
算法设计与分析
Lecture 8: Graph Algorithm

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn



Representations of Graphs

Two standard ways to represent a graph 𝐺 = (𝑉, 𝐸):

¡ Adjacency matrix (邻接矩阵): a |𝑉|×|𝑉| matrix 𝐴 = (𝑎!"):

𝑎!" = ,𝑤(𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐸
0 otherwise

¡ Adjacency lists (邻接表): each vertex 𝑢 has a linked list 𝐴𝑑𝑗[𝑢],
constructed by 𝑢’s neighbors.
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Representations of Graphs

Adjacency matrix and adjacency lists for undirected graph.
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Representations of Graphs

Adjacency matrix and adjacency lists for directed graph.
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Representations of Graphs

The usage of these two representations is different:

¡ Adjacency matrix is suitable for representing dense graphs -
those for which |𝐸| is close to 𝑉 #.
¡ Graphs close to complete graph (完全图).

¡ Adjacency lists represent sparse graphs - those for which |𝐸| is 
much less than 𝑉 #.
¡ Graphs close to null graph (零图).
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GRAPH SEARCH
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Graph Search

¡ Graph search aims to compute the distance (smallest number 
of edges) from a vertex 𝑠 to each reachable vertex.

¡ There are two general searching strategies: Breadth-first search
(BFS) (宽度优先搜索) and depth-first search (DFS) (深度优先
搜索).

6



GRAPH SEARCH
BREADTH-FIRST SEARCH
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Breadth-First Search 

¡ Given a graph 𝐺 = (𝑉, 𝐸) and a distinguished source vertex 𝑠, 
BFS systematically explores the edges of 𝐺 to "discover" every 
vertex that is reachable from 𝑠. 
¡ It computes the distance (smallest number of edges) from 𝑠 to each 

reachable vertex. 

¡ It also produces a "breadth-first tree" with root 𝑠 that contains all 
reachable vertices.
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

¡ 𝑐𝑜𝑙𝑜𝑟[𝑢]: record the
color of each vertex 𝑢.
¡ White: Not visited.

¡ Gray: Searched.

¡ DarkGray: All its neighbors
have been searched.

¡ 𝑑 𝑢 : the number of
edges on the path from
𝑠 to 𝑢.

¡ 𝜋[𝑢]: parent vertex of 𝑢 .

¡ 𝑄: a queue to store
Gray vertices.

Initialization for all
unvisited vertices.

Iterate over all
Gray vertices.

Iterate over all
neighbors of 𝑢.
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

∞

∞ ∞

∞ ∞

∞

𝟎

∞

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑠𝑄
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

𝟏

∞ ∞

∞ ∞

∞

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑟 𝑤𝑄

𝟏 𝟏

Dequeue(𝑄) = 𝑠
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑟

𝟏

∞ ∞

∞ ∞

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑤 𝑣𝑄

𝟏 𝟐
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑤

𝟏

𝟐 ∞

𝟐 ∞

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑣 𝑡 𝑥𝑄

𝟐 𝟐 𝟐
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑣

𝟏

𝟐 ∞

𝟐 ∞

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑡 𝑥𝑄

𝟐 𝟐
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑡

𝟏

𝟐 ∞

𝟐 𝟑

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑥 𝑢𝑄

𝟐 𝟑
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑥

𝟏

𝟐 𝟑

𝟐 𝟑

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑢 𝑦𝑄

𝟑 𝟑
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑢

𝟏

𝟐 𝟑

𝟐 𝟑

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑦𝑄

𝟑



18

BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

Dequeue(𝑄) = 𝑦

𝟏

𝟐 𝟑

𝟐 𝟑

𝟐

𝟎

𝟏

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑄



Correctness of BFS

¡ Now, we are going to prove the correctness of BFS: When BFS
terminates, for all 𝑣 ∈ 𝑉, 𝑑[𝑣] is the shortest path from 𝑠 to 𝑣.

Definition 8.1 

The shortest path distance 𝛿(𝑠, 𝑣) from 𝑠 to 𝑣 is the minimum 
number of edges in any path from vertex 𝑠 to vertex 𝑣; if there is 
no path from 𝑠 to 𝑣, then 𝛿(𝑠, 𝑣) = ∞. 
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Correctness of BFS

Lemma 8.1 
Let 𝐺 = (𝑉, 𝐸) be a directed or undirected graph, and let 𝑠 ∈ 𝑉
be an arbitrary vertex. Then, for any edge (𝑢, 𝑣) ∈ 𝐸,

𝛿(𝑠, 𝑣) ≤ 𝛿(𝑠, 𝑢) + 1.
Proof:
¡ If 𝑢 is reachable from 𝑠, it is obvious.
¡ If 𝑢 is not reachable from 𝑠, it is also obvious.

20

𝑠 𝑢

𝑣

… …



Correctness of BFS

Lemma 8.2
Let 𝐺 = (𝑉, 𝐸) be a directed or undirected graph, and suppose that 
BFS is run on 𝐺 from a given source vertex 𝑠 ∈ 𝑉. Then before
termination, for each vertex 𝑣 ∈ 𝑉, the value 𝑑[𝑣] computed by BFS 
satisfies 𝑑[𝑣] ≥ 𝛿(𝑠, 𝑣).
¡ What does this Lemma say? 𝑑 𝑣 ≥ 𝛿(𝑠, 𝑣): The number of edges on

the path from 𝑠 to 𝑣 is not less than the shortest path from 𝑠 to 𝑣,
before termination of BFS.

¡ Only two cases:
¡ If 𝑣 is not visited, 𝑑 𝑣 = ∞ > 𝛿(𝑠, 𝑣).
¡ If 𝑣 is visited, 𝑑 𝑣 = 𝛿(𝑠, 𝑣).

21

Easy to guess, but
how to prove?



Correctness of BFS

Proof:

We use induction on the number of Enqueue operations 𝑛.   

¡ 𝑛 = 1, 𝑑[𝑠] = 0 = 𝛿(𝑠, 𝑠) and 𝑑[𝑣] = ∞ ≥ 𝛿(𝑠, 𝑣) for all 𝑣 ∈
𝑉 − {𝑠}.

¡ 𝑛 = 𝑘, before enqueuing 𝑣, we assume 𝑑[𝑢] ≥ 𝛿(𝑠, 𝑢), where
𝑣 is a White neighbor of 𝑢.

¡ 𝑛 = 𝑘 + 1, after enqueuing 𝑣, 𝑑[𝑣] = 𝑑[𝑢] + 1 ≥ 𝛿(𝑠, 𝑢) +
1 ≥ 𝛿(𝑠, 𝑣).

22
Lemma 8.1



Correctness of BFS

Lemma 8.3 

Suppose that during the execution of BFS on a graph 𝐺 = (𝑉, 𝐸), 
the queue 𝑄 contains the vertices 𝑣X, 𝑣#, … , 𝑣Y, where 𝑣X is the 
head of 𝑄 and 𝑣Y is the tail. Then, 𝑑[𝑣Y] ≤ 𝑑[𝑣X] + 1 and 
𝑑[𝑣!] ≤ 𝑑[𝑣!ZX] for 𝑖 = 1,2, … , 𝑟 − 1.

¡ What does this Lemma say?
¡ 𝑑[𝑣!] ≤ 𝑑[𝑣"] + 1: the difference of 𝑑[𝑣] between head 𝑣" and tail 𝑣! is

not greater than 1 in 𝑄.

¡ 𝑑[𝑣#] ≤ 𝑑[𝑣#$"]: 𝑑[𝑣] is not greater than its successor in 𝑄.

23



Correctness of BFS

Proof:

We use induction on the number of Enqueue operations 𝑛.   

¡ 𝑛 = 1, the only vertex in 𝑄 is 𝑠. Obviously 𝑑[𝑣Y] ≤ 𝑑[𝑣X] + 1,
because 𝑣X = 𝑣Y = 𝑠.

¡ 𝑛 = 𝑘, we assume 𝑑[𝑣Y] ≤ 𝑑[𝑣X] + 1 and 𝑑[𝑣!] ≤ 𝑑[𝑣!ZX].

24

Goal of proof:
(1) 𝑑[𝑣!] ≤ 𝑑[𝑣"] + 1
(2) 𝑑[𝑣#] ≤ 𝑑[𝑣#$"]

𝑣X 𝑣# … 𝑣! 𝑣!ZX … 𝑣Y𝑄

𝑑[𝑣"] 𝑑[𝑣%] 𝑑[𝑣#] 𝑑[𝑣#$"] 𝑑[𝑣!]



Correctness of BFS

Proof (cont’d):

¡ 𝑛 = 𝑘 + 1, consider dequeuing 𝑣X:
¡ If the head 𝑣" of the queue is dequeued, 𝑣% becomes the new head. 

¡ By the inductive hypothesis, 𝑑[𝑣"] ≤ 𝑑[𝑣%], we have 
𝑑[𝑣!] ≤ 𝑑[𝑣"] + 1 ≤ 𝑑[𝑣%] + 1.

¡ Thus, (1) is maintained after dequeue. (2) is also maintained because
there is no new vertex added into 𝑄.

25

Goal of proof:
(1) 𝑑[𝑣!] ≤ 𝑑[𝑣"] + 1
(2) 𝑑[𝑣#] ≤ 𝑑[𝑣#$"]

𝑣X 𝑣# … 𝑣! 𝑣!ZX … 𝑣Y𝑄

𝑑[𝑣"] 𝑑[𝑣%] 𝑑[𝑣#] 𝑑[𝑣#$"] 𝑑[𝑣!]



Correctness of BFS

Proof (cont’d):

¡ 𝑛 = 𝑘 + 1, after dequeuing 𝑣", consider enqueuing 𝑣!$":
¡ By BFS, we have 𝑑 𝑣!"# = 𝑑 𝑣# + 1.

¡ By the inductive hypothesis, 𝑑 𝑣# ≤ 𝑑[𝑣$], we have
𝑑[𝑣!"#] = 𝑑[𝑣#] + 1 ≤ 𝑑[𝑣$] + 1.

Thus, (1) is proved because 𝑣$ and 𝑣!"# are the new head and tail of 𝑄.

¡ By the inductive hypothesis, 𝑑[𝑣!] ≤ 𝑑[𝑣#] + 1, we have 
𝑑[𝑣!] ≤ 𝑑[𝑣#] + 1 = 𝑑[𝑣!"#].

Thus, (2) is maintained when 𝑣!"# is enqueued.
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Goal of proof:
(1) 𝑑[𝑣!] ≤ 𝑑[𝑣"] + 1
(2) 𝑑[𝑣#] ≤ 𝑑[𝑣#$"]

𝑣# … 𝑣! 𝑣!ZX … 𝑣Y 𝑣YZX𝑄

𝑑[𝑣%] 𝑑[𝑣#] 𝑑[𝑣#$"] 𝑑[𝑣!]𝑑[𝑣!$"]



Correctness of BFS

Corollary 8.1 

Suppose that vertices 𝑣! and 𝑣" are enqueued during the 
execution of BFS, and that 𝑣! is enqueued before 𝑣". Then 
𝑑[𝑣!] ≤ 𝑑[𝑣"] at the time that 𝑣" is enqueued.

¡ What does this Corollary say? We have 𝑑[𝑣!] ≤ 𝑑[𝑣"], if 𝑣! is in
front of 𝑣" in 𝑄.
¡ It can be easily proved by 𝑑[𝑣#] ≤ 𝑑[𝑣#$"] for 𝑖 = 1,2, … , 𝑟 − 1 in Lemma

8.3.
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Correctness of BFS

Theorem 8.1 (Correctness of BFS)
Let 𝐺 = (𝑉, 𝐸) be a directed or undirected graph, and suppose that 
BFS is run on 𝐺 from a given source vertex 𝑠 ∈ 𝑉. 
(1) When BFS terminates, 𝑑[𝑣] = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉. 
(2) For any vertex 𝑣 ≠ 𝑠 that is reachable from 𝑠, one of the shortest 
paths from 𝑠 to 𝑣 is a shortest path from 𝑠 to 𝜋[𝑣] followed by the 
edge (𝜋[𝑣], 𝑣).
¡ What does the Theorem say?

(1) When BFS terminates, the number of edges from 𝑠 to 𝑣 is the shortest path 
distance.
(2) One of the shortest path from 𝑠 to 𝑣 must go through 𝑣’s parent 𝜋[𝑣].
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Correctness of BFS

Proof of (1):
¡ We use proof by contradiction: Assume that there is a vertex 𝑣

having 𝑑[𝑣] ≠ 𝛿(𝑠, 𝑣).
¡ By Lemma 8.2, 𝑑[𝑣] ≥ 𝛿(𝑠, 𝑣), and thus we have 𝑑[𝑣] >
𝛿(𝑠, 𝑣).

¡ Let 𝑢 be the vertex immediately preceding 𝑣 on a shortest path 
from 𝑠 to 𝑣, so that 𝛿(𝑠, 𝑣) = 𝛿(𝑠, 𝑢) + 1.

¡ By the choice of 𝑣, there must exists a 𝑢 that 𝑑[𝑢] = 𝛿(𝑠, 𝑢). 
¡ Thus, we have

𝑑[𝑣] > 𝛿(𝑠, 𝑣) = 𝛿(𝑠, 𝑢) + 1 = 𝑑[𝑢] + 1.
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Correctness of BFS

Proof of (1) (cont’d):
¡ Base on the face that 𝑑 𝑣 > 𝑑 𝑢 + 1, we consider the cases

when 𝑢 is dequeued:
¡ If 𝑣 is White, then Line 15 sets 𝑑[𝑣] = 𝑑[𝑢] + 1. 
¡ If 𝑣 is DarkGray, then it was already removed from the queue and, by 

Corollary 8.1, we have 𝑑[𝑣] ≤ 𝑑[𝑢].
¡ If 𝑣 is Gray, then it was painted gray upon dequeuing some vertex 𝑤, 

which was removed from 𝑄 earlier than 𝑢 and for which 𝑑[𝑣] = 𝑑[𝑤] +
1 and 𝑑[𝑤] ≤ 𝑑[𝑢] by Corollary 8.1. So we have 𝑑[𝑣] ≤ 𝑑[𝑢] + 1.

¡ All three cases show contradiction to 𝑑 𝑣 > 𝑑 𝑢 + 1.
Therefore, the assumption fails.
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Correctness of BFS

Proof of (2):

¡ If 𝜋 𝑣 = 𝑢, we have 𝛿 𝑠, 𝑢 = 𝑑[𝑢] and 𝛿 𝑠, 𝑣 = 𝑑 𝑣 .
Therefore, we get 𝑑 𝑣 = 𝑑 𝑢 + 1.

¡ We can thus find a path from 𝑠 to 𝑢 and from 𝑢 to 𝑣.
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Breadth-First Tree

¡ For a graph 𝐺 = (𝑉, 𝐸) with source 𝑠, we define the 
predecessor subgraph of 𝐺 as 𝐺\ = (𝑉\, 𝐸\), where 

𝑉\ = 𝑣 ∈ 𝑉: 𝜋 𝑣 ≠ NIL ∪ 𝑠 ,
𝐸\ = 𝜋 𝑣 , 𝑣 : 𝑣 ∈ 𝑉\ − 𝑠 .

¡ The predecessor subgraph 𝐺\ is a breadth-first tree if 𝑉\
consists of the vertices reachable from 𝑠 and, for all 𝑣 ∈ 𝑉\, 
there is a unique simple path from 𝑠 to 𝑣 in 𝐺\ that is also a 
shortest path from 𝑠 to 𝑣 in 𝐺.
¡ Breadth-first tree is a spanning tree.
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Computational Cost of BFS

33

BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

¡ The for loop in Line 1 runs |𝑉|
times.

¡ In the worst case, the while
loop in Line 8 runs |𝑉| times
and the for loop in Line 10
runs |𝐸| times.

¡ The complexity is 𝑂(|𝑉||𝐸|).
¡ Will this worst case happen?

Think of using amortized
analysis.



Computational Cost of BFS
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BFS(𝐺, 𝑠)
1  for each vertex 𝑢 ∈ 𝑉 − {𝑠} do
2  𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3          𝑑[𝑢] ← ∞
4          𝜋[𝑢] ← NIL
5  𝑐𝑜𝑙𝑜𝑟[𝑠] ← Gray
6  𝑑 𝑠 ← 0; 𝜋[𝑠] ← NIL; 𝑄 ← ∅
7  Enqueue(𝑄, 𝑠)
8 while 𝑄 ≠ Ø do
9       𝑢 ←Dequeue(𝑄)
10      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
11             if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
12                      𝑐𝑜𝑙𝑜𝑟[𝑣] ← Gray
13                      𝑑[𝑣] ← 𝑑[𝑢] + 1
14                      𝜋[𝑣] ← 𝑢
15                      Enqueue(𝑄, 𝑣)
16        𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray

¡ There are at most |𝑉| vertices
in 𝑄.

¡ For each vertex, for loop runs
at most 𝐴𝑑𝑗[𝑢] times.

¡ Total cost from Line 8 to Line
16:

`
]∈^

𝐴𝑑𝑗 𝑢 = 𝑂(|𝐸|) .

¡ Total cost for BFS: 𝑂( 𝑉 +
|𝐸|).



Print Path of BFS
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PrintPath(𝐺, 𝑠, 𝑣)
1   if 𝑣 = 𝑠 then
2   print 𝑠
3   else if 𝜋[𝑣] = NIL then
4          print "no path from" 𝑠 "to" 𝑣 "exists"
5          else PrintPath(𝐺, 𝑠, 𝜋[𝑣])
6                  print 𝑣



GRAPH SEARCH
DEPTH-FIRST SEARCH
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Depth-First Search

¡ Depth-first search (DFS) (深度优先搜索) is a recursive
algorithm, which starts from a vertex 𝑣 and recursively call to
all 𝑣’s neighbors until all vertices are visited.

37

Image source: https://www.banterly.net/2020/02/09/why-what-you-have-been-thaught-about-dfs-is-wrong-at-least-partially/

https://www.banterly.net/2020/02/09/why-what-you-have-been-thaught-about-dfs-is-wrong-at-least-partially/


Depth-First Search

¡ DFS timestamps each vertex. Each vertex 𝑣 has two 
timestamps: 
¡ The first timestamp 𝑑[𝑣] records when 𝑣 is first discovered.

¡ The second timestamp 𝑓[𝑣] records when the search finishes checking
𝑣’s neighbors.
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BFS vs. DFS

39

Image source: https://medium.com/nothingaholic/depth-first-search-vs-breadth-first-search-in-python-81521caa8f44

https://medium.com/nothingaholic/depth-first-search-vs-breadth-first-search-in-python-81521caa8f44


Depth-First Search
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DFS(𝐺)
1 for each vertex 𝑢 ∈ 𝑉 do
2 𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3       𝜋[𝑢] ← NIL
4 𝑡𝑖𝑚𝑒 ← 0
5 for each vertex 𝑢 ∈ 𝑉 do
6           if 𝑐𝑜𝑙𝑜𝑟[𝑢] = White then
7                  DFSVisit(𝑢)

DFSVisit(𝑢)
1 𝑐𝑜𝑙𝑜𝑟[𝑢] ← Gray
2 𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1
3 𝑑[𝑢] ← 𝑡𝑖𝑚𝑒
4 for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
5     if 𝑐𝑜𝑙𝑜𝑟[𝑣] = White then
6                𝜋[𝑣] ← 𝑢
7                DFSVisit(𝑣)
8 𝑐𝑜𝑙𝑜𝑟[𝑢] ← DarkGray
9    𝑡𝑖𝑚𝑒 ← 𝑡𝑖𝑚𝑒 + 1
10  𝑓[𝑢] ← 𝑡𝑖𝑚𝑒This DFS function search the whole

graph, while the previous version of BFS
only search from a source vertex 𝑠. Similar to the analysis of BFS, the 

computational complexity is 𝑂(|𝑉|+|𝐸|).



BFS vs. DFS
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Image source: https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html


Depth-First Search
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Depth-First Search

43

1/

𝑣𝑢 𝑤

𝑥 𝑦 𝑧

𝑑[𝑣]/𝑓[𝑣]



Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Depth-First Search
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Properties of DFS

¡ The search can be used to 
classify the edges 𝐸 into 
four edges:
¡ Tree edges: Edges in depth-first

trees.

¡ Back edges (B): Not in tree
edges, but points to its
ancestor vertex or itself.

¡ Forward edges (F): Not in tree
edges, but points to its
descendant vertex.

¡ Cross edges (C): Others.
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1/8

𝑣𝑢 𝑤
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Application of DFS: Topological Sort

¡ A topological sort (拓扑排序)
of a directed acyclic graph
(DAG) (有向无环图) 𝐺 =
(𝑉, 𝐸) is a linear ordering of 
all its vertices such that if 𝐺
contains an edge (𝑢, 𝑣), then 
𝑢 appears before 𝑣 in the 
ordering.
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𝑣𝑢 𝑤
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Application of DFS: Topological Sort

57

TopologicalSort(𝐺)
1 call DFS(𝐺) to compute finishing times 𝑓[𝑣] for each vertex 𝑣
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices



Application of DFS: Topological Sort
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Application of DFS: Strongly Connected Components 

¡ A connected component (连通分支) of a directed graph 𝐺 =
(𝑉, 𝐸) is a set of vertices 𝐶 ⊆ 𝑉 such that for every pair of 
vertices 𝑢 and 𝑣 in 𝐶, 𝑢 and 𝑣 are reachable from each other.

¡ A strongly connected component (强连通分支) is the maximal
one among all connected components.

¡ The transpose graph (转置图) of 𝐺 is the graph 𝐺l = (𝑉, 𝐸l), 
where 𝐸l = { 𝑢, 𝑣 : (𝑣, 𝑢) ∈ 𝐸}. That is, 𝐸l consists of the 
edges of 𝐺 with their directions reversed. 
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Application of DFS: Strongly Connected Components 
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StrongConnectedComponents(𝐺)
1  call DFS(𝐺) to compute finishing 

times 𝑓[𝑢] for each vertex 𝑢
2  compute 𝐺&

3  call DFS(𝐺&), but in the main loop of 
DFS, consider the vertices in order of 
decreasing 𝑓[𝑢] (as computed in line 1)

4  output the vertices of each tree in the 
depth-first forest formed in line 3 as a 
separate strongly connected component

DFS(𝐺)
1 for each vertex 𝑢 ∈ 𝑉 do
2 𝑐𝑜𝑙𝑜𝑟[𝑢] ← White
3       𝜋[𝑢] ← NIL
4 𝑡𝑖𝑚𝑒 ← 0
5 for each vertex 𝑢 ∈ 𝑉 do
6           if 𝑐𝑜𝑙𝑜𝑟[𝑢] = White then
7                  DFSVisit(𝑢)



Application of DFS: Strongly Connected Components 
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𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ
12/15 3/4 2/7 5/6

13/14 11/16 1/10 8/9

𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

First DFS run.

Second DFS run. Each tree is a
connected component with
gray vertex as the root. The first
tree is the strongly connected
components.



Classroom Exercise

Show the ordering of vertices produced by TopologicalSort when 
it is run on the following DAG.
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MINIMUM SPANNING TREE
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Minimum Spanning Tree

¡ Given a connected, undirected graph 𝐺 = (𝑉, 𝐸), for each edge 
(𝑢, 𝑣) ∈ 𝐸, we have a weight 𝑤(𝑢, 𝑣) specifying the cost to 
connect 𝑢 and 𝑣. 

¡ An acyclic subset 𝑇 ⊆ 𝐸 is called minimum spanning tree (MST)
(最小生成树). It connects all of the vertices and whose total 
weight is minimized:

𝑤 𝑇 = `
(],o)∈l

𝑤(𝑢, 𝑣)

¡ Next, we introduce two greedy algorithms: Kruskal’s algorithm
and Prim’s algorithm.
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MINIMUM SPANNING TREE
KRUSKAL’S ALGORITHM
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Kruskal’s Algorithm

High level pseudocode:

¡ 𝐴 = ∅.

¡ Sort the edges in 𝐸 in 
nondecreasing order.

¡ Iterate over each 𝑒 in 𝐸.

¡ If 𝐴 ∪ 𝑒 do not form a cycle,
𝐴 = 𝐴 ∪ 𝑒.
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A demo for Kruskal's algorithm on a 
complete graph with weights based 
on Euclidean distance.

Image source: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm


Pseudocode
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KruskalMST(𝐺, 𝑤)
1  𝐴 ← Ø
2  for each vertex 𝑣 ∈ 𝑉 do
3        MakeSet(𝑣)
4  sort the edges of 𝐸 by weight 𝑤
5  for each edge (𝑢, 𝑣) ∈ 𝐸 do
6        if FindSet(𝑢)≠ FindSet(𝑣) then
7                𝐴 ← 𝐴 ∪ {(𝑢, 𝑣)}
8 Union(𝑢, 𝑣)
9  return 𝐴

𝑂(|𝑉|)

𝑂( 𝐸 lg |𝐸|)

𝑂( 𝐸 lg |𝐸|)

FindSet and Union 
are both 𝑂(lg |𝐸|)

Total:𝑂( 𝐸 lg |𝐸|)
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Correctness Proof of Kruskal’s Algorithm

Theorem 8.4 

Algorithm KruskalMST correctly finds a minimum spanning tree 
in a weighted connected undirected graph.

Proof:

¡ We prove that the edge selected by the greedy choice at each
step must be in a MST.

¡ Let 𝑇 a minimum spanning tree and 𝐴∗ is the set of edges in 𝑇.

¡ We add an edge to set 𝐴 at each step. We need to prove the
loop invariant 𝐴 ⊆ 𝐴∗ at each step.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

Initialization: 

¡ After line 1, the set 𝐴 = Ø trivially satisfies the loop invariant 𝐴 ⊆ 𝐴∗.

Maintenance:

¡ Induction hypothesis : Before adding the edge (𝑢, 𝑣) to 𝐴, 𝐴 ⊆ 𝐴∗.

¡ We will show that after adding the edge (𝑢, 𝑣) to 𝐴, e.g. 𝐴" = 𝐴 ∪
(𝑢, 𝑣), 𝐴′ ⊆ 𝐴∗. 

¡ By the induction hypothesis, 𝐴 ⊆ 𝐴∗. If 𝐴∗ contains (𝑢, 𝑣), then there 
is nothing to prove because obviously 𝐴 ∪ (𝑢, 𝑣) ⊆ 𝐴∗.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

¡ If 𝐴∗ does not contain (𝑢, 𝑣), 𝐴∗ ∪ (𝑢, 𝑣) must have a cycle.
¡ Because 𝑇 is connected and thus there exists a path from 𝑢 to 𝑣. Adding
(𝑢, 𝑣) provides another path from 𝑢 to 𝑣 that forms a cycle.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

¡ Let 𝑋 be the vertex set of the current subtree containing 𝑢.

¡ If 𝐴∗ does not contain (𝑢, 𝑣), 𝐴∗ must have an edge (𝑥, 𝑦)
connects 𝑋 and 𝑉 − 𝑋, where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑉 − 𝑋.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):
¡ (𝑢, 𝑣) is selected by KruskalMST at this step, which means 𝑋

and 𝑉 − 𝑋 is not connected. Therefore, we must have
𝑤 𝑢, 𝑣 ≤ 𝑤 𝑥, 𝑦 .
¡ If 𝑤 𝑢, 𝑣 > 𝑤 𝑥, 𝑦 , KruskalMST will select (𝑥, 𝑦) first and won’t select 
(𝑢, 𝑣) this time to avoid cycle.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):
¡ Now, if we construct 𝐴∗∗ = {𝐴∗ − (𝑥, 𝑦)} ∪ (𝑢, 𝑣), then 𝐴∗∗ may have 

smaller total weights because 𝑤 𝑢, 𝑣 ≤ 𝑤 𝑥, 𝑦 .
¡ However, 𝐴∗ is optimal which means it is impossible that 𝑤 𝑢, 𝑣 < 𝑤 𝑥, 𝑦 . 

The only possibility is 𝑤 𝑢, 𝑣 = 𝑤 𝑥, 𝑦 , which makes both 𝐴∗ and 𝐴∗∗
optimal.

¡ Because 𝑢, 𝑣 ∈ 𝐴∗∗, now we have 𝐴′ ⊆ 𝐴∗. That means adding (𝑢, 𝑣) by 
KruskalMST is still a subset of a MST.
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Correctness Proof of Kruskal’s Algorithm

Proof (cont’d):

Termination: 

All edges added to 𝐴
are in a minimum 
spanning tree, and so 
the set 𝐴 is returned 
in Line 9 must be a 
minimum spanning 
tree.
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KruskalMST(𝐺, 𝑤)
1  𝐴 ← Ø
2  for each vertex 𝑣 ∈ 𝑉 do
3        MakeSet(𝑣)
4  sort the edges of 𝐸 by weight 𝑤
5  for each edge (𝑢, 𝑣) ∈ 𝐸 do
6        if FindSet(𝑢)≠ FindSet(𝑣) then
7                𝐴 ← 𝐴 ∪ {(𝑢, 𝑣)}
8 Union(𝑢, 𝑣)
9  return 𝐴



MINIMUM SPANNING TREE
PRIM’S ALGORITHM
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Prim’s Algorithm

¡ Prim's algorithm has the property that the edges in the set 𝐴
always form a single tree.
¡ In Kruskal’s algorithm, edges in the set 𝐴 may not be a tree.

¡ The tree starts from an arbitrary root vertex 𝑟 and grows until 
the tree spans all the vertices in 𝑉. 
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Prim’s Algorithm

High level pseudocode:

¡ Initialize 𝐴 = ∅ and 𝑋 = 𝑣X .

¡ Iterate when the instance is not 
solved:
¡ Select a vertex in 𝑉 − 𝑋 that is nearest 

to 𝑋.

¡ Add the vertex to 𝑋.

¡ Add the edge to 𝐴.

85

A demo for Prim's algorithm on a 
complete graph with weights based 
on Euclidean distance.

Image source: https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://en.wikipedia.org/wiki/Prim%27s_algorithm


Pseudocode
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PrimMST(𝐺, 𝑤, 𝑟)
1  for each 𝑢 ∈ 𝑉 do
2      𝑘𝑒𝑦[𝑢] ← ∞
3      𝜋[𝑢] ← NIL
4  𝑘𝑒𝑦[𝑟] ← 0
5  𝑄 ← 𝑉
6  while 𝑄 ≠ Ø do
7      𝑢 ← ExtractMin(𝑄)
8      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
9            if 𝑣 ∈ 𝑄 and 𝑤(𝑢, 𝑣) < 𝑘𝑒𝑦[𝑣] then
10                 𝜋[𝑣] ← 𝑢
11                 𝑘𝑒𝑦[𝑣] ← 𝑤(𝑢, 𝑣)
12                 DecreaseKey(𝑄, 𝑣, 𝑘𝑒𝑦)

𝑂(|𝑉|)

𝑂(lg |𝑉|)

𝑂( 𝐸 lg |𝑉|)

𝑂(lg |𝑉|)

By amortized analysis as BFS

Total:𝑂( 𝐸 lg |𝑉|)
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Kruskal’s vs. Prim’s

¡ Kruskal’s algorithm: 𝑂( 𝐸 lg |𝐸|).
¡ Prim’s algorithm: 𝑂( 𝐸 lg |𝑉|).

¡ Just compare |𝐸| and |𝑉|.
¡ For a sparse graph (close to null graph, 𝑂 𝐸 = 𝑂(1)), Kruskal’s 

algorithm is faster.

¡ For a dense graph (close to complete graph, 𝑂 𝐸 = 𝑂( 𝑉 %)), Prim’s 
algorithm is faster. 
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Kruskal’s vs. Prim’s
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Complete graph

Prim's algorithm Kruskal's algorithm 

Image source: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm


Classroom Exercise

¡ Kruskal’s algorithm and Prim’s algorithm both belong to避圈法.

¡ Another method to get a MST is called reverse-delete algorithm
(破圈法). We sort the edge weights in decreasing order first.
Then, remove the edge if the graph is not disconnected.

¡ Try to prove the correctness of this algorithm.
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Classroom Exercise

Proof:
¡ Prove by contradiction: Assume that the tree 𝑇 obtained from

reverse-delete algorithm is not a MST.
¡ Then, there exists a MST 𝑇′ that is different from 𝑇.
¡ Pick the edge 𝑒 that in 𝑇 but not in 𝑇′. Adding 𝑒 into 𝑇′ will

form a cycle.
¡ 𝑒 being maintained in 𝑇 means that there is another 𝑒′ whose

weight is larger than 𝑒 in this cycle.
¡ Replacing 𝑒′ with 𝑒 will obtain a better tree that contradicts

with that 𝑇′ is a MST.
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THE SHORTHEST PATHS PROBLEM
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Shortest-Paths Problem

The shortest-paths problem: 

¡ Given a weighted, directed graph 𝐺 = (𝑉, 𝐸), with weights 𝑤(𝑢, 𝑣) for each
edge (𝑢, 𝑣) ∈ 𝐸, the weight of path 𝑝 = ⟨𝑣(, 𝑣", … , 𝑣)⟩ is the sum of the 
weights of its edges:

𝑤 𝑝 =b
#*"

)

𝑤(𝑣#+", 𝑣#) .

¡ The shortest-path weight from u to v can be defined as follows:

𝛿 𝑢, 𝑣 = dmin{𝑤 𝑝 : 𝑢→
,
𝑣} if there is one path 𝑝 from 𝑢 to 𝑣

∞ otherwise
¡ A shortest path from vertex 𝑢 to vertex 𝑣 is then defined as any path 𝑝 with 

weight 𝑤(𝑝) = 𝛿(𝑢, 𝑣).

100



Variants of Shortest-Paths Problem

¡ The single-source shortest-paths problem: Given a graph 𝐺 =
(𝑉, 𝐸), we want to find a shortest path from a given source 
vertex 𝑠 ∈ 𝑉 to each vertex 𝑣 ∈ 𝑉.

¡ Single-pair shortest-path problem: Given vertices 𝑢 and 𝑣, find 
a shortest path from 𝑢 to 𝑣.

¡ All-pairs shortest-paths problem: Find a shortest path from 𝑢 to 
𝑣 for every pair of vertices 𝑢 and 𝑣.
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Optimal Substructure of a Shortest Path

Theorem 8.7
Given a weighted, directed graph 𝐺 = (𝑉, 𝐸) with weights 𝑤(𝑢, 𝑣) for
each edge (𝑢, 𝑣) ∈ 𝐸, let 𝑝 = 𝑣#, 𝑣$, … , 𝑣% be a shortest path from 
vertex 𝑣# to vertex 𝑣%.
For any 𝑖 and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘, let 𝑝&' = 𝑣& , 𝑣&(#, … , 𝑣' be the 
subpath of 𝑝 from vertex 𝑣& to vertex 𝑣'. 
Then, 𝑝&' is a shortest path from 𝑣& to 𝑣'.
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Relaxation

¡ The algorithms in this chapter use the technique of relaxation
(松弛). 

¡ For each vertex 𝑣 ∈ 𝑉, we maintain an attribute 𝑑[𝑣], which is 
an upper bound on the weight of a shortest path from source 𝑠
to 𝑣. 

¡ We call 𝑑[𝑣] a shortest-path estimate. It is updated to get
smaller as the algorithm goes on.
¡ Just similar to the 𝑑[𝑣] in BFS, but can be updated more than once to get

close to 𝛿(𝑠, 𝑣).
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Relaxation

¡ We initialize the shortest-path estimates 𝑑[𝑣] and predecessors 
𝜋[𝑣] by the following 𝑂(𝑉)-time procedure. 
¡ Exactly same as how BFS does.
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InitializeSingleSource(𝐺, 𝑠)
1 for each vertex 𝑣 ∈ 𝑉 do
2        𝑑[𝑣] ← ∞
3        𝜋[𝑣] ← 𝑁𝐼𝐿
4 𝑑[𝑠] ← 0



Relaxation

¡ The process of relaxing an edge (𝑢, 𝑣) consists of testing 
whether we can improve the shortest path to 𝑣 found so far by 
going through 𝑢 and, if so, updating 𝑑[𝑣] and 𝜋[𝑣].
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Relax(𝑢, 𝑣, 𝑤)
1 if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢, 𝑣) then
2         𝑑[𝑣] ← 𝑑[𝑢] + 𝑤(𝑢, 𝑣)
3         𝜋[𝑣] ← 𝑢

𝑠

𝑢
𝑣

When 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢, 𝑣)

Relax!

Relaxation in one sentence:
check if going though 𝑢 is faster



Example
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Properties of Shortest Paths and Relaxation

¡ Triangle inequality (三角不等式): For any edge (𝑢, 𝑣) ∈ 𝐸, 
𝛿(𝑠, 𝑣) ≤ 𝛿(𝑠, 𝑢) + 𝑤(𝑢, 𝑣).

¡ Upper-bound property (上界性质): We always have 𝑑[𝑣] ≥
𝛿(𝑠, 𝑣) for all vertices 𝑣 ∈ 𝑉, and once 𝑑[𝑣] achieves the value 
𝛿(𝑠, 𝑣), it never changes.

¡ No-path property (无路径性质): If there is no path from 𝑠 to 𝑣, 
then 𝑑[𝑣] = 𝛿(𝑠, 𝑣) = ∞.

¡ Convergence property (收敛性质): If 𝑠 ~ 𝑢 → 𝑣 is a shortest 
path in 𝐺 for some 𝑢, 𝑣 ∈ 𝑉, and 𝑑[𝑢] = 𝛿(𝑠, 𝑢), then after
Relax(𝑢, 𝑣, 𝑤), we have 𝑑[𝑣] = 𝛿(𝑠, 𝑣).

107



THE SHORTHEST PATHS PROBLEM
SINGLE-SOURCE SHORTEST-PATHS PROBLEM: BELLMAN-FORD ALGORITHM
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Single-Source Shortest-Paths Problem

Bellman-Ford algorithm:
¡ Given a weighted, directed graph 𝐺 = (𝑉, 𝐸) with source 𝑠 and 

weights 𝑤(𝑢, 𝑣) for each edge (𝑢, 𝑣) ∈ 𝐸, where 𝑤(𝑢, 𝑣) can
be negative.

¡ The Bellman-Ford algorithm does two things:
¡ Calculate 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.

¡ Return a boolean value indicating whether or not there is a negative-
weight cycle that is reachable from the source. 

¡ If there is such a cycle, the algorithm indicates that no solution 
exists. If there is no such cycle, the algorithm produces the 
shortest paths and their weights.
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Pseudocode
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BellmanFord(𝐺, 𝑤, 𝑠)
1  InitializeSingleSource(𝐺, 𝑠)
2  for 𝑖 ← 1 to |𝑉| − 1 do
3     for each edge (𝑢, 𝑣) ∈ 𝐸 do
4          Relax(𝑢, 𝑣, 𝑤)
5  for each edge (𝑢, 𝑣) ∈ 𝐸 do
6     if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢, 𝑣) then return False
7  return True

Do 𝑉 − 1 times

Each time relax all edges

After 𝑉 − 1 times, there still exists an edge can
be relaxed, it means negative-weight cycle exists.

Total running time:
𝑂(|𝑉||𝐸|)
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THE SHORTHEST PATHS PROBLEM
SINGLE-SOURCE SHORTEST-PATHS PROBLEM: DIJKSTRA’S ALGORITHM
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Single-Source Shortest-Paths Problem

¡ Although Bellman-Ford algorithm is useful for negative-weight
cycle detection, it is too slow (𝑂(|𝐸||𝑉|)).

¡ If we know that there’s no negative weight on the graph, we
may have a better algorithm.
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Single-Source Shortest-Paths Problem

Dijkstra’s (/ˈdaɪkstrə/) (戴克斯特拉,迪杰斯
特拉) algorithm

¡ Maintains a set 𝑆 of vertices whose final 
shortest-path weights from the source 𝑠
have already been determined. 

¡ Repeatedly selects the vertex 𝑢 ∈ 𝑉– 𝑆
with the minimum shortest-path estimate, 
adds 𝑢 to 𝑆, and relaxes all edges leaving 𝑢.
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Edsger Dijkstra
(1930-2002)

Image source: https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Dijkstra’s Algorithm
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Dijkstra(𝐺, 𝑤, 𝑠)
1  InitializeSingleSource(𝐺, 𝑠)
2  𝑆 ← Ø
3  𝑄 ← 𝑉
4  while 𝑄 ≠ Ø do
5       𝑢 ← ExtractMin(𝑄)
6       𝑆 ← 𝑆 ∪ {𝑢}
7       for each vertex 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
8             Relax(𝑢, 𝑣, 𝑤)

Select 𝑣 ∈ 𝑄 with minimal 𝑑[𝑣]

Relax all 𝑣’s neighbors

𝑆 maintains the vertices with
determined shortest-path weight

Total running time: 𝑂( 𝑉 ')
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A demo of Dijkstra's algorithm 
based on Euclidean distance. 

¡ Red lines are the shortest 
path covering, i.e., 
connecting 𝑢 and π[𝑢]. 

¡ Blue lines indicate where 
relaxing happens, i.e., 
connecting 𝑣 with a node 𝑢
in 𝑄, which gives a shorter 
path from the source to 𝑣.

Image source: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Dijkstra’s Algorithm vs. Prim’s Algorithm
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PrimMST(𝐺, 𝑤, 𝑟)
1  for each 𝑢 ∈ 𝑉 do
2      𝑘𝑒𝑦[𝑢] ← ∞
3      𝜋[𝑢] ← NIL
4  𝑘𝑒𝑦[𝑟] ← 0
5  𝑄 ← 𝑉
6  while 𝑄 ≠ Ø do
7      𝑢 ← ExtractMin(𝑄)
8      for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
9            if 𝑣 ∈ 𝑄 and 𝑤(𝑢, 𝑣) < 𝑘𝑒𝑦[𝑣] then
10                 𝜋[𝑣] ← 𝑢
11                 𝑘𝑒𝑦[𝑣] ← 𝑤(𝑢, 𝑣)
12                 DecreaseKey(𝑄, 𝑣, 𝑘𝑒𝑦)

Dijkstra(𝐺, 𝑤, 𝑠)
1  InitializeSingleSource(𝐺, 𝑠)
2  𝑆 ← Ø
3  𝑄 ← 𝑉
4  while 𝑄 ≠ Ø do
5       𝑢 ← ExtractMin(𝑄)
6       𝑆 ← 𝑆 ∪ {𝑢}
7       for each vertex 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do
8             Relax(𝑢, 𝑣, 𝑤)

Relax(𝑢, 𝑣, 𝑤)
1 if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢, 𝑣) then
2         𝑑[𝑣] ← 𝑑[𝑢] + 𝑤(𝑢, 𝑣)
3         𝜋[𝑣] ← 𝑢



Correctness of Dijkstra’s Algorithm

Theorem 8.8 

Dijkstra's algorithm, run on a weighted, directed graph 𝐺 =
(𝑉, 𝐸) with non-negative weight function 𝑤 and source 𝑠, 
terminates with 𝑑[𝑢] = 𝛿(𝑠, 𝑢) for all vertices 𝑢 ∈ 𝑉.

¡ We use loop invariant to prove: At the start of each iteration of 
the while loop (Line 4-8), 𝑑[𝑣] = 𝛿(𝑠, 𝑣) for each vertex 𝑣 ∈ 𝑆.
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Correctness of Dijkstra’s Algorithm

Proof:

Initialization: Initially, 𝑆 = Ø, and so the invariant is trivially true.

Maintenance: We wish to show that after each iteration, 𝑑[𝑢] =
𝛿(𝑠, 𝑢) for the vertex 𝑢 just added to set 𝑆.

¡ If there is no shortest path from 𝑠 to 𝑢, 𝑑 𝑢 = 𝛿 𝑠, 𝑢 = ∞.
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Correctness of Dijkstra’s Algorithm

Proof (cont’d):
¡ Now we consider when there is a shortest path 𝑝 from 𝑠 to 𝑢.
¡ If in the path 𝑝, 𝑢 is connected to a vertex 𝑥 ∈ 𝑆, without any other 

vertex 𝑦 ∈ 𝑉 − 𝑠 between 𝑥 and 𝑢, 𝑑 𝑢 = 𝛿 𝑠, 𝑢 by the 
convergence property.
¡ Because 𝑥 ∈ 𝑆, we know 𝑑 𝑥 = 𝛿 𝑠, 𝑥 .
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𝑠

𝑆 𝑉 − 𝑆

𝑥
𝑢

Convergence property: If 𝑠 ~ 
𝑢→𝑣 is a shortest path in 𝐺 for 
some 𝑢,𝑣∈𝑉, and 𝑑[𝑢]=𝛿(𝑠,𝑢), 
then after Relax(𝑢, 𝑣, 𝑤), we 
have 𝑑[𝑣]=𝛿(𝑠,𝑣).



Correctness of Dijkstra’s Algorithm

Proof (cont’d):

¡ If 𝑢 is not directly connected to 𝑥, there is a vertex 𝑦 ∈ 𝑉 − 𝑠
between 𝑥 and 𝑢, we can assume 𝑦 is the one connected to 𝑥.

¡ Again, by the convergence property we have 𝑑[𝑦] = 𝛿(𝑠, 𝑦).
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Correctness of Dijkstra’s Algorithm

Proof (cont’d):

¡ Because 𝑦 appears before 𝑢 in the shortest path 𝑝, we have 
𝛿 𝑠, 𝑦 ≤ 𝛿(𝑠, 𝑢).

¡ By the upper bound property, we have 𝛿 𝑠, 𝑢 ≤ 𝑑[𝑢], then we get:
𝑑 𝑦 = 𝛿 𝑠, 𝑦 ≤ 𝛿 𝑠, 𝑢 ≤ 𝑑 𝑢 .
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Correctness of Dijkstra’s Algorithm

Proof (cont’d):
¡ However, 𝑢 is chosen by Dijkstra’s algorithm, which means:

𝑑 𝑢 ≤ 𝑑 𝑦 .
¡ We have both 𝑑 𝑦 ≤ 𝑑 𝑢 and 𝑑 𝑢 ≤ 𝑑 𝑦 , we get:

𝑑 𝑦 = 𝛿 𝑠, 𝑦 = 𝛿 𝑠, 𝑢 = 𝑑 𝑢 .
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Correctness of Dijkstra’s Algorithm

Proof (cont’d):

Termination: At termination, 𝑄 = Ø and 𝑆 = 𝑉. Thus, 𝑑[𝑢] =
𝛿(𝑠, 𝑢) for all vertices 𝑢 ∈ 𝑉.
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Classroom Exercise

Run Dijkstra’s algorithm on the following graph, starting from 𝑠.
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Classroom Exercise
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THE SHORTHEST PATHS PROBLEM
ALL-PAIRS SHORTEST-PATHS PROBLEM

140



All-Pairs Shortest-Paths Problem

¡ We can solve an all-pairs shortest-paths problem by running a 
single-source shortest-paths algorithm |𝑉| times, once for each 
vertex as the source.

¡ Can we do better? Can we get the shortest paths for all pairs of
vertices at the same time?

¡ Yes, we have proved that the shortest path problem has
optimal substructure property, dynamic programming is ready
to go!
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All-Pairs Shortest-Paths Problem

¡ For convenience, we assume that the vertices are numbered 
1, 2, … , |𝑉|, so that the input is an |𝑉|×|𝑉| matrix 𝑊
representing the edge weights of an |𝑉|-vertex directed graph 
𝐺 = (𝑉, 𝐸). That is, 𝑊 = (𝑤!"), where

𝑤!" = �
0 if 𝑖 = 𝑗

𝑤(𝑖, 𝑗) if 𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∈ 𝐸
∞ if 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∉ 𝐸

¡ Negative-weight edges are allowed, but we assume for the 
time being that the input graph contains no negative-weight 
cycles.
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Dynamic Programming Solution

¡ Consider a shortest path 𝑝 from vertex 𝑖 to vertex 𝑗, and suppose 
that 𝑝 contains at most 𝑚 edges. 

¡ Assuming that there are no negative-weight cycles, 𝑚 is finite.
¡ If 𝑖 = 𝑗, then 𝑝 has weight 0 because of no edges. 
¡ If vertices 𝑖 and 𝑗 are distinct, then we decompose path 𝑝 into 

where path 𝑝′ now contains at most 𝑚− 1 edges. 

¡ By Theorem 8.7, 𝑝′ is a shortest path from 𝑖 to 𝑘, and so 𝛿(𝑖, 𝑗) =
𝛿(𝑖, 𝑘) + 𝑤%'.
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Dynamic Programming Solution

¡ Let 𝑙!"
(�) be the minimum weight of any path from vertex 𝑖 to 

vertex 𝑗 that contains at most 𝑚 edges. 
¡ When 𝑚 = 0, there is a shortest path from 𝑖 to 𝑗 with no edges 

if and only if 𝑖 = 𝑗. Thus,

𝑙!"
(�) = ,0 if 𝑖 = 𝑗

∞ if 𝑖 ≠ 𝑗

¡ When 𝑚 ≥ 1, we check all 𝑗’s neighbor 𝑘 and select the
minimal one:

𝑙!"
(�) = min

X���|^|
𝑙!�
��X +𝑤�"
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Dynamic Programming Solution

𝑙!"
(�) = min

X���|^|
𝑙!�
��X +𝑤�"
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Dynamic Programming Solution

¡ If a shortest path contains more than |𝑉| − 1 vertices, it must
contain a cycle.
¡ If the cycle weight is positive, we can remove it to get a shorter path.
¡ If the cycle weight is negative, we can go though this cycle infinite number of

times to obtain 𝛿 𝑖, 𝑗 = −∞.

¡ Therefore, we assume that the graph contains no negative-weight 
cycles.

¡ For every pair of vertices 𝑖 and 𝑗 for which 𝛿(𝑖, 𝑗) < ∞, there is a 
shortest path from 𝑖 to 𝑗 that is simple and thus contains at most 
|𝑉| − 1 edges.

¡ Finally: 𝛿(𝑖, 𝑗) = 𝑙&'
(|+|,#).
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Dynamic Programming Solution

¡ Let matrix 𝐿(�) = (𝑙!"
(�)), we iteratively calculate

𝐿(X), 𝐿(#), … , 𝐿( ^ �X)

¡ The matrix 𝐿( ^ �X) contains the shortest path distance of all 
vertex pairs.
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Example
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𝑙""
" + 𝑤"' = 0 + 3 = 3
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" + 𝑤'' = 3 + 0 = 3
𝑙"(
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𝑙")
" + 𝑤)' = ∞+∞ = ∞

𝑙""
" + 𝑤") = 0 +∞ = ∞
𝑙"'
" + 𝑤') = 3 + 1 = 4
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" + 𝑤() = 8 +∞ = ∞
𝑙")
" + 𝑤)) = ∞+ 0 = ∞

Shortest path distance within 2 edges.
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0 3 0 4
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Shortest path distance within 3 edges.



Dynamic Programming Solution

¡ Now look at the recursive equation, what is the computational 
complexity for this DP algorithm?

𝑙!"
(�) = min

X���|^|
𝑙!�
��X +𝑤�"

¡ 𝑂( 𝑉 �). Can we improve?
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THE SHORTHEST PATHS PROBLEM
FLOYD-WARSHALL ALGORITHM
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Floyd-Warshall Algorithm

¡ Floyd-Warshall algorithm (弗洛伊德算法) is an example of dynamic 
programming, and was published by Robert Floyd in 1962 and also by 
Stephen Warshall in 1962.
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Turing Award in 1978
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Floyd-Warshall Algorithm

¡ Can we use the idea of 0/1 knapsack problem? Determine at
each step that we take item 𝑖 or not.

¡ First, we number all the vertices: 𝑉 = {1,2, … , |𝑉|}.

¡ Let 𝑑!"
(�) be the weight of a shortest path from vertex 𝑖 to vertex 

𝑗 for which we can only go though vertices are in the set 
{1, 2, … , 𝑘}.
¡ “Go though” does not include vertex 𝑖 and 𝑗.

¡ When 𝑘 = 0, 𝑑!"
(�) = 𝑤!", because the path is directly from

vertex 𝑖 to vertex 𝑗, without going though any vertex.
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Floyd-Warshall Algorithm

¡ We have know all shortest paths when we can go though vertices
{1, . , … , 𝑘 − 1}.

¡ Given a new vertex 𝑘 to let you use it to go though, we may decide:

¡ Don’t go though it: 𝑑$%
(') = 𝑑$%

(')*).

¡ Go though it: 𝑑$%
(') = 𝑑$'

')* + 𝑑'%
')* .

¡ The recursive equation is:

𝑑&'
(%) = c

𝑤&' if 𝑘 = 0

min{𝑑&'
%,# , 𝑑&%

%,# + 𝑑%'
%,# } if 𝑘 ≥ 1
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Floyd-Warshall Algorithm
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Pseudocode

FloydWarshall(𝑊)
1   𝐷(�) ← 𝑊
2   for 𝑘 ← 1 to |𝑉| do
3         for 𝑖 ← 1 to |𝑉| do
4               for 𝑗 ← 1 to |𝑉| do
5 if 𝑑!"

��X < 𝑑!�
��X + 𝑑�"

��X then 𝑑!"
� ← 𝑑!"

��X

6                    else 𝑑!"
� = 𝑑!�

��X + 𝑑�"
��X

7 return 𝐷(|^|)
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Classroom Exercise

Run Floyd-Warshall algorithm on the following graph.
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Classroom Exercise
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𝐷(*) =

0 ∞ ∞ 2
1 0 −1 ∞
−4 ∞ 0 3
∞ 7 ∞ 0
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−4 ∞ 0 −2
8 7 6 0

𝐷(() =
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𝐷()) =

0 9 8 2
1 0 −1 3
−4 5 0 −2
2 7 6 0

Solution:



Conclusion

After this lecture, you should know:

¡ What is the difference between BFS and DFS.

¡ How to prove the correctness of BFS.

¡ How to obtain a minimal spanning tree.

¡ How to prove the correctness of Kruskal’s and Prim’s algorithm.

¡ What is relaxation.

¡ How to solve single-source shortest-paths problem.

¡ How to solve all-pairs shortest-paths problem.
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Homework

¡ Page 135-137

8.2 8.5 8.6 8.7

8.8 8.9 8.10 8.19

8.22 8.27
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Experiment

¡ There are 𝑛 different types of items. 
¡ There are 𝑚 seller, each of them sells one set of items at a certain 

price (price is for the set). Each of these 𝑚 people sells either 
nothing or all the items in the set he has. 

¡ Information of these 𝑚 sellers is represented by matrix 𝑀 of 
size 𝑚×𝑛.

𝑀&' = j1 seller 𝑖 sells item 𝑗
0 otherwise

¡ The seller 𝑖 will sell set of all his items at price 𝐶&.
¡ You want to buy at least one item of each type (it is guaranteed that 

it is always possible to do so). Use graph algorithms to find the 
minimal cost needed to pay to achieve it.
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Experiment

¡ Input:
¡ The first line contains two integers 𝑛, 𝑚 separated by space.

¡ The (𝑖 + 1)th (1 ≤ 𝑖 ≤ 𝑚) line contains (𝑛 + 1) integers
𝑀#,", 𝑀#,%, 𝑀#,., … ,𝑀#,6, 𝐶#. 

¡ Output: Minimal cost.
¡ Sample:
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1 0 0 3
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有问题欢迎随时跟我讨论
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