
算法设计与分析
Lecture 9: Network Flow and Matching

卢杨

厦门大学信息学院计算机科学系

luyang@xmu.edu.cn

MAX-FLOW PROBLEM

1

Network

Examples of a network

¡ Liquids flowing through pipes

¡ Parts through assembly lines

¡ Current through electrical network

¡ Information through communication network

¡ Signal through neural network in our brain

¡ Goods transported on the road…

2

Network

Definition 9.1

A network 𝐺 = (𝑉, 𝐸) is a directed graph in
which each edge (𝑢, 𝑣) ∈ 𝐸 has a
nonnegative capacity (容量) 𝑐(𝑢, 𝑣) ≥ 0. If
(𝑢, 𝑣) ∉ 𝐸, we assume that 𝑐(𝑢, 𝑣) = 0.

We distinguish two vertices in a flow
network: a source (源点) 𝑠 and a sink (汇点)
𝑡, where 𝑠 only has outedges (出边) and 𝑠
only has inedges (入边).

Every vertex lies on some path from the
source to the sink.

3

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8

3

6

6
86

𝑐 𝑣$, 𝑣% = 3
𝑐 𝑣$, 𝑣& = 0

3 3

Capacity

4

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8

3

6

6
86

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑠 𝑣!
8

𝑣! 𝑣#
3

Big pipe

Small pipe

𝑐 𝑠, 𝑣! = 8

𝑐 𝑣!, 𝑣# = 3

3 3

Flow

5

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8

3

6

6
86

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑠 𝑣!
4/8

𝑣! 𝑣#
3/3

Flow below capacity

Maximum flow

𝑓 𝑢, 𝑣 = 4

𝑓 𝑢, 𝑣 = 3

3 3

Max-Flow Problem

6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8

3

6

6
86

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

3 3

¡ Informal definition of the max-flow problem: What is the
greatest rate at which material can be shipped from the source
to the sink without violating any capacity constraints?

Max-Flow Problem

7

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8

3

6

6/6

6/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 6

3 3

Max-Flow Problem

8

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

8/8

8/3

8/6

6/6

6/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

Flow can’t exceed capacity!

3 3

Max-Flow Problem

9

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3 3

6/6

6/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 9

3/8

3/3

3/6

Max-Flow Problem

10

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

2/3 3

6/6

8/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 11

5/8

3/3

3/6

Can we improve
over here?

Max-Flow Problem

11

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

2/3 3/3

3/6

5/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 11

5/8

3/3

6/6

Max-Flow Problem

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 3/3

3/6

6/86/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$source sink

Example: Oil PipelineFlow network

𝑓𝑙𝑜𝑤 = 12

6/8

3/3

6/6

Max-Flow Problem

13

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 1/3

5/6

8/86/6

Flow network

𝑓𝑙𝑜𝑤 = 12

6/8

3/3

4/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 3/3

3/6

6/86/6

Flow network

6/8

3/3

6/6

Flow

Definition 9.2
A real valued function 𝑓: 𝑉×𝑉 → 𝑅 in 𝐺 = (𝑉, 𝐸) is called flow (流) if it
satisfies 3 properties:
(1) Capacity constraint (容量约束): ∀𝑢, 𝑣 ∈ 𝑉:

𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣 .
(2) Skew symmetry (反对称): ∀𝑢, 𝑣 ∈ 𝑉:

𝑓 𝑢, 𝑣 = −𝑓 𝑣, 𝑢 .
(3) Flow conservation (流守恒): ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}:

=
%∈'

𝑓 𝑢, 𝑣 = 0 .

where 𝑓(𝑢, 𝑣) is called the flow from vertex 𝑢 to vertex 𝑣. If 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣),
we call (𝑢, 𝑣) a saturated edge (饱和边).

14

Flow Properties

15

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 3/3

3/6

6/86/6

6/8

3/3

6/6

For 𝑣!:
𝑓 𝑣!, 𝑠 = −6
𝑓 𝑣!, 𝑣" = 3
𝑓 𝑣!, 𝑣# = 3
∑$∈& 𝑓 𝑣!, 𝑣 = 0

For 𝑣":
𝑓 𝑣", 𝑣! = −3
𝑓 𝑣", 𝑣' = −3
𝑓 𝑣", 𝑡 = 6
∑$∈& 𝑓 𝑣", 𝑣 = 0

We don’t draw
negative flow
and zero capacity
on the graph!

Cancellation

16

𝑢

𝑣

8/10 3/4

Not satisfy skew symmetry

𝑓 𝑢, 𝑣 = 8
𝑓 𝑣, 𝑢 = 3

𝑢

𝑣

5/10 4

𝑓 𝑢, 𝑣 = 5
𝑓 𝑣, 𝑢 = −5

Cancellation

Flow

Definition 9.2
The value of a flow 𝑓 (𝑓的流量) is defined as

𝑓 = 3
-∈/

𝑓(𝑠, 𝑣) ,

that is, the total flow out of the source 𝑠.
¡ Here, the | · | notation denotes flow value, not absolute value

or cardinality.
¡ Formal definition of the max-flow problem: The max-flow

problem is to find a valid flow for a given weighted directed
graph 𝐺, that has the maximum value over all valid flows.

17

Flow

18

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3/3 3/3

3/6

6/86/6

6/8

3/3

6/6

𝑓 = 3
-∈/

𝑓(𝑠, 𝑣) = 𝑓 𝑠, 𝑣$ + 𝑓 𝑠, 𝑣& = 6 + 6 = 12.

MAX-FLOW PROBLEM
THE FORD-FULKERSON METHOD

19

The Ford-Fulkerson Method

¡ The Ford-Fulkerson method is a way to find the max-flow.

¡ It has three important concepts:

(1) Residual networks (剩余网络)

(2) Augmenting paths (增广路径)

(3) Cuts of flow networks (网络的割)

20

Residual Networks

Definition 9.3

Given a flow 𝑓 on 𝐺 with capacity function 𝑐, the residual
capacity (剩余容量) function 𝑐0 on the set of pairs of vertices is
defined as:

𝑐0 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 – 𝑓 𝑢, 𝑣

for each pair of vertices 𝑢, 𝑣 ∈ 𝑉.

The residual network (剩余网络) for 𝑓 is the direct graph 𝐺0 =
(𝑉, 𝐸0), with capacities defined by 𝑐0 and edge set 𝐸0 =
{(𝑢, 𝑣)|𝑐0(𝑢, 𝑣) > 0}.

21

7

11

48

5

12

5

11 5

11

15

5

4

Residual Networks

22

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

4/
4

8/13

11
/1
6

12/12

15/20

10

𝐺 𝐺0

Note: 𝐺0 is different with different flow 𝑓.

4/
9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

We don’t draw
negative flow and zero
capacity on the graph!

𝑐(𝑢, 𝑣 = 𝑐 𝑢, 𝑣 – 𝑓 𝑢, 𝑣

Residual Networks

23

7

11

48

5

12

5

11 5

11

15

5

4

𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

4/
4

8/13

11
/1
6 15/20

10

𝐺

4/
9

¡ Capacity in residual network simply means how much you can
increase the flow at most.

12/12

Augmenting Paths

Definition 9.5

Given a residual network 𝐺0 = (𝑉, 𝐸0), an augmenting path (增
广路径) is a direct path from 𝑠 to 𝑡.

24

7
11

48

5
12

5

11 5

11
15

5

4

𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

If we can find such
a path in the
residual network, it
means we can still
increase the flow!

Bottleneck Capacity

Definition 9.5

Given a residual network 𝐺0 and an
augmenting path 𝑝 from 𝑠 to 𝑡, we
define 𝑐0(𝑝) as the bottleneck capacity
(瓶颈容量):
𝑐0(𝑝) = min{𝑐0(𝑢, 𝑣): (𝑢, 𝑣) is on 𝑝}.

¡ 𝑐0(𝑝) is actually the maximum
amount by which we can increase the
flow on each edge in an augmenting
path 𝑝.

25

7

11

48

5

12

5

11 5

11

15

5

4

𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

𝑐0(𝑝) = 4

Augmenting Paths

Lemma 9.2
Let 𝑝 be an augmenting path in 𝐺(.
Define a function 𝑓): 𝑉×𝑉 → 𝑅 by

𝑓) 𝑢, 𝑣 = <
𝑐((𝑝) if 𝑢, 𝑣 is on 𝑝
−𝑐((𝑝) if 𝑣, 𝑢 is on 𝑝
0 otherwise

Then, 𝑓) is a flow in 𝐺(with value |𝑓)| =
𝑐((𝑝) > 0.
¡ If we can find a augmenting path, there

exists a flow of 𝐺(.

26

7

11

48

5

12

4/5

11 5

11

15

4/5

4/
4

𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

𝑓3 𝑠, 𝑣& = 𝑓3 𝑣&, 𝑣%
= 𝑓3 𝑣%, 𝑡 = 𝑐0 𝑝 = 4

Definitions So Far…

Given a network 𝐺 = (𝑉, 𝐸), now we have a bunch of definitions:
¡ 𝑐(𝑢, 𝑣): capacity of (𝑢, 𝑣) ∈ 𝐸.
¡ 𝑓 𝑢, 𝑣 : flow of (𝑢, 𝑣) ∈ 𝐸.
¡ 𝑓 and |𝑓|: a flow of 𝐺 and its value.

¡ 𝐺(= (𝑉, 𝐸(): residual network of 𝑓.

¡ 𝑐((𝑢, 𝑣): residual capacity of (𝑢, 𝑣) ∈ 𝐸(.

¡ 𝑝: an augmenting path in 𝐺(.

¡ 𝑐((𝑝): bottleneck capacity.

¡ 𝑓): a flow of 𝐺(with augmenting path 𝑝.

27

Classroom Exercise

Compute the residual network and find an augmenting path and
its bottleneck capacity.

28

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

2/3 3

6/6

8/86/6

5/8

3/3

3/6

1/1 3

1/6

86

1/3
3

1/3

Classroom Exercise

29

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

2/3 3

6/6

8/86/6

5/8

3/3

3/6

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

5 3

2

Augmenting Paths

¡ Once we obtain an augmenting path, we can improve 𝑓 by 𝑓3.
We first define the sum of flows.

Definition 9.4

Given two flows 𝑓$ and 𝑓& on 𝐺, let (𝑓$ + 𝑓&)(𝑢, 𝑣) = 𝑓$(𝑢, 𝑣) +
𝑓&(𝑢, 𝑣), 𝑓$ + 𝑓& is called the sum of flows 𝑓$ and 𝑓&.

30

Augmenting Paths

Lemma 9.1

Let 𝐺 = (𝑉, 𝐸) be a flow network with source 𝑠 and sink 𝑡, and
let 𝑓 be a flow in 𝐺. Let 𝐺0 be the residual network of 𝐺 induced
by 𝑓, and let 𝑓′ be a flow in 𝐺0. Then the flow sum 𝑓 + 𝑓′ is a
flow in 𝐺 with value |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.

¡ This Lemma tells you: if you find a flow 𝑓′ of 𝐺0, no worry and
simply add it onto 𝑓, the resulting flow sum is also a flow in 𝐺.

¡ Adding 𝑓′ to 𝑓 will not explode. Why?

31

Augmenting Paths

To show that 𝑓 + 𝑓′ is also a flow in 𝐺, we need to show that 𝑓 +
𝑓′ satisfies the three properties of flow, and |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.
Proof:

(1) Capacity constraint: ∀𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣 .
𝑓 + 𝑓4 𝑢, 𝑣 = 𝑓 𝑢, 𝑣 + 𝑓4 𝑢, 𝑣

≤ 𝑓 𝑢, 𝑣 + 𝑐0 𝑢, 𝑣
= 𝑓 𝑢, 𝑣 + 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣
= 𝑐(𝑢, 𝑣)

32

Capacity
constraint
of 𝑓′.

Definition of 𝑐!.

Augmenting Paths

Proof (cont’d):

(2) Skew symmetry: ∀𝑢, 𝑣 ∈ 𝑉, 𝑓 𝑢, 𝑣 = −𝑓 𝑣, 𝑢 .
𝑓 + 𝑓’ 𝑢, 𝑣 = 𝑓 𝑢, 𝑣 + 𝑓’ 𝑢, 𝑣

= −𝑓 𝑣, 𝑢 – 𝑓’ 𝑣, 𝑢
= − 𝑓 𝑣, 𝑢 + 𝑓’ 𝑣, 𝑢
= −(𝑓 + 𝑓’)(𝑣, 𝑢)

33

Skew
symmetry
of 𝑓 and 𝑓′.

Definition
of flow sum

Augmenting Paths

Proof (cont’d):

(3) Flow conservation: ∀𝑢 ∈ 𝑉 − 𝑠, 𝑡 , ∑-∈/ 𝑓 𝑢, 𝑣 = 0 .

3
-∈/

(𝑓 + 𝑓′)(𝑢, 𝑣) = 3
-∈/

𝑓 𝑢, 𝑣 + 𝑓4 𝑢, 𝑣

= 3
-∈/

𝑓 𝑢, 𝑣 +3
-∈/

𝑓′ 𝑢, 𝑣

= 0 + 0 = 0

34

Augmenting Paths

Proof (cont’d):

Finally, we prove |𝑓 + 𝑓′| = |𝑓| + |𝑓′|.

|𝑓 + 𝑓′| = 3
-∈/

(𝑓 + 𝑓′)(𝑠, 𝑣)

= 3
-∈/

𝑓 𝑠, 𝑣 +3
-∈/

𝑓′ 𝑠, 𝑣

= 𝑓 + |𝑓′|

35

Augmenting Paths

¡ Everything is prepared for increase the value of flow to reach
max-flow.

Proposition 9.1

Let 𝐺 = (𝑉, 𝐸) be a flow network, let 𝑓 be a flow in 𝐺, 𝑝 be an
augmenting path in 𝐺0, 𝑓3 be a flow of 𝐺0 with augmenting path
𝑝.

Then 𝑓 + 𝑓3 is a flow in 𝐺 with value |𝑓| + |𝑓3| > |𝑓|.

¡ This Proposition tells you: Adding 𝑓3 must result in larger flow
value.

36

37

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

4/
4

8/13

11
/1
6 15/20

10

𝐺 and 𝑓
𝑓 = 19

4/
9 7

11

48

5

12
4/5

11 5

11

15

4/5

4/
4

𝐺0 and 𝑓3
𝑓3 = 4

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

4/
4

12/13

11
/1
6 19/20

10

𝐺 and 𝑓 + 𝑓3
𝑓 + 𝑓3 = 23

0/
9

12/12

12/12

Augmenting Paths

¡ Proposition 9.1 indicates:

¡ By contrapositive law (假言易位), we know:

¡ However, we don’t know:

38

Find a 𝑓3 Can increase |𝑓|

Can’t find a 𝑓3 Can’t increase |𝑓|

Can’t find a 𝑓3 Can’t increase |𝑓|
?

Cuts of Flow Networks

Definition 9.7
A cut (割) (𝑆, 𝑇) of a flow network 𝐺 = (𝑉, 𝐸) is a partition of 𝑉
into 𝑆 and 𝑇 = 𝑉 − 𝑆 such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.
The capacity 𝑐(𝑆, 𝑇) of the cut 𝑆, 𝑇 is denoted as:

𝑐 𝑆, 𝑇 = 3
8∈9,-∈;

𝑐(𝑢, 𝑣) .

The flow 𝑓(𝑆, 𝑇) across the cut {𝑆, 𝑇} is denoted as:

𝑓 𝑆, 𝑇 = 3
8∈9,-∈;

𝑓(𝑢, 𝑣) .

39

Cuts of Flow Networks

40

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
1/
4

7/
7

11/14

4/
4

12/13

11
/1
6 19/20

10 0/
9

𝑆 = 𝑠, 𝑣!, 𝑣' , 𝑇 = {𝑣", 𝑣#, 𝑡}
𝑐 𝑆, 𝑇 = 𝑐 𝑣!, 𝑣" + 𝑐 𝑣', 𝑣# = 12 + 14 = 26
𝑓 𝑆, 𝑇 = 𝑓 𝑣!, 𝑣" + 𝑓 𝑣', 𝑣# + 𝑓 𝑣', 𝑣" = 12 + 11 − 0 = 23

12/12

Property of Cuts

Lemma 9.3

Given a flow network 𝐺 = (𝑉, 𝐸), for any cut {𝑆, 𝑇} and a flow 𝑓,
𝑓(𝑆, 𝑇) = |𝑓|.
¡ This Lemma tells you: No matter how you cut, the flow across

the cut is same and equals to the value of the flow.

41

12/13

11
/1
6

4/
4

19/20

Property of Cuts

42

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

12/13

11
/1
6

10 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1/
4

7/
7

11/14

4/
4

19/20

10 9

𝑓 𝑆, 𝑇
= 𝑓 𝑣#, 𝑡 + 𝑓 𝑣$, 𝑡
= 19 + 4 = 23

𝑓 𝑆, 𝑇
= 𝑓 𝑠, 𝑣! + 𝑓 𝑠, 𝑣"
= 11 + 12 = 23

12/12 12/12

1/
4

7/
7

4/
4

11
/1
6

1/
4

7/
7

12/13

19/20

Property of Cuts

43

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$11/14

4/
4

11
/1
6

10 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$11/14

12/13

19/20

10 9

𝑓 𝑆, 𝑇
= 𝑓 𝑠, 𝑣" + 𝑓 𝑣!, 𝑣" + 𝑓 𝑣#, 𝑣$
+ 𝑓(𝑣#, 𝑡)
= 12 − 1 − 7 + 19 = 23

𝑓 𝑆, 𝑇
= 𝑓 𝑠, 𝑣! + 𝑓 𝑣", 𝑣! + 𝑓 𝑣$, 𝑣#
+ 𝑓(𝑣$, 𝑡)
= 11 + 1 + 7 + 4 = 23

12/12 12/12

Property of Cuts

44

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
1/
4

7/
7

11/14

4/
4

12/13

11
/1
6 19/20

10 9

Not a valid cut! 𝑠 and 𝑡 are not separated.

12/12

Property of Cuts

Proof:

By induction on the number of vertices in 𝑆.

If 𝑆 = {𝑠}, it is true by the definition of flow: 𝑓 = ∑$∈& 𝑓(𝑠, 𝑣).

Assume it is true for the cut {𝑆, 𝑇}, namely 𝑓 𝑆, 𝑇 = |𝑓|. We show
that it also holds for the cut {𝑆 ∪ {𝑤}, 𝑇 − {𝑤}} for 𝑤 ∈ 𝑇 − {𝑠, 𝑡}:

𝑓 𝑆 ∪ 𝑤 , 𝑇 − 𝑤 = 𝑓 𝑆, 𝑇 − 𝑤 + 𝑓 𝑤, 𝑇 − 𝑤
= 𝑓 𝑆, 𝑇 − 𝑓 𝑆,𝑤 + 𝑓 𝑤, 𝑇
= 𝑓 𝑆, 𝑇 + 𝑓 𝑤, 𝑆 + 𝑓 𝑤, 𝑇
= 𝑓 𝑆, 𝑇 + 𝑓 𝑤, 𝑉
= 𝑓 𝑆, 𝑇 + 0 = |𝑓|

45

Flow conservation
property

By definition of cut

Property of Cuts

Corollary 9.2

The value of any flow 𝑓 in a flow network 𝐺 is bounded from
above by the capacity of any cut of 𝐺, namely 𝑓 ≤ 𝑐 𝑆, 𝑇 .

Proof:
𝑓 = 𝑓 𝑆, 𝑇

=3
8∈9

3
-∈;

𝑓(𝑢, 𝑣) ≤ 3
8∈9

3
-∈;

𝑐 𝑢, 𝑣 = 𝑐(𝑆, 𝑇)

¡ It means that max-flow can’t exceed min-cut.

46

Max-Flow Min-Cut Theorem

Theorem 9.1 (max-flow min-cut theorem)

If 𝑓 is a flow in a flow network 𝐺 = (𝑉, 𝐸) with source 𝑠 and sink
𝑡, then the following conditions are equivalent:

(1) 𝑓 is a maximum flow in 𝐺.

(2) The residual network 𝐺0 contains no augmenting paths.

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

¡ This Theorem tells you: When you can’t find an augmenting
path, you have obtained the max-flow.

¡ We prove (1)->(2), (2)->(3), and (3)->(1).

47

Max-Flow Min-Cut Theorem

(1) 𝑓 is a maximum flow in 𝐺.

(2) The residual network 𝐺0 contains no augmenting paths.

Proof of (1)->(2):

¡ We prove by contradiction that 𝑓 is a maximum flow in 𝐺 but
there still exists an augmenting path 𝑝 in 𝐺0.

¡ Then by Corollary 9.1, we can augment the flow in 𝐺:
𝑓4 = 𝑓 + 𝑓3 > |𝑓|

¡ The flow 𝑓′ is strictly greater than 𝑓 which is in contradiction to
our assumption that 𝑓 is a maximum flow.

48

Max-Flow Min-Cut Theorem

Proof of (2)->(3):
¡ Define

𝑆 = 𝑣 ∈ 𝑉 ∃path 𝑝 from 𝑠 to 𝑣 in 𝐺(}
𝑇 = 𝑉 − 𝑆
¡ We have 𝑠 ∈ 𝑆 and 𝑡 ∉ 𝑆, otherwise there

exists an augmenting path from 𝑠 to 𝑡.
¡ Therefore, (𝑆, 𝑇) is a cut of 𝐺 by

definition.

49

7

11

4

12

5

12

1

11 9

11

19

1

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

(2) The residual network 𝐺(contains no augmenting paths.

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

𝑆 = 𝑠, 𝑣!, 𝑣", 𝑣$
𝑇 = {𝑣#, 𝑣$, 𝑡}

𝐺!

Max-Flow Min-Cut Theorem

Proof of (2)->(3) (cont’d):
¡ All edges (𝑢, 𝑣) from 𝑆 to 𝑇 are saturated,

i.e. 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣).
¡ Otherwise, there exists a path from 𝑢 to 𝑣,

i.e. (𝑢, 𝑣) ∈ 𝐸(, which means 𝑣 ∈ 𝑆
contradicting to 𝑣 ∈ 𝑇.

¡ Therefore, 𝑓 𝑆, 𝑇 = 𝑐(𝑆, 𝑇) and 𝑓 =
𝑓(𝑆, 𝑇) by Lemma 9.3, we have 𝑓 =
𝑐(𝑆, 𝑇).

50

7

11

4

12

5

12

1

11 9

11

19

1

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

3

3

(2) The residual network 𝐺(contains no augmenting paths.

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

𝑆 = 𝑠, 𝑣!, 𝑣", 𝑣$
𝑇 = {𝑣#, 𝑣$, 𝑡}

𝐺!

Max-Flow Min-Cut Theorem

(3) |𝑓| = 𝑐(𝑆, 𝑇) for some cut (𝑆, 𝑇) of 𝐺.

(1) 𝑓 is a maximum flow in 𝐺.

Proof of (3)->(1):

¡ By Lemma 9.2, 𝑓 ≤ 𝑐(𝑆, 𝑇) for any cut (𝑆, 𝑇).

¡ Now we find a cut (𝑆, 𝑇) such that |𝑓| = 𝑐(𝑆, 𝑇). It implies that
𝑓 is a maximum flow.
¡ Cut (𝑆, 𝑇) must be the minimum cut, otherwise |𝑓| will be greater than

some other 𝑐(𝑆, 𝑇).

¡ |𝑓| must be maximum, otherwise some other |𝑓| will be greater than
𝑐(𝑆, 𝑇).

51

Ford-Fulkerson Method

52

FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1 for each edge (𝑢, 𝑣) ∈ 𝐸 do
2 𝑓(𝑢, 𝑣) ← 0
3 𝐺0 ← 𝐺
4 while there is an augmenting path 𝑝 in 𝐺0 do
5 Let 𝑐0(𝑝) be the bottleneck capacity of 𝑝
6 for each edge (𝑢, 𝑣) in 𝑝 do
7 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐0(𝑝)
8 Update the residual graph 𝐺0

Example

53

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

16

20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

16

20

10 9

12 12

Initialization

16

20

12

Example

54

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

16

20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

10 9

12

Find an augmenting path 𝑝

12
/1
6 12/20

12/12

Example

55

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

16

20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

10 9

12

Determine the bottleneck capacity 𝑐0 𝑝 = 12

12
/1
6 12/20

12/12

Example

56

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

10 9

12/12

Add the flow 𝑓3 to 𝑓

4 8

12

Example

57

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

10 9

12/12

Update 𝐺0
1212

14

4

13

4 8

12

Example

58

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1212

Find an augmenting path 𝑝

4/14

4/
4

4/13

4 8

12

Example

59

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

14

4

13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1212

Determine the bottleneck capacity 𝑐0 𝑝 = 4

4/14

4/
4

4/13

4 8

12

Example

60

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/14

4/
4

4/13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1212

Add the flow 𝑓3 to 𝑓

10

49

4 8

12

Example

61

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/14

4/
4

4/13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1212

Update 𝐺0

4

4

10

49

4 8

12

Example

62

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/14

4/
4

4/13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1212

4

4

Find an augmenting path 𝑝

7/10

4

7/9

4

7/8

12

Example

63

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/14

4/
4

4/13

12
/1
6 12/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

10 9

12/12

1212

4

4

Determine the bottleneck capacity 𝑐0 𝑝 = 7

7/10

4

7/9

4

7/8

12

Example

64

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

11/14

4/
4

11/13

12
/1
6 19/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

10 9

12/12

1212

4

4

Add the flow 𝑓3 to 𝑓

3

42

4 1

12

Example

65

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

11/14

4/
4

11/13

12
/1
6 19/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1912

11

11

Update 𝐺0

3

42

4 1

12

Example

66

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

11/14

4/
4

11/13

12
/1
6 19/20

10 9

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 710 9

12/12

1912

11

11

Can’t find an augmenting path and 𝑓 = 𝑐 𝑆, 𝑇 = 23 for some cut (𝑆, 𝑇).

Ford-Fulkerson Method

67

FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1 for each edge (𝑢, 𝑣) ∈ 𝐸 do
2 𝑓(𝑢, 𝑣) ← 0
3 𝐺(← 𝐺
4 while there is an augmenting path 𝑝 in 𝐺(do
5 Let 𝑐((𝑝) be the bottleneck capacity of 𝑝
6 for each edge (𝑢, 𝑣) in 𝑝 do
7 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐((𝑝)
8 Update the residual graph 𝐺(

𝑂(|𝐸|)

𝑂(|𝐸|)
𝑂(|𝐸|)

𝑂(|𝐸|)

𝑂(|𝑓∗|)

¡ Each time we can find a augmenting path which can at least increase
the flow value by 1. Therefore, at most 𝑓∗ iterations in while loop.
¡ 𝑓∗ is the maximum flow value that the method can find.

Total:
𝑂(|𝐸||𝑓∗|)

Method vs. Algorithm

¡ We call it a
“method” rather
than an “algorithm”
because the way to
find the augmented
path is not identified.
¡ Different

implementations have
differing running times.

68

FordFulkerson(𝐺, 𝑠, 𝑡, 𝑐)
1 for each edge (𝑢, 𝑣) ∈ 𝐸 do
2 𝑓(𝑢, 𝑣) ← 0
3 𝐺(← 𝐺
4 while there is an augmenting path 𝑝 in 𝐺(do
5 Let 𝑐((𝑝) be the bottleneck capacity of 𝑝
6 for each edge (𝑢, 𝑣) in 𝑝 do
7 𝑓(𝑢, 𝑣) ← 𝑓(𝑢, 𝑣) + 𝑐((𝑝)
8 Update the residual graph 𝐺(

1/1
000

0

1/1
000

0

1/
1

Example

69

𝑠 𝑡

𝑣!

𝑣"
100

0010000

100
00

10000

1

𝐺

Find an augmenting path 𝑝 and bottleneck capacity

𝑠 𝑡

𝑣!

𝑣"

10000

10000

𝐺0

999
9

999
9

1

Example

70

𝑠 𝑡

𝑣!

𝑣"

10000

10000

𝐺

Add the flow 𝑓3 to 𝑓 and update 𝐺0

𝑠 𝑡

𝑣!

𝑣"

10000

10000

𝐺0

1/1
000

0

1/1
000

0
1/
1 1

1

1/
1

1/10000

1/10000

999
9

999
9

Example

71

𝑠 𝑡

𝑣!

𝑣"

10000

10000

𝐺

𝑠 𝑡

𝑣!

𝑣"

𝐺0

1/1
000

0

1/1
000

0
1/
1 1

1

Find an augmenting path 𝑝 and bottleneck capacity

1

9999

9999

999
9

999
9

Example

72

𝑠 𝑡

𝑣!

𝑣"

𝐺

𝑠 𝑡

𝑣!

𝑣"

𝐺0

1/1
000

0

1/1
000

0
1

1

1

Add the flow 𝑓3 to 𝑓 and update 𝐺0

1/10000

1/10000

1

1

Running time: Execute 20000 times…

MAX-FLOW PROBLEM
SHORTEST PATH AUGMENTATION ALGORITHM

73

Shortest Path Augmentation Algorithm

Definition 9.8
The level (层次) of a vertex 𝑣, denoted by 𝑑(𝑣), is the least number of edges
in a path from 𝑠 to 𝑣.
Given a directed graph 𝐺 = (𝑉, 𝐸), the level graph (层次图) is defined as
𝐺* = (𝑉, 𝐸′), where 𝐸′ = {(𝑢, 𝑣): 𝑑(𝑣) = 𝑑(𝑢) + 1}.

74

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

16

20

10 9

𝐺 𝐺=

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$12

4

13

16

20

12 12

Only contain
shortest paths

Shortest Path Augmentation Algorithm

¡ The level graph can be easily obtained by BFS.

¡ Can DFS do this?
¡ No, DFS doesn’t give the shortest unless each time we compare 𝑑[𝑣].

75

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

16

20

10 9

𝐺 𝐺=

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$12

4

13

16

20

12 12

Shortest Path Augmentation Algorithm

¡ This algorithm is also called Edmonds-Karp algorithm.

¡ Idea: Select an augmenting path of minimum length and
increases the current flow by its bottleneck capacity.

¡ Generally there are two steps.

1. Compute the level graph 𝐺= from the residual graph 𝐺0. If 𝑡 is
not in 𝐺=, then halt: otherwise continue.

¡ 𝑡 not in 𝐺* means there’s no path from 𝑠 to 𝑡 in 𝐺(.

2. As long as there is a path 𝑝 form 𝑠 to 𝑡 in 𝐺=, augment the
current flow by 𝑝, and update 𝐺= and 𝐺0 accordingly.

76

Shortest Path Augmentation Algorithm

77

ShortestPathAugmentation(𝐺, 𝑠, 𝑡)
1 for each edge (𝑢, 𝑣) ∈ 𝐸 do
2 𝑓(𝑢, 𝑣) ← 0
3 𝐺(← 𝐺
4 find the level graph 𝐺+ of 𝐺(
5 while 𝑡 is a vertex in 𝐺+ do
6 while there is a path 𝑝 from 𝑠 to 𝑡 in 𝐺+ do
7 let 𝑐((𝑝) be the bottleneck capacity on 𝑝
8 augment the current flow 𝑓 by 𝑐((𝑝)
9 update 𝐺+ and 𝐺(along the path 𝑝
10 use 𝐺(to compute a new level graph 𝐺+

There may be multiple shortest
paths in 𝐺" from 𝑠 to 𝑡.

Example

78

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

16

20

10 9

12

Initialization

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 7

12

4
13

16
20

10 9

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
12

4

13

16

20

12

𝐺=

12
/1
6

12/20

12/12

Example

79

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

16

20

10 9

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 7

12

4
13

16
20

10 9

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
12

4

13

𝐺=

Find an augmenting path 𝑝 and bottleneck capacity in 𝐺=

4
8

12

Example

80

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

12
/1
6

12/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 7

12

4
13

10 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
12

4

13

𝐺=

Add the flow 𝑓3 to 𝑓 and update 𝐺0 and 𝐺=

12
12 4

4
8

12

Example

81

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

12
/1
6

12/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 7

12

4
13

10 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4/12

4/
4

4/13

𝐺=

12
12 4

Find an augmenting path 𝑝 and bottleneck capacity in 𝐺=

8

9

8

49

4
8

12

Example

82

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/12

4/
4

4/13

12
/1
6

12/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 710 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

𝐺=

12
12 4

Add the flow 𝑓3 to 𝑓 and update 𝐺0 and 𝐺=

4

4

8

49

4
8

12

Example

83

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/12

4/
4

4/13

12
/1
6

12/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 710 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
8

9

𝐺=

12
12 4

No path from 𝑠 to 𝑡 in 𝐺=, use 𝐺0 to compute a new 𝐺=

4

4

8

7

7/8

7/9

7/8

7/
7

8

49

4
8

12

Example

84

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

4/12

4/
4

4/13

12
/1
6

12/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 710 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

𝐺=

12
12 4

4

4

Find an augmenting path 𝑝 and bottleneck capacity in 𝐺=

1

2

1

42

4
1

12

Example

85

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

11/12

4/
4

11/13

12
/1
6

19/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 710 9 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

𝐺=

12
19 4

11

11

Add the flow 𝑓3 to 𝑓 and update 𝐺0 and 𝐺=

1

2

1

42

4
1

12

Example

86

𝐺 𝐺0

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4

7/
7

11/12

4/
4

11/13

12
/1
6

19/20

10 9

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
4 710 9 𝑠

𝑣!

𝑣" 𝑣$

𝐺=

12
19 4

11

11

No path from 𝑠 to 𝑡 in 𝐺=, use 𝐺0 to compute a new 𝐺=

𝑡 is not a vertex in 𝐺=. Algorithm terminates.

Example

87

𝑠 𝑡

𝑣!

𝑣"
100

0010000

100
00

10000

1

𝐺

¡ Now, look back at this example again…

Analysis of Shortest Path Augmentation Algorithm

Lemma 9.4
The while loop in Line 5 in ShortestPathAugmentation is executed
at most |𝑉| times.
Proof:
¡ We show that the number of level graph computed using the

algorithm is at most |𝑉|.

88

5 while 𝑡 is a vertex in 𝐺" do
6 while there is a path 𝑝 from 𝑠 to 𝑡 in 𝐺" do
7 let 𝑐!(𝑝) be the bottleneck capacity on 𝑝
8 augment the current flow f by 𝑐!(𝑝)
9 update 𝐺" and 𝐺! along the path 𝑝
10 use 𝐺! to compute a new level graph 𝐺"

Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ First, we show that the sequence of lengths of augmenting
paths using ShortestPathAugmentation is strictly increasing.

89

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
12

4

13

16

20

12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
8

9

4

8

7

Length of augmenting
path of the first 𝐺": 3

Length of augmenting
path of the second 𝐺": 4

Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ Let 𝑝 be any augmenting path in the
current 𝐺*.

¡ After augmenting using 𝑝, at least one
edge will be saturated and will
disappear in 𝐺(.

¡ At most |𝑝| new edges will appear in
𝐺(, but they are back edges, and hence
will not contribute to a shortest path
from 𝑠 to 𝑡.

¡ When all shortest paths are cut in the
current 𝐺*, BFS will find strict longer
shortest paths for the next 𝐺*.

90

12
/1
6

12/20

12/12

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
12

4

13

𝐺=

4

812

𝐺0𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

4 7

12

4

13

10 9

12

12

0

Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

¡ When 𝑡 is no longer in 𝐺=, we can’t find an augmenting path
any more.

¡ Since the length of any augmenting path is between 1 and
|𝑉| − 1, the number of level graphs use for augmentations is at
most |𝑉| − 1.

¡ Since one more level graph is computed in which 𝑡 does not
appear, the total number of level graphs computed is at most
|𝑉|.

91

Analysis of Shortest Path Augmentation Algorithm

Theorem 9.2

Given a flow network 𝐺 = (𝑉, 𝐸), ShortestPathAugmentation finds a
maximum flow in 𝑂(𝑉 𝐸 ').
Proof:

¡ Given a 𝐺+, there are at most |𝐸| augmenting paths of the same
length.

¡ By Lemma 9.4, the number of augmenting steps is at most |𝑉||𝐸|.

¡ Computing each level graph takes 𝑂(|𝐸|) using BFS.

¡ Therefore, the total time required to compute all level graphs is
𝑂(𝑉 𝐸 ' .

92

93

Image source: https://en.wikipedia.org/wiki/Maximum_flow_problem#cite_note-18

Submitted to arXiv on 18 Jan 2021

Published in 1956

https://en.wikipedia.org/wiki/Maximum_flow_problem

Classroom Exercise

¡ Use ShortestPathAugmentation to find the max-flow of the
following graph.

94

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
6

9
10

10

10

10

8

4

2

Classroom Exercise

95

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

6

9

10

10

10

10

8

4

2 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

6

9

10
10

10
10

8

4

2 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$
9

10

10

10

10

4

𝐺 𝐺0 𝐺=

8
|𝑓| = 0

101

6
5

Classroom Exercise

96

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

6

9/9

10
/1
09/10

5/
10

4/10

1/8

4/4

2 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

6

9

5

7

4

2 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1

5

𝐺 𝐺0 𝐺=

4

9

7

1

6

6

|𝑓| = 14

101

1
10

Classroom Exercise

97

𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

5/
6

9/9

10
/1
09/10

10
/1
0 9/10

6/8

4/4

2 𝑠 𝑡

𝑣!

𝑣"

𝑣#

𝑣$

1

9
2

4

2 𝑠

𝑣"

1

𝐺 𝐺0 𝐺=

9

9

6

5

|𝑓| = 19

MATCHING PROBLEM

98

Matching Problem

99

Matching Problem

Definition 9.14
Given an undirected graph 𝐺 = (𝑉, 𝐸), a matching (匹配) is a subset of edges 𝑀 ⊆
𝐸 such that for all vertices 𝑣 ∈ 𝑉, at most one edge of 𝑀 is connected on 𝑣.
We say that a vertex 𝑣 ∈ 𝑉 is matched by matching 𝑀 if some edge in 𝑀 is
connected on 𝑣; otherwise, 𝑣 is unmatched.
A maximum matching (最大匹配) is a matching of maximum cardinality.

100

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

A match Not a match A maximum match

Dark vertex
means matched

Matching Problem

Definition 9.15

Perfect matching (完美匹配) is one in
which every vertex in 𝑉 is matched.

¡ Not every undirected graph has perfect
matching, e.g. graphs with odd number
of vertices.

¡ The maximum matching may not be
perfect, but perfect matching must be
maximum.

101

𝑣! 𝑣$

𝑣&

𝑣" 𝑣#

𝑣% 𝑣'

A maximum but not
perfect matching

Matching Problem

Definition 9.15

Given an undirected graph 𝐺 = (𝑉, 𝐸) and 𝑀 is a matching of 𝐺.
We define:

Alternating path (交错路径): A simple path alternating between
matching and non-matching edges.

Augmenting path (增广路径): A nontrivial alternating path that
begins and ends with unmatched vertices.

102

Matching Problem

103

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

Alternating path

Matching Problem

104

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

Augmenting path

Matching Problem

Definition 9.17

Let 𝑀! and 𝑀' be two matchings in a graph 𝐺, define
𝑀!⊕𝑀' = 𝑀! ∪𝑀' − (𝑀! ∩𝑀')

Lemma 9.6

Suppose 𝑀 is a matching and 𝑝 is an augmenting path, Then 𝑀⊕𝑝 is
also a matching, and |𝑀 ⊕ 𝑝| = |𝑀| + 1.

Theorem 9.9

A matching is maximum if and only if there is no augmenting path.

¡ All these things tell you: once you can find a augmenting path,
adding it to the current matching results in a larger matching.

105

Example

106

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(

⊕

⊕

=

=

Example

¡ What ⊕ does is actually flipping matching and non-matching edges
in 𝑝.

¡ There are always one more non-matching edge in 𝑝, by its definition.
¡ Begins and ends with unmatched vertices

107

𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(𝑣! 𝑣$

𝑣%

𝑣"

𝑣&

𝑣#

𝑣' 𝑣(⊕ =

Max Matching Algorithm

108

MaximumMatching(𝐺)
1 𝑀 ← 0
2 repeat
3 find an augmenting path p
4 𝑀 ← 𝑀⊕ 𝑝
5 until no augmenting path in 𝐺
6 return𝑀

Bipartite Graph

Definition

A bipartite graph (二分图,二部图) 𝐺 = (𝑉, 𝐸) is defined if 𝑉 can be
partitioned into two subsets 𝐿 and 𝑅 with 𝑉 = 𝐿 ∪ 𝑅 and 𝐿 ∩ 𝑅 = ∅,
and ∀𝑒 ∈ 𝐸 has one endpoint in 𝐿 and the other endpoint in 𝑅.

109

小张 小王 小李 小陈 小林

上单 打野 中单 射手 辅助

𝐿

𝑅

Maximum Matching Algorithms for Bipartite Graph

Solution 1: Use the max-flow algorithm.
¡ We define the corresponding flow network 𝐺’ = (𝑉’, 𝐸’) for the

bipartite graph 𝐺 as follows.
¡ 𝐺’ is directed but 𝐺 is undirected.

¡ We let the source 𝑠 and sink 𝑡 be new vertices: 𝑉′ = 𝑉 ∪ {𝑠, 𝑡}. The
directed edges of 𝐺′ contain three parts: edges from 𝑠 to 𝐿, from 𝐿 to
𝑅, and from 𝑅 to 𝑡:

𝐸′ = {(𝑠, 𝑢): 𝑢 ∈ 𝐿}
∪ {(𝑢, 𝑣): 𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, (𝑢, 𝑣) ∈ 𝐸}
∪ {(𝑣, 𝑡): 𝑣 ∈ 𝑅}.

¡ All edges in 𝐸′ have capacity 1.

110

Example

111

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

𝐺 = (𝑉, 𝐸)

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

𝐺′ = (𝑉′, 𝐸′)

𝑠 𝑡

1

1

1
1 1

1

1 1
1

1

1

1 1

1

1

1

1
1

1

1

Maximum Matching Algorithms for Bipartite Graph

Theorem 9.11
Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with vertex partition 𝑉 = 𝐿 ∪ 𝑅,
and let 𝐺′ = (𝑉′, 𝐸′) be its corresponding flow network.
If 𝑀 is a matching in 𝐺, then there is an integer-valued flow 𝑓 in 𝐺′ with
value |𝑓| = |𝑀|.
Conversely, if 𝑓 is an integer-valued flow in 𝐺′, then there is a matching
𝑀 in 𝐺 with cardinality |𝑀| = |𝑓|.
¡ This Theorem tells you: Just run max-flow algorithm and you will

obtain maximum matching.
¡ The value of flow needs to be integer because floating point flow

does not correspond to a match in 𝐺.

112

Example

113

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

𝑠 𝑡

1/1

1/1

1/1
1 1

1

1/1 1/11/1
1/1

1/1

1 1/1

1

1/1

1/1

1
1

1

1/1

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

𝑠 𝑡

1/1

1/1

1/1
1 1

1

1/1 1/11/1
1/1

1/1

1 0.5/1

0.5/1

1/1

1/1

1
1

0.5/1

0.5/1

Integer-valued flow Non integer-valued flow

Maximum Matching Algorithms for Bipartite Graph

Solution 2: Hungarian tree algorithm (匈牙利树算法).
¡ Idea: Find augmenting path and add the path to increase

matching by MaximumMatching.

114

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*

Hungry Tree Algorithm

¡ But how to find an augmenting path?

¡ We can start from an unmatched vertex and use BFS or
DFS to search all alternating paths. The generated tree
is called alternating path tree (交错路径树).

¡ If all leaves in the alternating path tree are matched,
this tree is called Hungarian tree (匈牙利树).

115

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(

𝑣)

𝑣!*𝑣! 𝑣"

𝑣#

𝑣$

𝑣&

𝑣'

𝑣(

𝑣)

𝑣! 𝑣"

𝑣#

𝑣$

𝑣&

𝑣' 𝑣(

DFS: BFS:

𝑣!* 𝑣) 𝑣!*

Hungry Tree Algorithm

116

HungryBipartiteGraph(𝐺)
1 begin with any matching 𝑀
2 while there exists an unmatched vertex in 𝐿 and 𝑅 respectively do
3 let 𝑟 is an unmatched vertex in 𝐿
4 grow an alternating path tree 𝑇 with root 𝑟 using breadth first search
5 if 𝑇 is a Hungarian tree then
6 𝐺 ← 𝐺 − 𝑇
7 else
8 find an augmenting path 𝑝 in 𝑇
9 𝑀 ← 𝑀⊕𝑝
10 return𝑀

Example

117

𝑙!

𝑙"

𝑟!

𝑙$

𝑙%

𝑙&

𝑟$

𝑟&

𝑟"

𝑟%

𝑙#

𝑙'

𝑟#

𝑟'

𝑙!

𝑙$

𝑙&

𝑟$ 𝑟&

𝑟%

⊕ =

𝑙!

𝑙"

𝑟!

𝑙$

𝑙%

𝑙&

𝑟$

𝑟&

𝑟"

𝑟%

𝑙#

𝑙'

𝑟#

𝑟'

Example

118

𝑙!

𝑙"

𝑙$

𝑟$ 𝑟&

𝑟#

⊕ =

𝑙%

𝑟"

𝑙!

𝑙"

𝑟!

𝑙$

𝑙%

𝑙&

𝑟$

𝑟&

𝑟"

𝑟%

𝑙#

𝑙'

𝑟#

𝑟'

𝑙#

𝑟'

𝑙!

𝑙"

𝑟!

𝑙$

𝑙%

𝑙&

𝑟$

𝑟&

𝑟"

𝑟%

𝑙#

𝑙'

𝑟#

𝑟'

Example

119

𝑙!

𝑙'

𝑙$

𝑟$ 𝑟&

𝑙!

𝑙"

𝑟!

𝑙$

𝑙%

𝑙&

𝑟$

𝑟&

𝑟"

𝑟%

𝑙#

𝑙'

𝑟#

𝑟'

Get Hungarian tree: do
𝐺 ← 𝐺 − 𝑇, and then

the algorithm exits the
while loop in Line 2.

− = 𝑙"

𝑟!

𝑙%

𝑙&

𝑟"

𝑟%

𝑙# 𝑟#

𝑟'

Classroom Exercise

Use Hungarian tree algorithm to find the maximum matching of
the following bipartite graph.

120

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

Classroom Exercise

121

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

Pick 𝑙$ to generate alternating path tree, and
Select an augmenting path and add into 𝐺

𝑙!

𝑟! 𝑟"𝑟$

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

⊕ =

Classroom Exercise

122

Pick 𝑙& to generate alternating path tree, and
Select an augmenting path and add into 𝐺

𝑙$

𝑟$ 𝑟&

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

⊕ =

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

Classroom Exercise

123

Pick 𝑙% to generate alternating path tree, and
Select an augmenting path and add into 𝐺

𝑙&

𝑟! 𝑟&

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

𝑙!

𝑟"

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

⊕ =

𝑟$

𝑙$

Classroom Exercise

124

Pick 𝑙F to generate alternating path tree, and
Select an augmenting path and add into 𝐺

𝑙"

𝑟$ 𝑟"

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

𝑙$

𝑟&

𝑙!

𝑙"

𝑟!

𝑙$

𝑙&

𝑟$

𝑟&

𝑟"

⊕ =
𝑙!

𝑟!

𝑙&

Conclusion

After this lecture, you should know:

¡ What is network, capacity and flow in terms of graph.

¡ What properties does flow have.

¡ How to obtain the residual network.

¡ How to find an augmenting path and its bottleneck capacity.

¡ How to use the augmenting path to increase value of flow.

¡ How to use shortest path to improve max-flow problem.

¡ How to solve matching problem.

125

Homework

Page 172-174

9.1

9.3

9.4

9.6

9.10

9.12

9.19

126

Experiment

DiDi scheduler problem

¡ In Beijing all streets are built as straight
lines intersecting at right angles at fixed
distances, with the distance between
intersections being a fixed 200 meters.

¡ Now, three passengers (marked yellow)
want to call available cars (marked red)
by DiDi.

¡ If you are a DiDi scheduler, how many
passengers can you transported?

127

Experiment

You have to adhere to following constraints:

¡ Each car can only take one passenger (no顺风车).

¡ Passengers and cars always wait at intersections of roads.

¡ The car has to reach the passenger within a given time limit
(otherwise the passenger will cancel DiDi and use CaoCao)

128

Experiment

Input:

¡ The first line contains:
¡ The number of passengers 𝑝 (1 <= 𝑝 <= 400).
¡ The number of available cars 𝑡 (1 <= 𝑡 <= 200).
¡ The speed 𝑠 (1 <= 𝑠 <= 2000) of the cars in meters per seconds.
¡ The time 𝑐 to collect a passenger in seconds (1 <= 𝑐 <=
1000000).

¡ The next 𝑝 lines contains the position of the passengers.
¡ The next 𝑡 lines contain the position of the available cars.
Output:

¡ The maximal number of passengers that can be picked up.

129

Input:
2 3 10 40
2 5
5 2
2 3
4 1
4 4

Output:
2

谢谢

有问题欢迎随时跟我讨论

130

