
算法设计与分析
Lecture 7: Greedy Algorithms

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

Greedy Algorithms

¡ Algorithms for optimization problems typically go through a
sequence of steps, with a set of choices at each step.

¡ A greedy algorithm (贪心算法) always makes the choice that looks
best at the moment.

¡ Greedy algorithm makes a locally optimal choice in the hope that this
choice will lead to a globally optimal solution.
¡ Don’t think greedy approach is evil due to its name “greedy” with negative

meaning. It often lead to very efficient and simple solution.
¡ Everyday examples:

¡ Playing cards
¡ Invest on stocks
¡ Choose a university

1

ACTIVITY SELECTION PROBLEM

2

Activity Selection Problem

¡ Schedule 𝑛 activities 𝑆 = {𝑎!, . . . , 𝑎"} that require use of a
common resource.
¡ We can only do one activity at the same time.

¡ 𝑎# needs resource during period [𝑠# , 𝑓#).
¡ 𝑠! = start time and 𝑓! = finish time of activity 𝑎!.
¡ 0 ≤ 𝑠! < 𝑓! < ∞

¡ Activities 𝑎# and 𝑎$ are compatible (兼容的) if the intervals
[𝑠# , 𝑓#) and [𝑠$, 𝑓$) do not overlap:

3

𝑖 𝑗 𝑗 𝑖
𝑓𝑗 £ 𝑠𝑖𝑓𝑖 £ 𝑠𝑗 or

Activity Selection Problem

¡ Select the largest possible set of mutually compatible (相互兼容)
activities.
¡ We treat each activity gives same profit.

¡ For example,

¡ Activities are sorted in increasing order of finish times.
¡ A subset of mutually compatible activities: {𝑎!, 𝑎", 𝑎##}.
¡ Maximal set of mutually compatible activities: {𝑎#, 𝑎$, 𝑎%, 𝑎##} and
{𝑎&, 𝑎$, 𝑎", 𝑎##}.

4

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑠! 1 3 0 5 3 5 6 8 8 2 12
𝑓! 4 5 6 7 8 9 10 11 12 13 14

Representing the Problem

¡ Define the subproblems:
𝑆#$ = {𝑎& ∈ 𝑆: 𝑓# ≤ 𝑠& < 𝑓& ≤ 𝑠$}

as activities whose periods are after 𝑎# finishes and before 𝑎$
starts.

¡ Activities that are compatible with the ones in 𝑆#$:
¡ All activities that finish before 𝑓!.

¡ All activities that start no earlier than 𝑠".

5

𝑓! 𝑠" 𝑓"

𝑎" 𝑎#𝑎!

𝑠#

Representing the Problem

¡ Based on the definition of 𝑆!":
𝑆!" = {𝑎# ∈ 𝑆: 𝑓! ≤ 𝑠# < 𝑓# ≤ 𝑠"}

𝑆$% does not cover the original problem because 𝑎$ and 𝑎% are excluded.

¡ We can add two fictitious (虚拟的) activities:
¡ 𝑎! = [−∞, 0);
¡ 𝑎"#$ = [∞,∞ + 1) .

¡ Thus, 𝑆&(%($) = 𝑆 covers the entire space of activities 𝑎$, … , 𝑎%.

¡ Assume that activities are sorted in increasing order of finish times
𝑓& ≤ 𝑓$ ≤ 𝑓* ≤ ⋯ ≤ 𝑓% < 𝑓%($,

We only need to consider sets 𝑆!" with 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1, because 𝑆!" = ∅
if 𝑖 > 𝑗.

6

Dynamic Programming Solution

¡ Recall the optimal substructure of matrix-chain multiplication
problem and optimal BST problem, the optimal subproblem
has contains a position 𝑘.

¡ In this problem, assume that a solution to the above a
subproblem includes activity 𝑎&.
¡ Solution to 𝑆!" = (Solution to 𝑆!#) ∪ {𝑎#} ∪ (Solution to 𝑆#").

¡ |Solution to 𝑆!"| = |Solution to 𝑆!#| + 1 + |Solution to 𝑆#"|.

7

𝑆!"

𝑓! 𝑠" 𝑓"

𝑎" 𝑎#𝑎!

𝑠#

𝑆!# 𝑆#"

Optimal Substructure

¡ Assume that 𝐴#$ is an optimal solution to 𝑆#$ and includes
activity 𝑎&. Sets 𝐴#& and 𝐴&$ must also be optimal solutions.
¡ Prove by contradiction.

8

𝐴!"

𝑓! 𝑠" 𝑓"

𝑎" 𝑎#𝑎!

𝑠#

𝐴!# 𝐴#"

Recursive Equation

¡ Let 𝑐 𝑖, 𝑗 = |𝐴#$|as the size of the maximum subset of
mutually compatible activities in 𝑆#$.

¡ If 𝑆#$ = ∅, then 𝑐 𝑖, 𝑗 = 0.

¡ If 𝑆#$ ≠ ∅ and if we consider that 𝑎& is used in an optimal
solution, we have:

𝑐[𝑖, 𝑗] = 𝑐[𝑖, 𝑘] + 𝑐[𝑘, 𝑗] + 1

9

Recursive Equation

¡ The recursion equation is:

𝑐 𝑖, 𝑗 = =
0 𝑆#$ = ∅

max
#*&*$,,'∈.()

{𝑐 𝑖, 𝑘 + 𝑐 𝑘, 𝑗 + 1} 𝑆#$ ≠ ∅

¡ There are 𝑗 − 𝑖 − 1 possible values for 𝑘.
¡ 𝑘 = 𝑖 + 1,… , 𝑗 − 1.

¡ We check all the values and take the best one.

¡ Nothing special, very similar to the matrix-chain multiplication problem
and the optimal BST problem.

10

Simpler Idea

¡ Is dynamic programming the most efficient to solve this
problem?

¡ How about just simply select the activity with earliest finish
time?

¡ It seems work. But how to prove the correctness?

11

𝑖 1 2 3 4 5 6 7 8 9 10 11
𝑠! 1 3 0 5 3 5 6 8 8 2 12
𝑓! 4 5 6 7 8 9 10 11 12 13 14

Simpler Idea

Theorem

Let 𝑆#$ ≠ ∅ and 𝑎/ be the activity in 𝑆#$ with the earliest finish
time:

𝑓/ = min{𝑓&: 𝑎& ∈ 𝑆#$}

Then:

(1) Activity 𝑎/ must be in some optimal subset 𝐴#$.
¡ i.e. there exist some optimal solutions that contains 𝑎+.

(2) 𝑆#/ = ∅, so that choosing 𝑎/ leaves 𝑆/$ the only nonempty
subproblem.

12

Simpler Idea

Proof of (1) Activity 𝑎/ must be in some optimal subset 𝐴#$:

¡ Assume activities in 𝐴#$ are in increasing order of finish time,
and let 𝑎& be the first activity in 𝐴#$: 𝐴#$ = {𝑎&, … }.

¡ If 𝑎& = 𝑎/, done!

¡ Otherwise, replace 𝑎& with 𝑎/ (resulting in a set 𝐴#$′)
¡ Because 𝑓+ is the earliest finish time, 𝑓+ ≤ 𝑓#. The activities in 𝐴!"′ will

continue to be compatible.

¡ 𝐴!"′ will have the same size with 𝐴!"′.

13

Simpler Idea

Proof of (2) 𝑆#/ = ∅, so that choosing 𝑎/ leaves 𝑆/$ the only
nonempty subproblem:

¡ Assume 𝑆#/ ≠ ∅, i.e. there exists an activity 𝑎& ∈ 𝑆#/:
𝑓# ≤ 𝑠& < 𝑓& ≤ 𝑠/ < 𝑓/

¡ 𝑓& < 𝑓/ contradicts with the fact that 𝑎/ has the earliest finish
time.

¡ Therefore, there is no 𝑎& ∈ 𝑆#/, which implies 𝑆#/ = ∅.

14

Why is the Theorem Useful?

¡ Given the theorem, what can we do and how can we improve?

15

Dynamic programming Using the theorem

Number of subproblems
in the optimal solution

Number of choices to
consider

2 subproblems: 𝑆!", 𝑆"#

𝑗 − 𝑖 − 1 choices
1 choice: the activity with
the earliest finish time in 𝑆!#

1 subproblem: 𝑆$#
𝑆!$ = ∅

¡ Making the greedy choice (the activity with the earliest finish time in 𝑆!")
¡ Reduce the number of subproblems and choices.

¡ Solve each subproblem in a top-down fashion.

Greedy Approach

¡ To select a maximum size subset of mutually compatible
activities from set 𝑆#$:
¡ Choose am 𝑎+ ∈ 𝑆!" with earliest finish time (greedy choice).

¡ Add 𝑎+ to the set of activities used in the optimal solution.

¡ Solve the same problem for the set 𝑆+".

¡ From the theorem, it is proved that by choosing 𝑎/ we are
guaranteed to have used an activity included in an optimal
solution
¡ We do not need to solve the subproblem 𝑆+" before making the choice!

¡ This problem has the greedy choice property (贪心选择性质).

16

A Recursive Greedy Algorithm

¡ Activities are ordered in
increasing order of finish
time.

¡ Running time: 𝑂(𝑛)
¡ Each activity is examined only

once.

¡ Initial call:
RecursiveTaskSelect(𝑠, 𝑓,
0, 𝑛 + 1)

17

RecursiveTaskSelect(𝑠, 𝑓, 𝑖, 𝑗)
1 𝑚 ← 𝑖 + 1
2 while 𝑚 < 𝑗 and 𝑠+ < 𝑓! do
3 𝑚 ← 𝑚 + 1
4 if 𝑚 < 𝑗 then return {𝑎+} ∪

RecursiveTaskSelect(𝑠, 𝑓, 𝑚, 𝑗)
5 else return ∅

0 - 0

1 1 4

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

12 ¥ -

𝑘 𝑠𝑘 𝑓𝑘

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝑎! 𝑚 = 1

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎"

𝑎#

𝑎$

𝑎%

𝑎%

𝑎%

𝑎%

𝑎%

𝑎%

𝑎%

𝑎%

𝑎%

𝑎&

𝑎'

𝑎(

𝑎)

𝑚 = 4

𝑚 = 8

𝑎)

𝑎)

𝑎)

𝑎)

𝑎*

𝑎"!

𝑎""
𝑚 = 11

𝑎""

An Iterative Greedy Algorithm

¡ It totally not necessary to use
recursion.

¡ Activities are ordered in
increasing order of finish time.

¡ Running time: 𝑂(𝑛)
¡ Each activity is examined only

once.

19

GreedyTaskSelect(𝑠, 𝑓)
1 𝐴 ← {𝑎$}
2 𝑖 ← 1
3 for 𝑚 ← 2 to 𝑛 do
4 if 𝑠+ ≥ 𝑓! then
5 𝐴 ← 𝐴 ∪ {𝑎+}
6 𝑖 ← 𝑚
7 return 𝐴

Designing Greedy Algorithms

1. Cast the optimization problem as: we make a choice and are
left with only one subproblem to solve.

2. Prove that there is always an optimal solution to the original
problem when making the greedy choice.

¡ Making the greedy choice is always safe.

3. Demonstrate that after making the greedy choice: an optimal
solution = the greedy choice + an optimal solution to the
resulting subproblem.

20

Correctness of Greedy Algorithms

¡ Greedy choice property
¡ A globally optimal solution can be arrived at by making a locally optimal

(greedy) choice.

¡ Optimal substructure property
¡ We know that we have arrived at a subproblem by making a greedy

choice.

¡ optimal solution for the original problem = optimal solution to
subproblem + greedy choice.

21

Correctness of Greedy Algorithm for Activity Selection

¡ Greedy choice property
¡ There exists an optimal solution that includes the greedy choice: The

activity 𝑎+ with the earliest finish time in 𝑆!".

¡ Optimal substructure property
¡ An optimal solution to subproblem 𝑆!" = selecting activity 𝑎+ + optimal

solution to subproblem 𝑆+".

22

Dynamic Programming vs. Greedy Algorithms

¡ Dynamic programming
¡ Make a choice at each step.

¡ The choice depends on solutions to subproblems.

¡ Bottom up solution, from smaller to larger subproblems.

¡ Greedy algorithm
¡ Make the greedy choice.

¡ Solve the subproblem arising after the choice is made.

¡ The choice we make may depend on previous choices, but not on solutions to
subproblems.

¡ Top down solution, problems decrease in size.

¡ Common: Optimal substructure

23

Experiment for Activity Selection Problem

24

Table 7.1 Running-time comparison of algorithms for activity selection problem

𝑛 100 200 400 600 800 1000

Dynamic programming(DP) 0.000 0.015 0.189 0.656 1.656 3.250
RecursiveTaskSelect(RTS) 0.000 0.000 0.000 0.000 0.000 0.000
GreeyTaskSelect(GTS) 0.000 0.000 0.000 0.000 0.000 0.000
Maximum task number 19 24 30 40 46 52

Image source:图7.10,张德富, 算法设计与分析, 国防工业出版社, 2009.

Classroom Exercise

Use greedy algorithm to solve the following problem:

¡ Given 𝑛 integers, concatenate them in a row to constitute a
maximum integer.

¡ For example:
¡ 𝑛 = 3, 34331213 is the maximum integer to concatenate 13, 312, 343.

¡ 𝑛 = 4, 7424613 is the maximum integer to concatenate 7, 13, 4, 246.

25

Classroom Exercise

Solution 1:

¡ Simply select the integer with largest first bits.

¡ How about the following cases:
¡ 12, 121

¡ 12, 123

Solution 2:

¡ For the numbers with the same first bits, compare 𝑎 + 𝑏 with
𝑏 + 𝑎 and use the one with maximum value.

26

FRACTIONAL KNAPSACK PROBLEM

27

Fractional Knapsack Problem

28

Image source: https://en.wikipedia.org/wiki/Knapsack_problem

Fractional knapsack (部分背包)
problem:
¡ There are 𝑛 items: the 𝑖th item is

worth 𝑣# dollars and weights 𝑤# kg.
¡ The capacity of knapsack is 𝑊 kg.
¡ Items must be taken entirely or left

behind.
¡ Items can be taken fractionally.
¡ Which item fractions should we take

to maximize the total value?

https://en.wikipedia.org/wiki/Knapsack_problem

Example

¡ Weight capacity 𝑊 = 50kg.

¡ Using the solution of 0/1 knapsack
problem, we choose item 2 and 3
with total value 100 + 120 = 220.

¡ However, the solution of fractional
knapsack problem is to choose item
1 and 2 plus 2/3 of item 3, with total
value 60 + 100 + 120×2/3 = 240.

29

𝒊 𝒗𝒊 𝒘𝒊

1 $60 10kg
2 $100 20kg
3 $120 30kg

Greedy Strategy

¡ Greedy strategy 1: Pick the item with
the maximum value.

¡ This greedy strategy is obviously not
optimal.

30

𝒊 𝒗𝒊 𝒘𝒊

1 $60 10kg
2 $100 20kg
3 $120 30kg

𝑊 = 50kg

Greedy Strategy

¡ Greedy strategy 2: Pick the item
with the maximum value per kg
𝑣#/𝑤#.

¡ If the supply of that element is
exhausted and we can carry
more, take as much as possible
from the item with the next
greatest value per kg.

¡ It is good to order items based
on their value per kg:

𝑣$
𝑤$

≥
𝑣%
𝑤%

≥ ⋯ ≥
𝑣&
𝑤&

.

31

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $60 10kg $6/kg
2 $100 20kg $5/kg
3 $120 30kg $4/kg

𝑊 = 50kg

It seems ok! But how to prove?

Pseudocode

32

Greedy2Knapsack(𝑊, 𝑣)
1 order items based on their value per kg: 8*9* ≥

8+
9+
≥ ⋯ ≥ 8,

9,
2 𝑖 ← 1; 𝑤 ← 𝑊
3 while 𝑤 > 0 and as long as there are items remaining do
4 𝑥# ← min{1, 𝑤/𝑤#}
5 remove item 𝑖 from list
6 𝑤 ← 𝑤 − 𝑥#𝑤#
7 𝑖 ← 𝑖 + 1

Running time: Q(𝑛) if items already ordered; else Q(𝑛𝑙𝑔𝑛)

Greedy Choice Property

¡ Now we need to prove that the fractional knapsack problem
has greedy choice property.

¡ Assume the items are ordered based on their value per kg:
1 2 3 … 𝑖 … 𝑛

¡ The greedy solution is
𝑥! 𝑥: 𝑥; … 𝑥# … 𝑥"

where 𝑥# ∈ [0,1] is the fraction to take item 𝑖.

33

Greedy Choice Property

¡ The greedy solution will always look like this:

¡ Now, if the greedy solution is not optimal, there must exists an
optimal solution that looks like this:

34

… …

… …

𝑦! 𝑦: 𝑦; … 𝑦$<! 𝑦$ … y"

𝑥! 𝑥: 𝑥; … 𝑥$<! 𝑥$ … 𝑥"

0

1

0

1 One of the first 𝑗 − 1
items is not fully
taken, simply assume
that it is the first item.

Greedy Choice Property

¡ Now, we can do some transformation to the optimal solution:
Increase the fraction of item 1 and by decreasing item 𝑗.
¡ Moving weight: 𝑦$ − 𝑥$ 𝑤$.

¡ Value increased for item 1: 𝑦$ − 𝑥$ 𝑤$×𝑣$/𝑤$.

¡ Value decreased for item 𝑗: 𝑦$ − 𝑥$ 𝑤$×𝑣"/𝑤".

35

… …

𝑥! 𝑥: 𝑥; … 𝑥$<! 𝑥$ … 𝑥"

Which one is larger?

Greedy Choice Property

¡ Therefore, given any solution, we can transform it to the
greedy solution for larger value.

¡ It means the greedy solution has the largest value.

36

Optimal Substructure

¡ Consider the most valuable load that weights at most 𝑊 kg.

¡ If we remove a weight 𝑤 of item 𝑗 from the optimal load, the
remaining load must be the most valuable load weighing at
most 𝑊 −𝑤 that can be taken from the remaining 𝑛 − 1 items
plus 𝑤$ −𝑤 pounds of item 𝑗.

37

Classroom Exercise

Can greedy algorithm obtain optimal solution for the coin change
problem?

38

Classroom Exercise

The greedy algorithm:

1. Select the largest coin.

2. Check if adding the coin makes the change exceed the
amount.

a. No, add the coin.

b. Yes, set the largest coin as the second largest coin and go back to step 1.

3. Check if the total value of the change equals the amount.
a. No, go back to step 1.

b. Yes, problem solved.

39

Classroom Exercise

¡ Successful example:
¡ For 𝑁 = 86 (cents) and 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 5, 𝑑4 = 10, 𝑑5 = 25, 𝑑6 =
50, 𝑑7 = 100.

¡ The greedy approach is optimal: 50, 25, 10, 1.

¡ Failed example:
¡ For 𝑁 = 6 (cents) and 𝑑1 = 1, 𝑑2 = 3, 𝑑3 = 4.
¡ The greedy approach is not optimal: 4, 1, 1.
¡ The optimal solution: 3, 3.

¡ For this problem, the success of greedy approach depends on the
coin currency.
¡ It works for canonical coin systems like US, but not for arbitrary coin system.

40

HUFFMAN CODE

41

Data Compression by Binary Code

¡ The problem of data compression (数据压缩) is to find an
efficient method for encoding a data file.
¡ Compress string 𝑆 into 𝑆’, which can be restored to 𝑆, such that |𝑆’| < |𝑆|.

¡ A common way to represent a file is to use a binary code (二进
制编码).

¡ In such a code, each character is represented by a unique
binary string, called the codeword (码字).

42

Data Compression by Binary Code

There are two ways to use binary code:
¡ A fixed-length code (固定长度编码) represents each character

using the same number of bits.
¡ For example, suppose our character set is {𝑎, 𝑏, 𝑐}.
¡ Then we could use 2 bits to code each character: 𝑎: 00, 𝑏: 01, 𝑐: 11.

¡ Given this code, if our file is 𝑎𝑏𝑎𝑏𝑐𝑏𝑏𝑏𝑐, our encoding will be
000100011101010111.

¡ We can obtain a more efficient coding using a variable-length
code (可变长度编码).
¡ Such a code can represent different characters using different numbers of

bits.

43

Data Compression by Binary Code

¡ For example, a data file of 100 characters contains only the
characters 𝑎-𝑓, with the frequencies:

¡ How much do we save in this case?
¡ Fixed-length code: 100×3 = 300 bits.

¡ Variable-length code: (45×1 + 13×3 + 12×3 + 16×3 + 9×4 + 5×4) =
224 bits

44

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓
Frequency 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Prefix Codes

¡ One particular type of variable-length code
is a prefix code (前缀编码).

¡ No codeword is also a prefix of some other
codeword.

¡ The advantage of a prefix code is that there
is no ambiguity when interpreting the
codes.

¡ For example:
¡ 𝑎𝑏𝑐 → 0 Z 101 Z 100 → 0101100

¡ 010110000 → 0 Z 101 Z 100 Z 0 Z 0 → 𝑎𝑏𝑐𝑎𝑎

45

a b c
0 101 100

Binary Tree Representation

¡ The prefix coding can be represented
by a binary tree, where we put all
characters on leaves.

¡ Interpret the binary codeword for a
character as the path from the root to
that character, where 0 means "go to
the left child" and 1 means "go to the
right child.", then we can construct a
binary tree corresponding to the
coding schemes.

46

𝑎 𝑐

𝑏

10

0 1

Binary Tree Representation

47

c:12 d:16a:45 b:13 e:9 f:5

14
1

58
0 1

28
0 1

86
0 1

100

0 1

14

0

0

c:12 d:16

a:45

b:13

e:9f:5

30

14

0

1

25

1

100

0 1

55

0

10

1

0

Fixed-length code Variable-length code

Binary Tree Representation

¡ Given a tree 𝑇 corresponding to a prefix code, for each
character 𝑐 in the alphabet 𝐶, let
¡ 𝑓(𝑐) denote the frequency of 𝑐 in the file;
¡ 𝑑-(𝑐) denote the depth of 𝑐's leaf in the tree, also the length of the

codeword for character 𝑐.

¡ The number of bits required to encode a file is thus

𝐵 𝑇 =_
?∈@

𝑓 𝑐 𝑑A(𝑐)

which we define as the cost of the tree 𝑇.
¡ It is similar to the optimal BST problem, but with no constraint

of being a search tree (𝑘BCDE ≤ 𝑘"FGC ≤ 𝑘H#IJE).

48

Huffman Code

¡ Huffman code (哈夫曼编码/霍夫曼编
码) was developed by David A. Huffman
while he was a Sc.D. student at MIT in
1952.

¡ Huffman code efficiently builds the
optimal prefix code, given the frequency
of each character.

49

David Albert Huffman
(1925 – 1999)

Huffman’s Algorithm

¡ Huffman’s algorithm builds the
codeword bottom up.

¡ Consider a forest of trees:
¡ Initially, one separate node for each

character.
¡ In each step, join two trees into a larger

tree.
¡ Repeat this until only one big tree

remains.

¡ Which trees to join? Greedy choice
the trees with the lowest
frequencies!

50

𝑓(𝐴) 𝑓(𝐵)

𝑓(𝐴) 𝑓(𝐵)

𝑓 𝐴 + 𝑓(𝐵)

10

Example

51

𝑓: 5 𝑒: 9 𝑐: 12 𝑏: 13 𝑑: 16 𝑎: 45

¡ Sort with character frequency.

Example

52

𝑐: 12 𝑏: 13 𝑑: 16 𝑎: 45

¡ Join two nodes with lowest frequency, and sum up the frequency.

𝑓: 5 𝑒: 9

14
0 1

Example

53

𝑑: 16 𝑎: 45

¡ Insert into proper position.

𝑓: 5 𝑒: 9

𝑐: 12 𝑏: 13 14
0 1

Example

54

𝑑: 16 𝑎: 45

¡ Join two nodes with lowest frequency, and sum up the frequency.

𝑓: 5 𝑒: 9

14
0 1

𝑐: 12 𝑏: 13

25
0 1

Example

55

𝑎: 45

¡ Insert into proper position.

𝑓: 5 𝑒: 9 𝑐: 12 𝑏: 13

𝑑: 1614
0 1

25
0 1

Example

56

𝑎: 45

¡ Join two nodes with lowest frequency, and sum up the frequency.

𝑐: 12 𝑏: 13

25
0 1

𝑓: 5 𝑒: 9

𝑑: 1614
0 1

30
0 1

Example

57

𝑎: 45

¡ Insert into proper position.

𝑐: 12 𝑏: 13

25
0 1

𝑓: 5 𝑒: 9

𝑑: 1614
0 1

30
0 1

Example

58

𝑎: 45

¡ Join two nodes with lowest frequency, and sum up the frequency.

𝑐: 12 𝑏: 13

25
0 1

𝑓: 5 𝑒: 9

𝑑: 1614
0 1

30
0 1

55
0 1

Example

59

𝑎: 45

¡ Insert into proper position.

𝑐: 12 𝑏: 13

25
0 1

𝑓: 5 𝑒: 9

𝑑: 1614
0 1

30
0 1

55
0 1

Example

60

𝑎: 45

¡ Join two nodes with lowest frequency, and sum up the frequency.

𝑐: 12 𝑏: 13

25
0 1

𝑓: 5 𝑒: 9

𝑑: 1614
0 1

30
0 1

55
0 1

100
0 1

Pseudocode

61

HuffmanCode(𝐶)
1 𝑄 ← 𝐶
2 for 𝑖 ← 1 to 𝑛 − 1 do
3 allocate a new node 𝑧
4 𝑥 ← ExtractMin(𝑄)
5 𝑦 ← ExtractMin(𝑄)
6 𝑓(𝑧) ← 𝑓(𝑥) + 𝑓(𝑦)
7 Insert(𝑄, 𝑧)
8 return ExtractMin(𝑄)

¡ Greedy algorithm is always easy. What is the difficult part?

ExtractMin and Insert
are heap operators,
which take 𝑂(lg 𝑛).
Therefore, the total cost
is 𝑂(𝑛 lg 𝑛).

Minimum priority queue

Correctness of Huffman’s Algorithm

We are going to prove two things:

¡ Greedy choice property: Select the lowest frequency characters
is always correct.

¡ Optimal substructure property: Greedy choice + optimal
solution of subproblem = optimal solution of original problem.

62

Correctness of Huffman’s Algorithm

¡ We first prove the greedy choice property.
Theorem 7.4
Let 𝐶 be an alphabet in which each character 𝑐 ∈ 𝐶 has
frequency 𝑓(𝑐).
Let 𝑥 and 𝑦 be two characters in 𝐶 having the lowest frequencies.
Then there exists an optimal prefix code for 𝐶 in which the
codewords for 𝑥 and 𝑦 have the same length and differ only in
the last bit.
¡ In one sentence: To join the lowest frequency characters is

always correct!

63

Correctness of Huffman’s Algorithm

Proof:
¡ Idea: If 𝑥 and 𝑦 are not in

the deepest level of an
optimal tree, we can
always switch them to
the deepest level, to
obtain a better tree.

64

𝑎

𝑥

𝑦 𝑥

𝑎

𝑦

𝑇 𝑇′

𝐵 𝑇 − 𝐵 𝑇' =-
(∈*

𝑓 𝑐 𝑑+ 𝑐 −-
(∈*

𝑓 𝑐 𝑑+! 𝑐

= 𝑓 𝑥 𝑑+ 𝑥 + 𝑓 𝑎 𝑑+ 𝑎 − 𝑓 𝑥 𝑑+! 𝑥 + 𝑓 𝑎 𝑑+! 𝑎
= 𝑓 𝑥 𝑑+ 𝑥 + 𝑓 𝑎 𝑑+ 𝑎 − 𝑓 𝑥 𝑑+ 𝑎 + 𝑓 𝑎 𝑑+ 𝑥
= 𝑓 𝑎 − 𝑓 𝑥 𝑑+ 𝑎 − 𝑑+ 𝑥 ≥ 0

Correctness of Huffman’s Algorithm

¡ Then we prove that the problem of constructing optimal prefix codes has
the optimal substructure property.

Theorem 7.5

The conditions is the same as Theorem 7.4 .
Let 𝐶′ be the alphabet 𝐶 with characters 𝑥, 𝑦 removed and a new character 𝑧
added, namely 𝐶′ = {𝐶 − {𝑥, 𝑦}} ∪ {𝑧}.
Let 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦) and other frequencies in 𝐶 and 𝐶’ are same.

Let 𝑇′ be an optimal prefix code for 𝐶′.
Then the tree 𝑇 for an optimal prefix code for 𝐶 can be obtained from 𝑇′ by
replacing the leaf node for 𝑧 with an internal node having 𝑥 and 𝑦 as children.
¡ In one sentence: Merge 𝑥 and 𝑦 + optimal solution of 𝐶′ = optimal solution

of 𝐶.

65

Correctness of Huffman’s Algorithm

¡ 𝑇′ is the optimal solution of the subproblem.

¡ We need to prove: Given the greedy choice and 𝑇^, we can
obtain the optimal solution 𝑇 for the original problem.

66

𝑥 𝑦

𝑧

𝑇 𝑇′

… …

Correctness of Huffman’s Algorithm

Proof:

¡ Let 𝐵(𝑇) and 𝐵(𝑇′) be the cost of tree 𝑇 and 𝑇′, then
𝑓 𝑥 𝑑- 𝑥 + 𝑓 𝑦 𝑑- 𝑦

= 𝑓 𝑥 + 𝑓 𝑦 𝑑-& 𝑧 + 1
= 𝑓 𝑧 𝑑-& 𝑧 + 𝑓 𝑥 + 𝑓 𝑦

¡ So 𝐵(𝑇) = 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓(𝑦).

67

𝑥 𝑦

𝑧

𝑇 𝑇′

… …

𝑑" 𝑥 = 𝑑" 𝑦
= 𝑑"! 𝑧 + 1

Correctness of Huffman’s Algorithm

68

𝑥 𝑦

𝑧

𝑇 𝑇′

… …

𝑥 𝑦

𝑧

𝑇′′ 𝑇′′′

… …

Proof (cont’d):
¡ We prove it by contradiction: If
𝑇′ is optimal but 𝑇 is not
optimal.

¡ If 𝑇 is not optimal, there must
exist an optimal tree 𝑇′′ such
that 𝐵(𝑇′′) < 𝐵(𝑇), and 𝑥 and
𝑦 are also at the deepest level
of 𝑇′′ (Theorem 7.4).

¡ Then we can construct a tree
𝑇′′′ from 𝑇′′, by removing 𝑥 and
𝑦 and adding 𝑧 to 𝑇′′.

Correctness of Huffman’s Algorithm

69

𝑧

𝑇′

…

𝑧

𝑇′′′

…

Proof (cont’d):
¡ By the formula we derive

before:
𝐵(𝑇′′) = 𝐵(𝑇′′′) + 𝑓(𝑥) + 𝑓(𝑦)
𝐵(𝑇) = 𝐵(𝑇′) + 𝑓(𝑥) + 𝑓(𝑦)

𝐵 𝑇'' < 𝐵 𝑇
we obtain 𝐵 𝑇''' < 𝐵(𝑇′),
yielding a contradiction to that
𝑇′ is optimal.

¡ Thus 𝑇 represents an optimal
prefix code for 𝐶.

𝑥 𝑦

𝑇

…

𝑥 𝑦

𝑇′′

…

Correctness of Huffman’s Algorithm

¡ Theorem 7.4: The greedy choice property.

¡ Theorem 7.5: The optimal substructure property

¡ Therefore, the Huffman algorithm produces an optimal prefix
code.

70

Classroom Exercise

Build the Huffman code for the following character frequencies.

71

Character Frequecy

𝑎 16
𝑏 5
𝑐 12
𝑑 17
𝑒 10
𝑓 25

Classroom Exercise

72

𝑏: 5 𝑒: 10

15
0 1

𝑐: 12

𝑓: 25 27
0 1

52
0 1

85
0 1

𝑎: 16 𝑑: 17

33
0 1

Conclusion

After this lecture, you should know:

¡ What is greedy approach.

¡ What is greedy choice property.

¡ How to prove the correctness of a greedy algorithm.

¡ What is the difference between dynamic programming and the
greedy approach.

73

Homework

¡ Page 109-111
7.2

7.5

7.8

7.11

74

Experiment 1

如何使广告的收益最大化？
¡ Google的AdWords,或者其他搜索引擎的关键定广告,使用的
基本都是“关键字竞价” (或者称“关键字拍卖”)的机制,对每
个用户搜索的关键定,挑选为它竞价的广告来显示.

¡用户搜索的关键字到达搜索引擎次序无法预知,每个竞价者
为一个关键字出的价钱也千差万别,竞价者还会对每天的花
费总额有一个封顶的预算,超过了这个预算,即使有合适的
关键字,竞价者也不希望为它多花钱了.

¡搜索引擎们是通过什么样的规则来安排哪个广告给哪个关
键字,以最大化当天的收益的呢?

75

Experiment 1

¡ 有𝑁个竞价者,每个竞价者指定了一个最大预算𝑏-.一共有𝑀个关键字.每个
竞价者𝑖对第𝑗个关键字指定一个出价𝐶-..竞价开始后,关键字序列1, 2, … ,𝑀
实时到达,每个关键字𝑗必须实时分配给某个竞价者𝑖的广告以赚取收益𝐶-..

¡ 问题的目标是:在满足竞价者对关键字匹配要求的基础上,使总收益最大.

max:
-/#

0

:
./#

1

𝑞-.𝐶-.

s. t.:
./#

1

𝑞-.𝐶-. ≤ 𝑏- for 𝑖 = 1,… ,𝑁

其中𝑞-. = 1表示将关键字𝑗实时分配给竞价者𝑖,否则为0.
¡ 请设计出一个贪心算法:任给一个输入实例,能输出总收益.

¡ 测试案例自行设计,尽可能覆盖各种情形.

76

Experiment 2

¡用贪心算法求解石材切割问题

77

谢谢

有问题欢迎随时跟我讨论

78

