7.5: The optimal substructure property

" Therefore, the Huffman algorithm produces an optimal prefix
code.

70

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Build the Huffman code for the following character frequencies.

a 16

b 5

c 12

d 17

e 10

f 25
@) BITARERSR

71

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

a:16 d:17 f:25

b:5 e: 10

6y BIIXFERFER

\" g
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

72

Conclusion

After this lecture, you should know:

" What is greedy approach.

" What is greedy choice property.

" How to prove the correctness of a greedy algorithm.

" What is the difference between dynamic programming and the
greedy approach.

73

) EITARERER

9,
Nz’ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Homework

= Page 109-111
7.2
7.5
7.8
7.11

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

74

GUARTfsE) B WA i e AL ?

= GooglefJAdWords, Bk % HABIL R 512 R e T &, 1 i)
FEAR B RPN (BB TR R ZHSE”) BALE, X
AMH PR E, PR BTN HRER.

= PR R T RE R 5B IKF TR, A %
A=A R B R T2 73, e b2 BRI
T B — B TR P, B 7 A, RIEA Gd
KT, M BUARE AN E SRR T .

= R 51T A 2R R 2 HERAS) 2 ROk
B, DL KA 24 R U e ?

) BIIRRESSEER (&
‘) a7
\3

&= SCHOOL OF INFORMATICS XIAMEN UNIVE

M AT RS 75

" AN A, BTN A IRE T — D RKRD,. LA MA . A
LTA

SO A R~ NG, SR, REETPAIL 2, .. M
S R, TSR 7 SR SR I 3 B4 A SE B L) AR 22 G

= LA H A A 2 S B X S B DL L EER Y BRI, A S oK

N M
maxzz qUCU

i=1j=1
M

s.t.) q;jC;j <b; fori=1,..,N
j=1
Horprg; = 13K R Y S 2 ML sa i o, 50124 0.
= R — A SOREE RS — A N T2, se B AR
= WAERA Q170 RTREE S & MR TE.

T 'Y

&) BITASERSR
i 4 =

o)

&%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

76

= FSOFEE SR AR) 3)

6,y Bl chahf" %aLBE

\'
3=+ SCHOOL OF INFOR

77

A T8 B R B 18

M~ tENHEE 78

T BIIKSEREE)/
A

\3

e/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

