B AT

Lecture 8: Graph Algorithm

it

TR EAE B b AR A &

luyang@xmu.edu.cn

Representations of Graphs

Two standard ways to represent a graph G = (V, E):
= Adjacency matrix (2B F%): a [V [X|V| matrix A = (a;;):

Q. = w(i,j) if(i,j) €E
H 0 otherwise

= Adjacency lists (44%3%): each vertex u has a linked list Adj[u],
constructed by u’s neighbors.

ey Bl RS %*B?E

&)
Nz’ SCHOOL OF INFORMATICS X|

Representations of Graphs

/®

5

TR XS
S D= D
OO =
SO OO

1 — 2 —> 4

@ 2 | 1|13 |—+¥al”
3[¥2| 4[5~
4 » 1 "2 W37
5|13

(2) (¢)

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Representations of Graphs

h B W R =
OO OO
T oo~ O~ N
—_-0 0 O O W
SO = O
S O OIS N

N

AN
T

= b [~ [t
I
+
N

(a) (

L]
p—

Adjacency matrix and adjacency lists for directed graph.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Representations of Graphs

The usage of these two representations is different:

® Adjacency matrix is suitable for representing dense graphs -
those for which |E]| is close to |V |?.

= Graphs close to complete graph (5842 K&l).

= Adjacency lists represent sparse graphs - those for which |E| is
much less than |V]?.

= Graphs close to null graph (Z]).

@) BITRHERER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

GRAPH SEARCH

Graph Search

= Graph search aims to compute the distance (smallest number
of edges) from a vertex s to each reachable vertex.

" There are two general searching strategies: Breadth-first search

(BFS) (%% B 5644 2) and depth-first search (DFS) (3R JE 4%
HR).

> Bl chahf" %abli?u

o &)
\&=%7 SCHOOL OF INFORMATICS X

GRAPH SEARCH

BREADTH-FIRST SEARCH

Breadth-First Search

= Given a graph G = (V, E) and a distinguished source vertex s,
BFS systematically explores the edges of G to "discover" every
vertex that is reachable from s.

= |t computes the distance (smallest number of edges) from s to each
reachable vertex.

= |t also produces a "breadth-first tree" with root s that contains all
reachable vertices.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

BFS(G, s)

O 0 1 &N i &~ W N =

11
12
13
14
15

for each vertex u € V — {s} do
color[u] « White
dlu] « o
[u] « NIL
color|[s] « Gray
d[s] « 0; m[s] « NIL; Q « @

Enqueue(Q, s) | Iterate over all
while Q # @ do | Gray vertices.

u «<Dequeue(Q) lterat
10 for each v € Adj[u] do | neigh

16 color[u] < DarkGray

unvisited verti

Initialization for all

ces.

o over all
bors of u.

if color[v] = White then
color|v] « Gray
d[v] « d[u] +1
w[v] < u
Enqueue(Q, v)

= color|u]: record the
color of each vertex u.

= White: Not visited.
= Gray: Searched.

= DarkGray: All its neighbors
have been searched.

= d[u]: the number of
edges on the path from
s to u.

= t|u]: parent vertex of u.

= (): a queue to store
Gray vertices.

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

10

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) = s

11

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) =r

12

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Q

Dequeue(Q) = w

v t Xx

13

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) = v

14

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) =t

t u
\2/ *
v w X y

15

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) = x

e u'y

3 3

16

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) = u

17

BFS(G, s)

1 for each vertex u € V — {s} do
2 color[u] « White

3 dlu] « oo

- m|u] < NIL

5 color(s] « Gray

6 d[s] « 0; m[s] « NIL; Q « @
7 Enqueue(Q, s)

8 while Q # @ do

9 u «<Dequeue(Q)

10 for each v € Adj[u] do
11 if color[v] = White then
12 color|v] « Gray
13 d[v] « d[u] +1
14 w[v] < u

15 Enqueue(Q, v)

16 color[u] < DarkGray

Dequeue(Q) =y

18

Correctness of BFS

" Now, we are going to prove the correctness of BFS: When BFS
terminates, for all v € V, d|v] is the shortest path from s to v.

Definition 8.1

The shortest path distance 6 (s, v) from s to v is the minimum
number of edges in any path from vertex s to vertex v; if there is
no path from s to v, then 6 (s, v) = 0.

19

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of BFS

Let G = (V, E) be a directed or undirected graph, and lets € IV
be an arbitrary vertex. Then, for any edge (u,v) € E,

o(s,v) <o0(s,u) + 1.

Proof:
® |f u is reachable from s, it is obvious. v
= |f u is not reachable from s, it is also obvious.
O— . —O
NG
S u
) BIIRFERFRH -

Correctness of BFS

Let G = (V, E) be adirected or undirected graph, and suppose that
BFS is run on G from a given source vertex s € I/. Then before
termination, for each vertex v € V, the value d[v] computed by BFS
satisfies d|v] = 6 (s, v).

= What does this Lemma say? d[v] = &(s, v): The number of edges on
the path from s to v is not less than the shortest path from s to v,
before termination of BFS.

® Only two cases:

= If vis not visited, d[v] = o > §(s, v). Easy to guess, but

= If visvisited, d[v] = (s, v). how to prove?

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 21

Correctness of BFS

Proof:

We use induction on the number of Enqueue operations n.

sn=1,d[s]=0=46(s,s)and d|v] =0 = 6(s,v) forallv €
V —{s}.

= n = k, before enqueuing v, we assume d|u| = §(s,u), where
v is a White neighbor of u.

= n =k + 1, after enqueuing v, d[v] =d[u] + 1 = 6(s,u) +
1=46(s,v).

22

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Correctness of BFS

Suppose that during the execution of BFS on a graph ¢ = (V, E),
the queue Q contains the vertices v4, V5, ..., V-, Where v, is the
head of Q and v, is the tail. Then, d[v,] < d[v4] + 1 and

dlv;] < d[vj;1]fori=12,..,r—1.

" What does this Lemma say?

= d|v,] < d[v{] + 1: the difference of d[v] between head v, and tail v, is
not greater than 1in Q.

= d|v;] < d[viy1]: d[v]is not greater than its successor in Q.

6y B chahf" %abﬂ?u

5,
&2/ SCHOOL OF INFOR

23

Correctness of BFS

Goal of proof: v v V: V: V.

Wdwl<dwl+| ° 72 . .

(2) d[v;] < d[v;44] d[v,] d[v;] d[v;] d[vi44] d[vy]
Proof:

We use induction on the number of Enqueue operations n.

=n =1, the only vertex in Q is s. Obviously d[v,| < d[v¢] + 1,
because v; = v, = s.

=n = k,weassume d[v,| < d[v{] +1and d[v;] < d[v;41].

24

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of BFS

Goal of proof: ‘\@ v Vi V; (%

Wdin]<dpl+1| C ’ . .

(2) d[v;] < d[v44] d[v,] d[v,] d[v;] d[vis1] d[vy]
Proof (cont’d):

= n=k+ 1, consider dequeuing v;:
= |f the head v, of the queue is dequeued, v, becomes the new head.
= By the inductive hypothesis, d[v{] < d[v,], we have
dlv,] < d[v1] +1 < d[v,] + 1.

= Thus, (1) is maintained after dequeue. (2) is also maintained because
there is no new vertex added into Q.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

25

Correctness of BFS

Goal of proof: 0] (%) Vi V41 (%% @\

(1) d[v] < d[vs] +1
(2) d[vi] = d[vi+1] d[vz] d[vi] d[vi+1] d[vr] d[vr+1]

Proof (cont’d):
= n =k + 1, after dequeuing v¢, consider enqueuing v, 1:

= By BFS, we have d[v, ;] = d|v,] + 1.
= By the inductive hypothesis, d[v,] < d[v,], we have
d[vyi1] =d[v] +1 < d[v,] + 1.

Thus, (1) is proved because v, and v,.,; are the new head and tail of Q.

= By the inductive hypothesis, d[v,] < d[v;] + 1, we have
dlv,] <d[vi] +1 =d[v,44].

Thus, (2) is maintained when v,.,; is enqueued.

6y BIIXFERFER

\)
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M *T RN HYE 26

Correctness of BFS

Suppose that vertices v; and v; are enqueued during the
execution of BFS, and that v; is enqueued before v;. Then
d|v;] < d[v;] at the time that v; is enqueued.

= What does this Corollary say? We have d[v;]| < d[v;], if v; isin
front of v; in Q.

= |t can be easily proved by d[v;] < d[v;jyq] fori =1,2,...,r — 1 in Lemma
3.3.

¢y Bl chaL{"' %aLB;E

\\
&=/ SCHOOL OF INFOR

27

Correctness of BFS

Let G = (V, E) be adirected or undirected graph, and suppose that
BFS is run on G from a given source vertex s € V.

(1) When BFS terminates, d[v] = 6(s,v) forallv € V.

(2) For any vertex v # s that is reachable from s, one of the shortest
paths from s to v is a shortest path from s to [v] followed by the
edge (|v], v).

= What does the Theorem say?

(1) When BFS terminates, the number of edges from s to v is the shortest path
distance.

(2) One of the shortest path from s to v must go through v’s parent [v].

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

28

Correctness of BFS

Proof of (1):

= \WWe use proof by contradiction: Assume that there is a vertex v
having d[v] # §(s, V).

= By Lemma 8.2, d|v] = 6 (s, v), and thus we have d[v] >
o(s,v).

" Let u be the vertex immediately preceding v on a shortest path
fromstov,sothat 6(s,v) = 6(s,u) + 1.

= By the choice of v, there must exists a u that d|u] = 6 (s, u).

® Thus, we have
dlv] > 6(s,v) =d6(s,u) +1 =d[u] + 1.

M *T RN HYS 29

€y) ENAHHERFR

Correctness of BFS

Proof of (1) (cont’d):

= Base on the face that d|v] > d[u] + 1, we consider the cases
when u is dequeued:

= |f v is White, then Line 15 sets d[v] = d[u] + 1.

= |f v is DarkGray, then it was already removed from the queue and, by
Corollary 8.1, we have d[v] < d[u].

= |f v is Gray, then it was painted gray upon dequeuing some vertex w,
which was removed from Q earlier than u and for which d[v] = d[w] +
1 and d[w] < d[u] by Corollary 8.1. So we have d[v] < d[u] + 1.

= All three cases show contradiction to d[v] > d|u] + 1.
Therefore, the assumption fails.

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

30

Correctness of BFS

Proof of (2):

= If r|v] = u, we have 6(s,u) = d[u] and 6(s,v) = d[v].
Therefore, we get d[v] = d[u] + 1.

" We can thus find a path from s to u and from u to v.

31

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Breadth-First Tree

= For a graph G = (V, E) with source s, we define the
predecessor subgraph of G as G,; = (Vg, E;), where

V. = {v e V:r[v] # NIL} U {s},
= {(n[v],v):v € V; — {s}}.

= The predecessor subgraph G is a breadth-first tree if V;
consists of the vertices reachable from s and, forall v € 1,
there is a unique simple path from s to v in G that is also a
shortest path fromstovinG.

m Breadth-first tree is a spanning tree.

@) BITASERSR

A g
N3/ SCHOOL OF INFORMATICS

32

Computational Cost of BFS

BFS(G, s)

= The for loop in Line 1 runs |V| for cach vertex u € V — {s} do
ti color[u] « White
imes. d[u] < o
rm[u] « NIL

® |n the worst case, the while

loop in Line 8 runs |V | times
and the for loop in Line 10
runs |E| times.

color[s] < Gray

d[s] « 0; m[s] « NIL; Q « @
Enqueue(Q, s)
while Q # @ do

O O\ L AW -

9 u «<Dequeue(Q)
L 10 for each v € Adju] do
= The compIeX|ty IS 0(|V| |E|) 11 if color[v] = White then
i i 12 [— G
= Will this worst case happen? 13 Zo[v?riv]d[u] iai’
Think of using amortized 14 m[v] < u
15 Enqueue(Q, v)

analysis. 16 color[u] < DarkGray

) BIIRFEREM f DR A RNEER 33

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Computational Cost of BFS

BFS(G, s)
1 for each vertex u € V — {s} do
2 color[u] « White

3 d[u] « oo

4 rm[u] « NIL

5 color[s] « Gray
6
7
8

= There are at most |I/| vertices
in Q.
" For each vertex, for loop runs

at most Adj|u] times. d[s] < 0; 7[s] < NIL; < @

= Total cost from Line 8 to Line Enqueue(@Q,)

while Q # @ do

16: 9 u «<Dequeue(Q)
10 for each v € Adj[u] do
z |Ad] lul| = O(|E]). 11 if color[v] = White then
12 color[v] < Gray
uey 13 d[v] < d[u] + 1
= Total cost for BFS: O(|V| + 14 [v] « u
| E D 15 Enqueue(Q, v)

16 color[u] « DarkGray

) BIIRFEREM f DR A RNEER 34

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Print Path of BFS

PrintPath(G, s, v)

1 if v = s then

2 print s

3 else if m|v] = NIL then

-+ print "no path from" s "to" v "exists"
5 else PrintPath(G, s, m[v])

6 print v

35

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

GRAPH SEARCH

DEPTH-FIRST SEARCH

Depth-First Search

m Depth-first search (DFS) (¥R L SE$4 Z) is a recursive
algorithm, which starts from a vertex v and recursively call to
all v’s neighbors until all vertices are visited.

P uti:‘li 1060

-'

!

G,y) BIIXZERZ5

=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) F AT RS 37

Image source: https://www.banterly.net/2020/02/09/why-what-you-have-been-thaught-about-dfs-is-wrong-at-least-partially/

https://www.banterly.net/2020/02/09/why-what-you-have-been-thaught-about-dfs-is-wrong-at-least-partially/

Depth-First Search

® DFS timestamps each vertex. Each vertex v has two
timestamps:

= The first timestamp d[v] records when v is first discovered.

= The second timestamp f[v] records when the search finishes checking
v’s neighbors.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

38

BFS vs. DFS

BFS OFS$

vt ’cﬁ/}i&u&:} R{/%}\

G e
\ sisk ol the \

mode Hok are O
O dildun fint

) Z N AT HRNHYR 39

O BTSSR
i H =
\3

522/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: https://medium.com/nothingaholic/depth-first-search-vs-breadth-first-search-in-python-81521caa8f44

https://medium.com/nothingaholic/depth-first-search-vs-breadth-first-search-in-python-81521caa8f44

Depth-First Search

DFSVisit(u)

DFS(G) 1 color[u] « Gray
1 for each vertex u € V do 2 time <« time + 1
2 color[u] « White 3 dlu] « time
3 n[u] « NIL 4 for each v € Adj|u] do
4 time < 0 5 if color|v] = White then
5 for each vertex u € I/ do 0 mv] TH

. . 7 DFSVisit(v)
6 if color[u] = White then

L 8 color|u] « DarkGray

/ DESVisit(u) 9 time « time + 1
This DFS function search the whole 10 flu] « time
graph, while the previous version of BFS
only search from a source vertex s. Similar to the analysis of BFS, the

computational complexity is O(|V |+| E]).

6y BIIXSERFMKR AT HRNHER 40

%)
3=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

ireadth-First Search Depth-First Search

ww. combinatorica . com ww. combinatorica . com

EITARERER (7

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M *T RN HYS a1

Image source: https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Depth-First Search

42

&
N SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Depth-First Search

6y BIIXRFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

43

Depth-First Search

6y BIIXRFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

44

Depth-First Search

6y BIIXRFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

45

Depth-First Search

6y BIIXRFERER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

46

Depth-First Search

6y BIIXRFERER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

47

Depth-First Search

@

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

48

Depth-First Search

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

49

Depth-First Search

@) BITKHERER

\a 7
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

50

Depth-First Search

@) BITKHERER

\a 7
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

51

Depth-First Search

10/

@) BITKHERER

\a 7
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

52

Depth-First Search

@) BITARERER

\i 4
% SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

53

Depth-First Search

54

@ BIIXFEEFR

\)
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Properties of DFS

" The search can be used to
classify the edges E into
four edges:

= Tree edges: Edges in depth-first
trees.

= Back edges (B): Not in tree
edges, but points to its
ancestor vertex or itself.

= Forward edges (F): Not in tree
edges, but points to its
descendant vertex.

= Cross edges (C): Others.

@ BENXFERF5R

/
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Application of DFS: Topological Sort

= A topological sort (}aFMEF)

of a directed acyclic graph
(DAG) (M Jo¥RKE) G =
(V,E) is a linear ordering of
all its vertices such that if G
contains an edge (u, v), then
u appears before v in the
ordering.

u

w Z u v y X

) M

%7 tRNEER

56

Application of DFS: Topological Sort

TopologicalSort(G)

1 call DFS(G) to compute finishing times f|[v] for each vertex v
2 as each vertex 1s finished, insert it onto the front of a linked list
3 return the linked list of vertices

57

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Application of DFS: Topological Sort

11/16

undershorts @ @ 17/18

\ 4

12/15 @ts/ 6/7 9/10

1/8

3/4

2/5

) G- @)) ()

17/18 11/16 12/15 13/14 9/10 1/8

6y BIIXFERFER

\\ 2
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

58

Application of DFS: Strongly Connected Components

= A connected component (3% 4 57) of a directed graph G =
(V,E) is a set of vertices C € V such that for every pair of
vertices u and v in C, u and v are reachable from each other.

= A strongly connected component (58 1%H# 43 37) is the maximal
one among all connected components.

= The transpose graph (44 & [&]) of G is the graph GT = (V,ET),
where ET = {(u, v): (v,u) € E}. Thatis, ET consists of the
edges of (¢ with their directions reversed.

ED*+P%+E

SCHOOL OF INFORMATICS X|

59

x| *)
2
e

Ty
o8 X
&
5/
3

Application of DFS: Strongly Connected Components

StrongConnectedComponents(G)

I call DFS(G) to compute finishing
times f|u] for each vertex u

2 compute G

3 call DFS(GT), but in the main loop of

DES, consider the vertices in order of

decreasing f[u] (as computed in line 1)
4 output the vertices of each tree in the

depth-first forest formed in line 3 as a

separate strongly connected component

DFS(G)

1 for each vertex u € V do
2 color|u] « White

3 m[u] « NIL

4 time < 0

=
5 for each vertex u € V do

6 if color|u| = White then
7 DFSVisit(u)

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 60

13/14 11/16 1/10 8/9

First DFS run.

Second DFS run. Each tree is a
connected component with
gray vertex as the root. The first
tree is the strongly connected
components.

(Gy) BIRFERZER () 207 tanuss 61

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Show the ordering of vertices produced by TopologicalSort when
it is run on the following DAG.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [2 M~ .}’ HTREN#ESR 62

MINIMUM SPANNING TREE

Minimum Spanning Tree

= Given a connected, undirected graph ¢ = (V, E), for each edge
(u,v) € E, we have a weight w(u, v) specifying the cost to
connect u and v.

® An acyclic subset T € E is called minimum spanning tree (MST)

(/N A). 1t connects all of the vertices and whose total
weight is minimized:

wm = > w,v)

(u,v)ET

" Next, we introduce two greedy algorithms: Kruskal’s algorithm
and Prim’s algorithm.

64

@) BITKHERER

&)
N3/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

MINIMUM SPANNING TREE

KRUSKAL'S ALGORITHM

Kruskal’s Algorithm

O O
. O 8
High level pseudocode: o ©
O
L A = @ " o @ O
O)
= Sort the edges in E in - &'
. O
nondecreasing order. o 5 2 o o
@) O
. O
" |[terate over eachein E. o 5
O

= [f AU edonotform a cycle, A demo for Kruskal's algorithm on a

A=AUe. complete graph with weights based
on Euclidean distance.

@) BITRHERER

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

66

Image source: https://en.wikipedia.org/wiki/Kruskal%27s algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

KruskalMST(G, w) Total:O(|E|1g |E])
1 A<0

2 [for each vertex v € V do

3 MakeSet(v) oV

4 [sort the edges of E by weight w | g(|E|lg|E]|)

5|for each edge (u,v) € E do

6 if FindSet(u) #+ FindSet(v) then

8 Union (u’ U) FindSet and Union

9 return A are both O(1g |E|)

) B AT RS 67

‘ 21 13

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 68

Example

. 21 13 1

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 69

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 70

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 71

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 72

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% MDA .}, it ENESYR 73

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

: E»-igv [% M A .}, HRENESER 74

©) BIIKSESSE

\i 4
"*u SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-,;v f% MDA .}’ it ENESYR 75

Correctness Proof of Kruskal’s Algorithm

Algorithm KruskalMST correctly finds a minimum spanning tree
in a weighted connected undirected graph.

Proof:

= We prove that the edge selected by the greedy choice at each
step must be in a MST.

= Let T a minimum spanning tree and A™ is the set of edgesin T.

" We add an edge to set A at each step. We need to prove the
loop invariant A € A™ at each step.

6,y) BIIKFERER AT HBENHER 76

9,
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

Initialization:

= After line 1, the set A = @ trivially satisfies the loop invariant A € A*.
Maintenance:

= Induction hypothesis : Before adding the edge (u,v)to 4, A € A".

= We will show that after adding the edge (u,v)to 4,e.g. A" =AU
(u,v), A" € A",

= By the induction hypothesis, A € A*. If A* contains (u, v), then there
is nothing to prove because obviously A U (u,v) € A",

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

77

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

= |[f A" does not contain (u, v), A* U (u, v) must have a cycle.

= Because T is connected and thus there exists a path from u to v. Adding
(u, v) provides another path from u to v that forms a cycle.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 78

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):
" Let X be the vertex set of the current subtree containing u.

= [f A* does not contain (u, v), A" must have an edge (x, y)
connects X andV — X, wherex € Xandy € V — X.

79

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

= (u,v) is selected by KruskalMST at this step, which means X
and V — X is not connected. Therefore, we must have
w(u,v) < w(x,y).

= Ifw(u,v) > w(x,y), KruskalMST will select (x, y) first and won’t select
(u, v) this time to avoid cycle.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

80

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

= Now, if we construct A™ = {A™ — (x,y)} U (u, v), then A™ may have
smaller total weights because w(u, v) < w(x, y).

= However, A* is optimal which means it is impossible that w(u, v) < w(x, y).
The only possibility is w(u, v) = w(x, y), which makes both A* and A**
optimal.

= Because (u,v) € A*, now we have A" € A*. That means adding (u, v) by
KruskalMST is still a subset of a MST.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

81

Correctness Proof of Kruskal’s Algorithm

Proof (cont’d): KruskalMST(G, w)

Termination: L A<p

2 for each vertex v € V do

All edges added to A 3 MakeSet(v)

are in a minimum 4 sort the edges of E by weight w

spanning tree, and so |5 for each edge (u,v) € E do
6
7
8
9

the set A is returned if FindSet(u) # FindSet(v) then
in Line 9 must be a A< AU{(u,v)}

minimum spanning Union(u, v)
tree. return A

\ E»-igv [% M~ .}, HTREN#ESR 82

T 'Y

&) BITASERER
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

MINIMUM SPANNING TREE

PRIM’S ALGORITHM

Prim’s Algorithm

® Prim's algorithm has the property that the edges in the set A
always form a single tree.

= |n Kruskal’s algorithm, edges in the set A may not be a tree.

" The tree starts from an arbitrary root vertex r and grows until
the tree spans all the verticesin V.

6y BIIXFERFER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% MDA .}, it ENESYR 84

Prim’s Algorithm

High level pseudocode: 0 g ©
O
. t 4
= |nitialize A = @ and X = {v4}.)
O
0 (@)
® |terate when the instance is not © ° X
solved: 00 B =
.) O S o
m Select avertexinV — X that is nearest o
to X. @ o
O
= Add the vertex to X. A demo for Prim's algorithm on a

complete graph with weights based

= Add the edge to A. on Euclidean distance.

@) BIIASERSE

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

&M AT HENHYR 35

Image source: https://en.wikipedia.org/wiki/Prim%27s _algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm

PrimMST(G,w, 1)

for eachu € V do TotaI:0(|E|lg|V|)

key[u] <o | O(|V])
m|u] « NIL
ylr] <0

hlleQiﬂdO _—0(g|V])
U « ExtractMln(Q)
for each v € Adj[u] do

if v € Q and w(u,v) < key|v] then
0 o]~ u O(ElIg|VI)
1 key|v] « w(u,v)

ke
Q<
w

|
2
3
4
5
6
7
8
9
|
|

By amortized analysis as BFS
DecreaseKey(Q, v, key)

12
0g vy

BIIXZ(ERF5R

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

X7 HENHSLE 86

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

87

Example

Update! Update!

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

M AT HRNESR 38

Example

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 89

Example

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 90

@) BITKHERER

\a 7
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

91

@) BITKHERER

\a 7
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-gv f% MDA .}, it ENESYR 92

Example

©) BIIKSESSE

\i 4
"*u SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-,;v f% MDA .}’ it ENESYR 93

©) BIIKSESSE

\a &)
\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-,;v f% MDA .}’ it ENESYR 94

Kruskal’s vs. Prim’s

= Kruskal’s algorithm: O(|E|1g |E|).
= Prim’s algorithm: O(|E|1g |V]).
= Just compare |E| and |V].

= For a sparse graph (close to null graph, O(|E|) = 0(1)), Kruskal’s
algorithm is faster.

= For a dense graph (close to complete graph, O(|E]) = 0(|V]?)), Prim’s
algorithm is faster.

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 95

Complete graph

O 0 0 o
g 5 \ g
0 0
0
(@) O 0O 0O
0 O o O
O O O O
g B
o o© o
0 2 o 0
o) o O O o
0
' o =
= 0 © o
O O
Kruskal's algorithm Prim's algorithm

BIIXZFERFER () 1T itanuss

Image source: https://en.wikipedia.org/wiki/Kruskal%27s algorithm
https://en.wikipedia.org/wiki/Prim%27s algorithm

96

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm

Classroom Exercise

SIZ

= Kruskal’s algorithm and Prim’s algorithm both belong to & 2.

® Another method to get a MIST is called reverse-delete algorithm
(7% BB 32:). We sort the edge weights in decreasing order first.
Then, remove the edge if the graph is not disconnected.

= Try to prove the correctness of this algorithm.

97

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Proof:

® Prove by contradiction: Assume that the tree T obtained from
reverse-delete algorithm is not a MST.

= Then, there exists a MST T' that is different from T.

= Pick the edge e that in T but not in T'. Adding e into T" will
form a cycle.

= ¢ being maintained in T means that there is another e’ whose
weight is larger than e in this cycle.

= Replacing e’ with e will obtain a better tree that contradicts
with that T" is a MST.

98

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

THE SHORTHEST PATHS PROBLEM

Shortest-Paths Problem

The shortest-paths problem:

= Given a weighted, directed graph ¢ = (V, E), with weights w(u, v) for each
edge (u,v) € E, the weight of path p = (vy, v4, ..., V%) is the sum of the
weights of its edges:

k
w(p) =) wviy,vy).
i=1
» The shortest-path weight from u to v can be defined as follows:
S(u,v) = {min{w(p): ub v} if there is one path p from u to v

¢%s) otherwise

= A shortest path from vertex u to vertex v is then defined as any path p with
weight w(p) = 6 (u, v).

) BITARES SR

\) /
&5/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv f% M~ ’}, HTREN#ESR 100

Variants of Shortest-Paths Problem

" The single-source shortest-paths problem: Given a graph G =
(V,E), we want to find a shortest path from a given source
vertex s € I/ to each vertex v € V.

® Single-pair shortest-path problem: Given vertices u and v, find
a shortest path from u to v.

® All-pairs shortest-paths problem: Find a shortest path from u to
v for every pair of vertices u and v.

101

6y BIIXRFERER

&)
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Optimal Substructure of a Shortest Path

Given a weighted, directed graph ¢ = (V, E') with weights w(u, v) for
each edge (u,v) € E, let p = vy, v,, ..., Uy be a shortest path from
vertex v; to vertex vy,.

Foranyiandjsuchthatl <i<j<k,letp;; = v;Vi;q,..,V; be the
subpath of p from vertex v; to vertex v;.

Then, p;; is a shortest path from v; to v;.

<]

shortest

|< shortest >|

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

AT [% M~ .}, HTREN#ESR 102

Relaxation

" The algorithms in this chapter use the technique of relaxation
(F25th).

= For each vertex v € V, we maintain an attribute d[v], which is
an upper bound on the weight of a shortest path from source s
to v.

= We call d[v] a shortest-path estimate. It is updated to get
smaller as the algorithm goes on.

= Just similar to the d[v] in BFS, but can be updated more than once to get
close to 6 (s, v).

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

103

Relaxation

= \We initialize the shortest-path estimates d[v] and predecessors
m[v] by the following O (V)-time procedure.

= Exactly same as how BFS does.

InitializeSingleSource(G, s)
1 for each vertex v € VV do

2 d[v] « o
3 m|v] « NIL
4d[s] <0

@) BITRSES S 104

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Relaxation

= The process of relaxing an edge (u, v) consists of testing
whether we can improve the shortest path to v found so far by
going through u and, if so, updating d|[v] and m[v].

Relax(u, v, w) u
1if d[v] > d[u] + w(u, v) then Y
2 d|v] « d[u] + w(u,v) s
3 m[v] < u
Relaxation in one sentence: When d[v] > d[u] + w(u, v)
check if going though u is faster

\ E»-igv [% M~ .}, HTREN#ESR 105

@) BITARERER

%z,
&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

w(u,v) =2
dlu] =5 u d[v] =6
v v
S

w(u,v) =2

d 9 _

[v] dlul =5 u
Relax! Don’t relax

) BIIXRERFER 106

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Properties of Shortest Paths and Relaxation

= Triangle inequality (= 4/ 2#3X): For any edge (u,v) € E,
6(s,v) <46(s,u) +w(u,v).
= Upper-bound property (_E541H:J57): We always have d[v] =

6 (s, v) for all vertices v € V, and once d[v] achieves the value
0(s,v), it never changes.

= No-path property (Jo &1tk Jiv): If there is no path from s to v,
then d|v] = 6(s,v) = .

= Convergence property (W& f5i): If s ~u — vis a shortest
path in G forsome u,v € V, and d|u]| = §(s,u), then after
Relax(u, v, w), we have d[v] = 6 (s, v).

) 2 MR T HRNHYE 107

THE SHORTHEST PATHS PROBLEM

SINGLE-SOURCE SHORTEST-PATHS PROBLEM: BELLMAN-FORD ALGORITHM

Single-Source Shortest-Paths Problem

Bellman-Ford algorithm:

= Given a weighted, directed graph ¢ = (V, E') with source s and
weights w(u, v) for each edge (u,v) € E, where w(u, v) can
be negative.

" The Bellman-Ford algorithm does two things:
= Calculate §(s,v) forallv e V.

= Return a boolean value indicating whether or not there is a negative-
weight cycle that is reachable from the source.

= |f there is such a cycle, the algorithm indicates that no solution
exists. If there is no such cycle, the algorithm produces the
shortest paths and their weights.

) BIIASHESSR

o /
'~ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

109

BellmanFord(G, w, s)

1 InitializeSingleSource(G, s)

2 fori < 1to|V|—1do |Dol|V|—1times
3 for eachedge (u,v) € E do

- Relax(u, v, w) [Each time relax all edges

5 for each edge (u,v) € E do

6 if d[v] > d|u] + w(u, v) then return False

7 return True
After |V | — 1 times, there still exists an edge can Total running time:
be relaxed, it means negative-weight cycle exists. O(IVI|IE|)

@) BITKHERER

\) /
w SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

; E»-i-gv f% M~ .}, HTREN#ESR 110

Initialization

6y BIIXSERFMKR &M KT tENEER 111

N3/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Z T tENHYE 112

Z T tENHYE 113

&M rT RN RSEE 114

115

116

Round 1-4 are same

A BIXZEEEZFR &M rT RN RSEE 117
""«m'\ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Z T tENHYE 118

THE SHORTHEST PATHS PROBLEM

SINGLE-SOURCE SHORTEST-PATHS PROBLEM: DIJKSTRA’S ALGORITHM

Single-Source Shortest-Paths Problem

= Although Bellman-Ford algorithm is useful for negative-weight
cycle detection, it is too slow (O(|E||V])).

= |f we know that there’s no negative weight on the graph, we
may have a better algorithm.

120

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

. dijkstra

Single-Source Shortest-Paths Problem e

©. dijkstra pronunciation

©. dijkstra python

Dijkstra’s (/'datkstra/) (3 5o B4 hr, 10 A Hhr
¥5hr) algorithm

" Maintains a set S of vertices whose final
shortest-path weights from the source s
have already been determined.

" Repeatedly selects the vertexu € V-§
with the minimum shortest-path estimate, |
adds u to S, and relaxes all edges leaving u. &

Edsger Dijkstra
(1930-2002)

(6y) BIIXRFERFR (0) A0 rTHanuses 121

Nemee/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Image source: https://en.wikipedia.org/wiki/Edsger W. Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Dijkstra’s Algorithm

Dijkstra(G, w, s)
1 ImtializeSingleSource(G, s)

2 S « (| S maintains the vertices with
3 Q « |/ | determined shortest-path weight

4 while Q + @ do

u <« ExtractMin(Q) Select v € Q with minimal d[v]

S« Su{u}

for each vertex v € Adj|u] do
Relax(u, v, w)

0 3 ON

Total running time: 0(|V]?)

Relax all v’s neighbors

) BIIASHESSR

- SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

122

t X

(=) ! @
—/
&
S
2
5

s=g \,,\

cO "
o ST (o)—=)

y

Initialization

A /% M A .}’ HRENESER 123

t X

107 |1
S = {s) X‘\
Q tlx|y|z y@) =@

124

t X

10 |
5= (5.} X"\
Q |t|x]|z @ 2 :\D

y

ExtractMin(Q) = y

A /% M A .}’ HRENESER 125

t X

!
(8)———(15)
&
S
2
5

S:{S,y,Z} \ T

Q |t|x @ 2=\7)

y

126

t X

1
(B)——C()
&
S
2
5

S:{S,y,Z,t} \]

0 [x D

y

127

t X

1
(8)——C2)
&
S
2
5

S=1{s,y,2tx} \]

0 D

y

128

A demo of Dijkstra's algorithm \ o®
based on Euclidean distance. 3

® Red lines are the shortest
path covering, i.e.,)
connecting u and T[u].

,
O
:

;) "\{;
N % '

= Blue lines indicate where R AP ORAN
relaxing happens, i.e., | | L
connecting v with anodeu b7 "o
in (0, which gives a shorter

]

path from the source to v. e

%

@) BITASERSE

&2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

129

Image source: https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s Algorithm vs. Prim’s Algorithm

Dijkstra(G, w, s)

1 InitializeSingleSource(G, s)
25«40

3QQ«V

4 while Q + @ do

u « ExtractMin(Q)
S<Su{u}

0 3 O\ n

Relax(u, v, w)

for each vertex v € Adj[u] do

Relax(u, v, w)

1if|d[v] > d[u] + w(u, v)|then
2 d[v] « d[u] + w(u, v)

3 n[v] < u

PrimMST(G,w, 1)

1 foreachu € V do

2 keylu] « o

3 mlu] « NIL

4 key[r] « 0

5Q«V

6 while Q + @ do

7 u <« ExtractMin(Q)

8 for each v € Adj[u] do

9 ifjv € Q and w(u, v) < key|[v]|then
10 n|v] < u

11 key[v] « w(u,v)

12 DecreaseKey(Q, v, key)

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

DA T HENHER 130

Correctness of Dijkstra’s Algorithm

Dijkstra's algorithm, run on a weighted, directed graph G =
(V, E') with non-negative weight function w and source s,
terminates with d[u] = 6 (s, u) for all verticesu € V.

= \We use loop invariant to prove: At the start of each iteration of
the while loop (Line 4-8), d|v] = §(s, v) for each vertex v € S.

131

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Dijkstra’s Algorithm

Proof:
Initialization: Initially, S = @, and so the invariant is trivially true.

Maintenance: We wish to show that after each iteration, d|u] =
0(s,u) for the vertex u just added to set S.

= |f there is no shortest path from s to u, d[u] = §(s,u) = oo.

132

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Dijkstra’s Algorithm

Proof (cont’d):
= Now we consider when there is a shortest path p from s to u.

= |f in the path p, u is connected to a vertex x € S, without any other
vertex y € V — s between x and u, d[u] = §(s,u) by the
convergence property.

= Because x € S, we know d[x] = §(s, x).

Convergence property: If s ™
u—>v is a shortest path in G for
some u,vEV, and d[u]=4(s,u),
then after Relax(u, v, w), we
have d[v]=6(s,v).

S V-5
() BIIARERRR &M RT HRNHER 133

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Correctness of Dijkstra’s Algorithm

Proof (cont’d):

= |f u is not directly connected to x, thereisavertexy €V — s
between x and u, we can assume Yy is the one connected to x.

= Again, by the convergence property we have d[y] = 6(s, y).

S V-5
() BIIXHERZR & * T tRNEeR 134

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Dijkstra’s Algorithm

Proof (cont’d):

= Because y appears before u in the shortest path p, we have
5(s,y) < 6(s,u).

= By the upper bound property, we have §(s,u) < d[u], then we get:
dly] = 8(s,y) < 8(s,u) < dlul.

S V-5
() BIIARERRR &M RT HRNHER 135

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Correctness of Dijkstra’s Algorithm

Proof (cont’d):

= However, u is chosen by Dijkstra’s algorithm, which means:
dlu] < dly].
= We have both d[y] < d[u] and d[u] < d[y], we get:
dly] =6(s,y) = 8(s,u) = dlul.

S V—=3_5
(ty) BIAFHERS R & # T HENHER 136

N3/ SCHOOL OF INFORMATICS X

Correctness of Dijkstra’s Algorithm

Proof (cont’d):

Termination: At termination, Q = @ and S = V. Thus, d[u] =
o(s,u) for all verticesu € V.

137

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Run Dijkstra’s algorithm on the following graph, starting from s.

t X

(>
o

3
\i§\\v
y

@

@) BIIASIERER
X *) y

N 138
Nemee/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Classroom Exercise

Solution:

t X

(5

S
@<

3
\i§\\v
y

(&)

@) BIIASIERER
X *) y

N 139
Nemee/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

THE SHORTHEST PATHS PROBLEM

ALL-PAIRS SHORTEST-PATHS PROBLEM

All-Pairs Shortest-Paths Problem

= We can solve an all-pairs shortest-paths problem by running a
single-source shortest-paths algorithm |V | times, once for each
vertex as the source.

" Can we do better? Can we get the shortest paths for all pairs of
vertices at the same time?

" Yes, we have proved that the shortest path problem has

optimal substructure property, dynamic programming is ready
to go!

141

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

All-Pairs Shortest-Paths Problem

= For convenience, we assume that the vertices are numbered
1,2, ...,|V], so that the inputis an |V |X|V| matrix W
representing the edge weights of an |V |-vertex directed graph
G = (V,E).Thatis, W = (w;;), where

(0 ifi=
wij =w(i,j) ifi#jand(i,j) €E
o ifi #jand (i,j) € E

\

= Negative-weight edges are allowed, but we assume for the
time being that the input graph contains no negative-weight
cycles.

@) BIIRPERLR

W\
3=+ SCHOOL OF INFORMATICS

142

Dynamic Programming Solution

= Consider a shortest path p from vertex i to vertex j, and suppose
that p contains at most m edges.

= Assuming that there are no negative-weight cycles, m is finite.
= |f{ = j, then p has weight 0 because of no edges.

= |f vertices i and j are distinct, then we decompose path p into
!/
O N 0—O
P
where path p’ now contains at most m — 1 edges.

= By Theorem 8.7, p’ is a shortest path fromito k, and so 6(i,j) =
O(l, k) + wy;.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

143

Dynamic Programming Solution

" Let li(;-n) be the minimum weight of any path from vertex i to
vertex j that contains at most m edges.

= When m = 0, there is a shortest path from i to j with no edges
if and only if i = j. Thus,

10 _ 0 ifi=j
L o ifi#]
= When m = 1, we check all j’s neighbor k and select the
minimal one:

(m) _ : (m-1) _
170 = min L + wi

6y B chahf" %aLB;E

\" /
\&=%/ SCHOOL OF INFOR

144

Dynamic Programming Solution

(m) _ : (m-1) _
170 = min {15 + wi
l(m_l)

ik,

(m-1)
ikg

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

145

Dynamic Programming Solution

= |f a shortest path contains more than |V| — 1 vertices, it must
contain a cycle.

= |f the cycle weight is positive, we can remove it to get a shorter path.

= |If the cycle weight is negative, we can go though this cycle infinite number of
times to obtain §(i,j) = —oo.

= Therefore, we assume that the graph contains no negative-weight
cycles.

= For every pair of vertices i and j for which 6(i,j) < oo, there is a
shortest path from i to j that is simple and thus contains at most
V| — 1 edges.

= Finally: §(i,j) = llgjl-vl_l).

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

146

Dynamic Programming Solution

= Let matrix L™ = (li(;-n)), we iteratively calculate
LW @ o avi-1

= The matrix LIVI=D contains the shortest path distance of all
vertex pairs.

147

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

') o oo o

L© = |® 0 o o

co oo () oo

oo oo oo ()
Initialization:

Shortest path distance with 0 edges.

148

0 8
(1) — | 0
L .)
2

=
1
00
0|

S b o w

—4

Shortest path distance within 1 edges.

149

V4w, =0+43=3 ||V +w,=04+0=0
D 4wy, =3+0=3 |[ID+w,=3+1=4
D 4w, =8+4=12 ||V 4wy =8+0=wm
lﬁ)+w42:oo+oo=oo l&)+w44:oo+O:oo

@ N\

0 3 8 4

(@_|3 0 -3 1

© 4 0 5

2 0 —4 0

Shortest path distance within 2 edges.

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

150

Dynamic Programming Solution

" Now look at the recursive equation, what is the computational
complexity for this DP algorithm?
(m) _ (m-1)

;.7 = min - :
i 1=ks|V| {llk * W’”}

= 0(|JV|*). Can we improve?

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

152

THE SHORTHEST PATHS PROBLEM

FLOYD-WARSHALL ALGORITHM

Floyd-Warshall Algorithm

e e
Robert W. Floyd Stephen Warshall
(1936-2001) (1935-2006)

Turing Award in 1978

= Floyd-Warshall algorithm (55 7% {5 44.3)2) is an example of dynamic
programming, and was published by Robert Floyd in 1962 and also by
Stephen Warshall in 1962.

() EITASIERSR

Nemee/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

T@0) DR T HENHESR 154

Floyd-Warshall Algorithm

= Can we use the idea of 0/1 knapsack problem? Determine at
each step that we take item i or not.

= First, we number all the vertices: V = {1,2, ..., |V|}.

" Let di(]I-{) be the weight of a shortest path from vertex i to vertex

J for which we can only go though vertices are in the set
{1,2, ..., k}.

= “Go though” does not include vertex i and j.

= When k = 0, dl-(J(-)) = Ww;j, because the path is directly from
vertex [to vertex j, without going though any vertex.

) BIIRFEREM f DR A RNEER 155

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Floyd-Warshall Algorithm

= We have know all shortest paths when we can go though vertices
{1,.,..,k—1}L

= Given a new vertex k to let you use it to go though, we may decide:
= Don’t go though it: dg.() = dg.c_l).
= Go though it: dg.() = dl-(,’:_l) + d,((’;_l).

= The recursive equation is:

d) = (k=1) J(k=1) . (k=1
7 Imin{dd D, d$ Y + a0y itk =1
T BITARER 156

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

Floyd-Warshall Algorithm

' N k - k— k— Ik—
li(JT'n) = 15kepy] {ll(;(n C ij} d% = mln{dl.(j 1),dl.(k D4 dlg,j 1)}

6y BIIXFERFER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

157

FloydWarshall(W)

1 DO «w

2 fork < 1to|V]|do

3 fori < 1to |V|do

forj < 1to || do
it dif " < di Y +d thendf « dif ™V
else dg-{) = dgf_l) + d,g’;_l)

return D VD

~ O LB B~

Total running time: O(|V|3)

AT [% M~ .}, HTREN#ESR 158

0 BIIAREREE
: 4 =

o

\3z%/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

3
00
0

NoO 8§ ~ 8
ogw\lcj_l

3
0
4
COo
COo

—4
00

Initialization

159

160

ey

= O

34
AP+ d = 5

D(z) o

161

0 3 4
o 0 1

D® =0 4 5 3
2 0 —4 0 -3
Loo 00 o 6 0 -

162

D) — 0 2

D) = 0 2

Classroom Exercise

Run Floyd-Warshall algorithm on the following graph.

165

6y BIIXFERFER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Classroom Exercise

Solution:

[0 o0 oo 2] [0 o0 o
D —4 o 0 3 D —4 oo 0
lco 7 oo 0] oo 7
0 o 2 0 o 0
2) — 1 0 -1 3 3) — 1 0 -1
D —4 oo 0 =2 D —4 oo 0
8 7 6 0 2 7 6

[0 9 8 2

@w_|1 0 -1 3

D —4 5 0 —2

1 2 7 6 0

ty) BITAZ(EREER

N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

166

Conclusion

After this lecture, you should know:

= \What is the difference between BFS and DFS.

" How to prove the correctness of BFS.

" How to obtain a minimal spanning tree.

" How to prove the correctness of Kruskal’s and Prim’s algorithm.
= What is relaxation.

" How to solve single-source shortest-paths problem.

" How to solve all-pairs shortest-paths problem.

167

Gy) BIIRRERFMR

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSI

Homework

= Page 135-137
8.28.58.68.7
8.88.98.108.19
8.22 8.27

168

® There are n different types of items.

® There are m seller, each of them sells one set of items at a certain
price (price is for the set). Each of these m people sells either
nothing or all the items in the set he has.

= Information of these m sellers is represented by matrix M of
Size mXn.

0 otherwise
= The seller i will sell set of all his items at price C;.

1 selleri sellsitem j
Mij — {]

= You want to buy at least one item of each type (it is guaranteed that
it is always possible to do so). Use graph algorithms to find the
minimal cost needed to pay to achieve it.

@) BITRHERER

& Y
N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

169

= |nput:

= The first line contains two integers n, m separated by space.

= The (i + 1)th (1 < i < m) line contains (n + 1) integers
Mi,lr Mi,Zl Mi,3) ey Ml"n, Ci'

® Qutput: Minimal cost.

= Sample:
33 5
0112
1003
1119
Input Output

ty) BITAZ(EREER

&=/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

170

A T8 B R B 18

& T A RNHEE 171

G) BITARERSE (7))
=l

o

N/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

