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MAX-FLOW PROBLEM
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Network

Examples of a network

¡ Liquids flowing through pipes

¡ Parts through assembly lines

¡ Current through electrical network

¡ Information through communication network

¡ Signal through neural network in our brain

¡ Goods transported on the road…

2



Network

Definition 9.1

A network 𝐺 = (𝑉, 𝐸) is a directed graph in 
which each edge (𝑢, 𝑣) ∈ 𝐸 has a 
nonnegative capacity (容量) 𝑐(𝑢, 𝑣) ≥ 0. If 
(𝑢, 𝑣) ∉ 𝐸, we assume that 𝑐(𝑢, 𝑣) = 0. 

We distinguish two vertices in a flow 
network: a source (源点) 𝑠 and a sink (汇点)
𝑡, where 𝑠 only has outedges (出边) and 𝑠
only has inedges (入边).

Every vertex lies on some path from the 
source to the sink.
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Capacity
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Flow
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Max-Flow Problem
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¡ Informal definition of the max-flow problem: What is the 
greatest rate at which material can be shipped from the source 
to the sink without violating any capacity constraints?



Max-Flow Problem
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Max-Flow Problem
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Max-Flow Problem
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Max-Flow Problem
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Max-Flow Problem
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Max-Flow Problem

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 3/3

3/6

6/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 12

6/8

3/3

6/6



Max-Flow Problem
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Flow

Definition 9.2 
A real valued function 𝑓: 𝑉×𝑉 → 𝑅 in 𝐺 = (𝑉, 𝐸) is called flow (流) if it
satisfies 3 properties:
(1) Capacity constraint (容量约束): ∀𝑢, 𝑣 ∈ 𝑉: 

𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣 .
(2) Skew symmetry (反对称): ∀𝑢, 𝑣 ∈ 𝑉: 

𝑓 𝑢, 𝑣 = −𝑓 𝑣, 𝑢 .
(3) Flow conservation (流守恒): ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}:

=
%∈'

𝑓 𝑢, 𝑣 = 0 .

where 𝑓(𝑢, 𝑣) is called the flow from vertex 𝑢 to vertex 𝑣. If 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣),
we call (𝑢, 𝑣) a saturated edge (饱和边).
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Flow Properties
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We don’t draw
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on the graph!



Cancellation
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Flow

Definition 9.2 
The value of a flow 𝑓 (𝑓的流量) is defined as

𝑓 = 3
-∈/

𝑓(𝑠, 𝑣) ,

that is, the total flow out of the source 𝑠.
¡ Here, the | · | notation denotes flow value, not absolute value 

or cardinality. 
¡ Formal definition of the max-flow problem: The max-flow 

problem is to find a valid flow for a given weighted directed 
graph 𝐺, that has the maximum value over all valid flows.
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Flow
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MAX-FLOW PROBLEM
THE FORD-FULKERSON METHOD
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The Ford-Fulkerson Method

¡ The Ford-Fulkerson method is a way to find the max-flow.

¡ It has three important concepts:

(1) Residual networks (剩余网络)

(2) Augmenting paths (增广路径)

(3) Cuts of flow networks (网络的割)
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Residual Networks 

Definition 9.3 

Given a flow 𝑓 on 𝐺 with capacity function 𝑐, the residual 
capacity (剩余容量) function 𝑐0 on the set of pairs of vertices is 
defined as:

𝑐0 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 – 𝑓 𝑢, 𝑣

for each pair of vertices 𝑢, 𝑣 ∈ 𝑉.

The residual network (剩余网络) for 𝑓 is the direct graph 𝐺0 =
(𝑉, 𝐸0), with capacities defined by 𝑐0 and edge set 𝐸0 =
{(𝑢, 𝑣)|𝑐0(𝑢, 𝑣) > 0}.
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Residual Networks 
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Augmenting Paths

Definition 9.5 

Given a residual network 𝐺0 = (𝑉, 𝐸0), an augmenting path (增
广路径) is a direct path from 𝑠 to 𝑡.
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Bottleneck Capacity

Definition 9.5

Given a residual network 𝐺0 and an
augmenting path 𝑝 from 𝑠 to 𝑡, we
define 𝑐0(𝑝) as the bottleneck capacity
(瓶颈容量):
𝑐0(𝑝) = min{𝑐0(𝑢, 𝑣): (𝑢, 𝑣) is on 𝑝}.

¡ 𝑐0(𝑝) is actually the maximum 
amount by which we can increase the 
flow on each edge in an augmenting 
path 𝑝.
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Augmenting Paths

Lemma 9.2
Let 𝑝 be an augmenting path in 𝐺(. 
Define a function 𝑓): 𝑉×𝑉 → 𝑅 by

𝑓) 𝑢, 𝑣 = <
𝑐((𝑝) if 𝑢, 𝑣 is on 𝑝
−𝑐((𝑝) if 𝑣, 𝑢 is on 𝑝
0 otherwise

Then, 𝑓) is a flow in 𝐺( with value |𝑓)| =
𝑐((𝑝) > 0. 
¡ If we can find a augmenting path, there

exists a flow of 𝐺(.
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Definitions So Far…

Given a network 𝐺 = (𝑉, 𝐸), now we have a bunch of definitions:
¡ 𝑐(𝑢, 𝑣): capacity of (𝑢, 𝑣) ∈ 𝐸.
¡ 𝑓 𝑢, 𝑣 : flow of (𝑢, 𝑣) ∈ 𝐸.
¡ 𝑓 and |𝑓|: a flow of 𝐺 and its value.

¡ 𝐺( = (𝑉, 𝐸(): residual network of 𝑓.

¡ 𝑐((𝑢, 𝑣): residual capacity of (𝑢, 𝑣) ∈ 𝐸(.

¡ 𝑝: an augmenting path in 𝐺(.

¡ 𝑐((𝑝): bottleneck capacity.

¡ 𝑓): a flow of 𝐺( with augmenting path 𝑝.
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Classroom Exercise

Compute the residual network and find an augmenting path and
its bottleneck capacity.
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Augmenting Paths

¡ Once we obtain an augmenting path, we can improve 𝑓 by 𝑓3.
We first define the sum of flows.

Definition 9.4 

Given two flows 𝑓$ and 𝑓& on 𝐺, let (𝑓$ + 𝑓&)(𝑢, 𝑣) = 𝑓$(𝑢, 𝑣) +
𝑓&(𝑢, 𝑣), 𝑓$ + 𝑓& is called the sum of flows 𝑓$ and 𝑓&.
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Augmenting Paths

Lemma 9.1

Let 𝐺 = (𝑉, 𝐸) be a flow network with source 𝑠 and sink 𝑡, and
let 𝑓 be a flow in 𝐺. Let 𝐺0 be the residual network of 𝐺 induced 
by 𝑓, and let 𝑓′ be a flow in 𝐺0. Then the flow sum 𝑓 + 𝑓′ is a 
flow in 𝐺 with value |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.

¡ This Lemma tells you: if you find a flow 𝑓′ of 𝐺0, no worry and
simply add it onto 𝑓, the resulting flow sum is also a flow in 𝐺.

¡ Adding 𝑓′ to 𝑓 will not explode. Why?
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Augmenting Paths

To show that 𝑓 + 𝑓′ is also a flow in 𝐺, we need to show that 𝑓 +
𝑓′ satisfies the three properties of flow, and |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.
Proof:

(1) Capacity constraint: ∀𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣 .
𝑓 + 𝑓4 𝑢, 𝑣 = 𝑓 𝑢, 𝑣 + 𝑓4 𝑢, 𝑣

≤ 𝑓 𝑢, 𝑣 + 𝑐0 𝑢, 𝑣
= 𝑓 𝑢, 𝑣 + 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣
= 𝑐(𝑢, 𝑣)
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Augmenting Paths

Proof (cont’d):

(2) Skew symmetry: ∀𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢, 𝑣 = −𝑓 𝑣, 𝑢 .
𝑓 + 𝑓’ 𝑢, 𝑣 = 𝑓 𝑢, 𝑣 + 𝑓’ 𝑢, 𝑣

= −𝑓 𝑣, 𝑢 – 𝑓’ 𝑣, 𝑢
= − 𝑓 𝑣, 𝑢 + 𝑓’ 𝑣, 𝑢
= −(𝑓 + 𝑓’)(𝑣, 𝑢)
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Augmenting Paths

Proof (cont’d):

(3) Flow conservation: ∀𝑢 ∈ 𝑉 − 𝑠, 𝑡 , ∑-∈/ 𝑓 𝑢, 𝑣 = 0 .

3
-∈/

(𝑓 + 𝑓′)(𝑢, 𝑣) = 3
-∈/

𝑓 𝑢, 𝑣 + 𝑓4 𝑢, 𝑣

= 3
-∈/

𝑓 𝑢, 𝑣 +3
-∈/

𝑓′ 𝑢, 𝑣

= 0 + 0 = 0
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Augmenting Paths

Proof (cont’d):

Finally, we prove |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.

|𝑓 + 𝑓′| = 3
-∈/

(𝑓 + 𝑓′)(𝑠, 𝑣)

= 3
-∈/

𝑓 𝑠, 𝑣 +3
-∈/

𝑓′ 𝑠, 𝑣

= 𝑓 + |𝑓′|
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Augmenting Paths

¡ Everything is prepared for increase the value of flow to reach
max-flow.

Proposition 9.1

Let 𝐺 = (𝑉, 𝐸) be a flow network, let 𝑓 be a flow in 𝐺, 𝑝 be an 
augmenting path in 𝐺0, 𝑓3 be a flow of 𝐺0 with augmenting path
𝑝.

Then 𝑓 + 𝑓3 is a flow in 𝐺 with value |𝑓| + |𝑓3| > |𝑓|.

¡ This Proposition tells you: Adding 𝑓3 must result in larger flow
value.
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Augmenting Paths

¡ Proposition 9.1 indicates:

¡ By contrapositive law (假言易位), we know:

¡ However, we don’t know:
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Cuts of Flow Networks

Definition 9.7 
A cut (割) (𝑆, 𝑇) of a flow network 𝐺 = (𝑉, 𝐸) is a partition of 𝑉
into 𝑆 and 𝑇 = 𝑉 − 𝑆 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇. 
The capacity 𝑐(𝑆, 𝑇) of the cut 𝑆, 𝑇 is denoted as:

𝑐 𝑆, 𝑇 = 3
8∈9,-∈;

𝑐(𝑢, 𝑣) .

The flow 𝑓(𝑆, 𝑇) across the cut {𝑆, 𝑇} is denoted as:

𝑓 𝑆, 𝑇 = 3
8∈9,-∈;

𝑓(𝑢, 𝑣) .
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Cuts of Flow Networks
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Property of Cuts

Lemma 9.3

Given a flow network 𝐺 = (𝑉, 𝐸), for any cut {𝑆, 𝑇} and a flow 𝑓, 
𝑓(𝑆, 𝑇) = |𝑓|.
¡ This Lemma tells you: No matter how you cut, the flow across

the cut is same and equals to the value of the flow.
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Property of Cuts
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Property of Cuts

Proof:

By induction on the number of vertices in 𝑆. 

If 𝑆 = {𝑠}, it is true by the definition of flow: 𝑓 = ∑$∈& 𝑓(𝑠, 𝑣). 

Assume it is true for the cut {𝑆, 𝑇}, namely 𝑓 𝑆, 𝑇 = |𝑓|. We show 
that it also holds for the cut {𝑆 ∪ {𝑤}, 𝑇 − {𝑤}} for 𝑤 ∈ 𝑇 − {𝑠, 𝑡}:

𝑓 𝑆 ∪ 𝑤 , 𝑇 − 𝑤 = 𝑓 𝑆, 𝑇 − 𝑤 + 𝑓 𝑤, 𝑇 − 𝑤
= 𝑓 𝑆, 𝑇 − 𝑓 𝑆,𝑤 + 𝑓 𝑤, 𝑇
= 𝑓 𝑆, 𝑇 + 𝑓 𝑤, 𝑆 + 𝑓 𝑤, 𝑇
= 𝑓 𝑆, 𝑇 + 𝑓 𝑤, 𝑉
= 𝑓 𝑆, 𝑇 + 0 = |𝑓|
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Property of Cuts

Corollary 9.2

The value of any flow 𝑓 in a flow network 𝐺 is bounded from 
above by the capacity of any cut of 𝐺, namely 𝑓 ≤ 𝑐 𝑆, 𝑇 .

Proof:
𝑓 = 𝑓 𝑆, 𝑇

=3
8∈9

3
-∈;

𝑓(𝑢, 𝑣) ≤ 3
8∈9

3
-∈;

𝑐 𝑢, 𝑣 = 𝑐(𝑆, 𝑇)

¡ It means that max-flow can’t exceed min-cut.
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Max-Flow Min-Cut Theorem

Theorem 9.1 (max-flow min-cut theorem)

If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 and sink 
𝑡, then the following conditions are equivalent:

(1) 𝑓 is a maximum flow in 𝐺.

(2) The residual network 𝐺0 contains no augmenting paths.

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

¡ This Theorem tells you: When you can’t find an augmenting
path, you have obtained the max-flow.

¡ We prove (1)->(2), (2)->(3), and (3)->(1).
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Max-Flow Min-Cut Theorem

(1) 𝑓 is a maximum flow in 𝐺.

(2) The residual network 𝐺0 contains no augmenting paths.

Proof of (1)->(2):

¡ We prove by contradiction that 𝑓 is a maximum flow in 𝐺 but 
there still exists an augmenting path 𝑝 in 𝐺0.

¡ Then by Corollary 9.1, we can augment the flow in 𝐺: 
𝑓4 = 𝑓 + 𝑓3 > |𝑓|

¡ The flow 𝑓′ is strictly greater than 𝑓 which is in contradiction to 
our assumption that 𝑓 is a maximum flow.
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Max-Flow Min-Cut Theorem

Proof of (2)->(3):
¡ Define 

𝑆 = 𝑣 ∈ 𝑉 ∃path 𝑝 from 𝑠 to 𝑣 in 𝐺(}
𝑇 = 𝑉 − 𝑆
¡ We have 𝑠 ∈ 𝑆 and 𝑡 ∉ 𝑆, otherwise there

exists an augmenting path from 𝑠 to 𝑡.
¡ Therefore, (𝑆, 𝑇) is a cut of 𝐺 by

definition.
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(2) The residual network 𝐺( contains no augmenting paths.
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𝑆 = 𝑠, 𝑣!, 𝑣", 𝑣$
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Max-Flow Min-Cut Theorem

Proof of (2)->(3) (cont’d):
¡ All edges (𝑢, 𝑣) from 𝑆 to 𝑇 are saturated,

i.e. 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣).
¡ Otherwise, there exists a path from 𝑢 to 𝑣,

i.e. (𝑢, 𝑣) ∈ 𝐸(, which means 𝑣 ∈ 𝑆
contradicting to 𝑣 ∈ 𝑇.

¡ Therefore, 𝑓 𝑆, 𝑇 = 𝑐(𝑆, 𝑇) and 𝑓 =
𝑓(𝑆, 𝑇) by Lemma 9.3, we have 𝑓 =
𝑐(𝑆, 𝑇).
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(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.
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Max-Flow Min-Cut Theorem

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

(1) 𝑓 is a maximum flow in 𝐺.

Proof of (3)->(1):

¡ By Lemma 9.2, 𝑓 ≤ 𝑐(𝑆, 𝑇) for any cut (𝑆, 𝑇).

¡ Now we find a cut (𝑆, 𝑇) such that |𝑓| = 𝑐(𝑆, 𝑇). It implies that 
𝑓 is a maximum flow.
¡ Cut (𝑆, 𝑇) must be the minimum cut, otherwise |𝑓| will be greater than

some other 𝑐(𝑆, 𝑇). 

¡ |𝑓| must be maximum, otherwise some other |𝑓| will be greater than
𝑐(𝑆, 𝑇).
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Ford-Fulkerson Method

52

FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1  for each edge (𝑢, 𝑣) ∈ 𝐸 do
2       𝑓(𝑢, 𝑣) ← 0
3  𝐺0 ← 𝐺
4  while there is an augmenting path 𝑝 in 𝐺0 do
5 Let 𝑐0(𝑝) be the bottleneck capacity of 𝑝
6       for each edge (𝑢, 𝑣) in 𝑝 do
7           𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐0(𝑝)
8       Update the residual graph 𝐺0
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Ford-Fulkerson Method

67

FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1  for each edge (𝑢, 𝑣) ∈ 𝐸 do
2       𝑓(𝑢, 𝑣) ← 0
3  𝐺( ← 𝐺
4  while there is an augmenting path 𝑝 in 𝐺( do
5 Let 𝑐((𝑝) be the bottleneck capacity of 𝑝
6       for each edge (𝑢, 𝑣) in 𝑝 do
7           𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐((𝑝)
8       Update the residual graph 𝐺(

𝑂(|𝐸|)

𝑂(|𝐸|)
𝑂(|𝐸|)

𝑂(|𝐸|)

𝑂(|𝑓∗|)

¡ Each time we can find a augmenting path which can at least increase 
the flow value by 1. Therefore, at most 𝑓∗ iterations in while loop.
¡ 𝑓∗ is the maximum flow value that the method can find.

Total:
𝑂(|𝐸||𝑓∗|)



Method vs. Algorithm

¡ We call it a 
“method” rather 
than an “algorithm” 
because the way to
find the augmented
path is not identified.
¡ Different

implementations have
differing running times.
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FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1  for each edge (𝑢, 𝑣) ∈ 𝐸 do
2       𝑓(𝑢, 𝑣) ← 0
3  𝐺( ← 𝐺
4  while there is an augmenting path 𝑝 in 𝐺( do
5 Let 𝑐((𝑝) be the bottleneck capacity of 𝑝
6       for each edge (𝑢, 𝑣) in 𝑝 do
7           𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐((𝑝)
8       Update the residual graph 𝐺(
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MAX-FLOW PROBLEM
SHORTEST PATH AUGMENTATION ALGORITHM
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Shortest Path Augmentation Algorithm

Definition 9.8 
The level (层次) of a vertex 𝑣, denoted by 𝑑(𝑣), is the least number of edges 
in a path from 𝑠 to 𝑣. 
Given a directed graph 𝐺 = (𝑉, 𝐸), the level graph (层次图) is defined as
𝐺* = (𝑉, 𝐸′), where 𝐸′ = {(𝑢, 𝑣): 𝑑(𝑣) = 𝑑(𝑢) + 1}.
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Shortest Path Augmentation Algorithm

¡ The level graph can be easily obtained by BFS.

¡ Can DFS do this?
¡ No, DFS doesn’t give the shortest unless each time we compare 𝑑[𝑣].
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Shortest Path Augmentation Algorithm

¡ This algorithm is also called Edmonds-Karp algorithm.

¡ Idea: Select an augmenting path of minimum length and 
increases the current flow by its bottleneck capacity. 

¡ Generally there are two steps.

1. Compute the level graph 𝐺= from the residual graph 𝐺0. If 𝑡 is 
not in 𝐺=, then halt: otherwise continue.

¡ 𝑡 not in 𝐺* means there’s no path from 𝑠 to 𝑡 in 𝐺(.

2. As long as there is a path 𝑝 form 𝑠 to 𝑡 in 𝐺=, augment the 
current flow by 𝑝, and update 𝐺= and 𝐺0 accordingly.
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Shortest Path Augmentation Algorithm
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ShortestPathAugmentation(𝐺, 𝑠, 𝑡)
1  for each edge (𝑢, 𝑣) ∈ 𝐸 do
2       𝑓(𝑢, 𝑣) ← 0
3  𝐺( ← 𝐺
4  find the level graph 𝐺+ of 𝐺(
5 while 𝑡 is a vertex in 𝐺+ do
6       while there is a path 𝑝 from 𝑠 to 𝑡 in 𝐺+ do
7            let 𝑐((𝑝) be the bottleneck capacity on 𝑝
8            augment the current flow 𝑓 by 𝑐((𝑝)
9            update 𝐺+ and 𝐺( along the path 𝑝
10     use 𝐺( to compute a new level graph 𝐺+

There may be multiple shortest
paths in 𝐺" from 𝑠 to 𝑡.
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¡ Now, look back at this example again…



Analysis of Shortest Path Augmentation Algorithm

Lemma 9.4  
The while loop in Line 5 in ShortestPathAugmentation is executed
at most |𝑉| times.
Proof:
¡ We show that the number of level graph computed using the 

algorithm is at most |𝑉|.
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5 while 𝑡 is a vertex in 𝐺" do
6       while there is a path 𝑝 from 𝑠 to 𝑡 in 𝐺" do
7            let 𝑐!(𝑝) be the bottleneck capacity on 𝑝
8            augment the current flow f by 𝑐!(𝑝)
9            update 𝐺" and 𝐺! along the path 𝑝
10     use 𝐺! to compute a new level graph 𝐺"



Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ First, we show that the sequence of lengths of augmenting 
paths using ShortestPathAugmentation is strictly increasing. 
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Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ Let 𝑝 be any augmenting path in the 
current 𝐺*. 

¡ After augmenting using 𝑝, at least one 
edge will be saturated and will 
disappear in 𝐺(. 

¡ At most |𝑝| new edges will appear in
𝐺(, but they are back edges, and hence 
will not contribute to a shortest path 
from 𝑠 to 𝑡.

¡ When all shortest paths are cut in the
current 𝐺*, BFS will find strict longer
shortest paths for the next 𝐺*.
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Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ When 𝑡 is no longer in 𝐺=, we can’t find an augmenting path
any more. 

¡ Since the length of any augmenting path is between 1 and 
|𝑉| − 1, the number of level graphs use for augmentations is at 
most |𝑉| − 1. 

¡ Since one more level graph is computed in which 𝑡 does not 
appear, the total number of level graphs computed is at most 
|𝑉|.
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Analysis of Shortest Path Augmentation Algorithm

Theorem 9.2

Given a flow network 𝐺 = (𝑉, 𝐸), ShortestPathAugmentation finds a 
maximum flow in 𝑂( 𝑉 𝐸 ').
Proof:

¡ Given a 𝐺+, there are at most |𝐸| augmenting paths of the same 
length.

¡ By Lemma 9.4, the number of augmenting steps is at most |𝑉||𝐸|.

¡ Computing each level graph takes 𝑂(|𝐸|) using BFS.

¡ Therefore, the total time required to compute all level graphs is 
𝑂( 𝑉 𝐸 ' .
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Image source: https://en.wikipedia.org/wiki/Maximum_flow_problem#cite_note-18

Submitted to arXiv on 18 Jan 2021

Published in 1956

https://en.wikipedia.org/wiki/Maximum_flow_problem


Classroom Exercise

¡ Use ShortestPathAugmentation to find the max-flow of the
following graph.
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Classroom Exercise
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MATCHING PROBLEM
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Matching Problem
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Matching Problem

Definition 9.14 
Given an undirected graph 𝐺 = (𝑉, 𝐸), a matching (匹配) is a subset of edges 𝑀 ⊆
𝐸 such that for all vertices 𝑣 ∈ 𝑉, at most one edge of 𝑀 is connected on 𝑣. 
We say that a vertex 𝑣 ∈ 𝑉 is matched by matching 𝑀 if some edge in 𝑀 is 
connected on 𝑣; otherwise, 𝑣 is unmatched. 
A maximum matching (最大匹配) is a matching of maximum cardinality.
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Matching Problem

Definition 9.15 

Perfect matching (完美匹配) is one in 
which every vertex in 𝑉 is matched.

¡ Not every undirected graph has perfect
matching, e.g. graphs with odd number
of vertices.

¡ The maximum matching may not be
perfect, but perfect matching must be
maximum.
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Matching Problem

Definition 9.15 

Given an undirected graph 𝐺 = (𝑉, 𝐸) and 𝑀 is a matching of 𝐺.
We define:

Alternating path (交错路径): A simple path alternating between 
matching and non-matching edges.

Augmenting path (增广路径): A nontrivial alternating path that 
begins and ends with unmatched vertices.
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Matching Problem
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Matching Problem
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Matching Problem

Definition 9.17 

Let 𝑀! and 𝑀' be two matchings in a graph 𝐺, define  
𝑀!⊕𝑀' = 𝑀! ∪𝑀' − (𝑀! ∩𝑀')

Lemma 9.6 

Suppose 𝑀 is a matching and 𝑝 is an augmenting path, Then 𝑀⊕𝑝 is 
also a matching, and |𝑀 ⊕ 𝑝| = |𝑀| + 1.

Theorem 9.9 

A matching is maximum if and only if there is no augmenting path.

¡ All these things tell you: once you can find a augmenting path,
adding it to the current matching results in a larger matching.
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Example

¡ What ⊕ does is actually flipping matching and non-matching edges
in 𝑝.

¡ There are always one more non-matching edge in 𝑝, by its definition.
¡ Begins and ends with unmatched vertices
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Max Matching Algorithm
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MaximumMatching(𝐺)
1   𝑀 ← 0
2   repeat
3       find an augmenting path p
4 𝑀 ← 𝑀⊕ 𝑝
5   until no augmenting path in 𝐺
6   return𝑀



Bipartite Graph

Definition

A bipartite graph (二分图,二部图) 𝐺 = (𝑉, 𝐸) is defined if 𝑉 can be 
partitioned into two subsets 𝐿 and 𝑅 with 𝑉 = 𝐿 ∪ 𝑅 and 𝐿 ∩ 𝑅 = ∅,
and ∀𝑒 ∈ 𝐸 has one endpoint in 𝐿 and the other endpoint in 𝑅.
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Maximum Matching Algorithms for Bipartite Graph

Solution 1: Use the max-flow algorithm.
¡ We define the corresponding flow network 𝐺’ = (𝑉’, 𝐸’) for the 

bipartite graph 𝐺 as follows. 
¡ 𝐺’ is directed but 𝐺 is undirected.

¡ We let the source 𝑠 and sink 𝑡 be new vertices: 𝑉′ = 𝑉 ∪ {𝑠, 𝑡}. The
directed edges of 𝐺′ contain three parts: edges from 𝑠 to 𝐿, from 𝐿 to
𝑅, and from 𝑅 to 𝑡:

𝐸′ = {(𝑠, 𝑢): 𝑢 ∈ 𝐿}
∪ {(𝑢, 𝑣): 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, (𝑢, 𝑣) ∈ 𝐸}
∪ {(𝑣, 𝑡): 𝑣 ∈ 𝑅}.

¡ All edges in 𝐸′ have capacity 1.
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Maximum Matching Algorithms for Bipartite Graph

Theorem 9.11 
Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with vertex partition 𝑉 = 𝐿 ∪ 𝑅, 
and let 𝐺′ = (𝑉′, 𝐸′) be its corresponding flow network. 
If 𝑀 is a matching in 𝐺, then there is an integer-valued flow 𝑓 in 𝐺′ with 
value |𝑓| = |𝑀|.
Conversely, if 𝑓 is an integer-valued flow in 𝐺′, then there is a matching 
𝑀 in 𝐺 with cardinality |𝑀| = |𝑓|.
¡ This Theorem tells you: Just run max-flow algorithm and you will

obtain maximum matching.
¡ The value of flow needs to be integer because floating point flow

does not correspond to a match in 𝐺.
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Maximum Matching Algorithms for Bipartite Graph

Solution 2: Hungarian tree algorithm (匈牙利树算法).
¡ Idea: Find augmenting path and add the path to increase

matching by MaximumMatching.
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Hungry Tree Algorithm

¡ But how to find an augmenting path?

¡ We can start from an unmatched vertex and use BFS or
DFS to search all alternating paths. The generated tree
is called alternating path tree (交错路径树).

¡ If all leaves in the alternating path tree are matched,
this tree is called Hungarian tree (匈牙利树).
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Hungry Tree Algorithm

116

HungryBipartiteGraph(𝐺)
1   begin with any matching 𝑀
2   while there exists an unmatched vertex in 𝐿 and 𝑅 respectively do
3        let 𝑟 is an unmatched vertex in 𝐿
4        grow an alternating path tree 𝑇 with root 𝑟 using breadth first search
5        if 𝑇 is a Hungarian tree then
6             𝐺 ← 𝐺 − 𝑇
7        else
8             find an augmenting path 𝑝 in 𝑇
9 𝑀 ← 𝑀⊕𝑝
10  return𝑀



Example
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𝐺 ← 𝐺 − 𝑇, and then

the algorithm exits the
while loop in Line 2.
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Classroom Exercise

Use Hungarian tree algorithm to find the maximum matching of
the following bipartite graph.
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Classroom Exercise
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Classroom Exercise
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Pick 𝑙& to generate alternating path tree, and
Select an augmenting path and add into 𝐺
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Classroom Exercise
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Pick 𝑙% to generate alternating path tree, and
Select an augmenting path and add into 𝐺
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Classroom Exercise
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Pick 𝑙F to generate alternating path tree, and
Select an augmenting path and add into 𝐺
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Conclusion

After this lecture, you should know:

¡ What is network, capacity and flow in terms of graph.

¡ What properties does flow have.

¡ How to obtain the residual network.

¡ How to find an augmenting path and its bottleneck capacity.

¡ How to use the augmenting path to increase value of flow.

¡ How to use shortest path to improve max-flow problem.

¡ How to solve matching problem.
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Homework

Page 172-174

9.1 

9.3 

9.4 

9.6

9.10

9.12

9.19
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Experiment

DiDi scheduler problem

¡ In Beijing all streets are built as straight 
lines intersecting at right angles at fixed 
distances, with the distance between 
intersections being a fixed 200 meters.

¡ Now, three passengers (marked yellow)
want to call available cars (marked red)
by DiDi.

¡ If you are a DiDi scheduler, how many
passengers can you transported?
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Experiment

You have to adhere to following constraints:

¡ Each car can only take one passenger (no顺风车).

¡ Passengers and cars always wait at intersections of roads.

¡ The car has to reach the passenger within a given time limit 
(otherwise the passenger will cancel DiDi and use CaoCao)
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Experiment

Input:

¡ The first line contains:
¡ The number of passengers 𝑝 (1 <= 𝑝 <= 400).
¡ The number of available cars 𝑡 (1 <= 𝑡 <= 200).
¡ The speed 𝑠 (1 <= 𝑠 <= 2000) of the cars in meters per seconds.
¡ The time 𝑐 to collect a passenger in seconds (1 <= 𝑐 <=
1000000). 

¡ The next 𝑝 lines contains the position of the passengers. 
¡ The next 𝑡 lines contain the position of the available cars.
Output:

¡ The maximal number of passengers that can be picked up.
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Input:
2 3 10 40
2 5
5 2
2 3
4 1
4 4

Output:
2



谢谢

有问题欢迎随时跟我讨论
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