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MAX-FLOW PROBLEM




Examples of a network

" Liquids flowing through pipes

" Parts through assembly lines

® Current through electrical network

® Information through communication network
= Signal through neural network in our brain

® Goods transported on the road...
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Definition 9.1

A network G = (V,E) is a directed graph in
which each edge (u,v) € E has a
nonnegative capacity (& &) c(u,v) = 0. If
(u,v) € E, we assume that c(u,v) = 0.

We distinguish two vertices in a flow

network: a source (Ji /) s and a sink (Y] %)
t, where s only has outedges (H}i/1) and s

only has inedges (\i/1).

Every vertex lies on some path from the
source to the sink.
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Flow network Example: Oil Pipeline
1% U3
S t
source % Uy
3
c(s,v;) =8 Big pipe
3
c(vy,v3) =3 Small pipe
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Flow network Example: Oil Pipeline

v U3

)\

v

source v, Vv, sink

Flow below capacity

H

Maximum flow
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Max-Flow Problem

Flow network Example: Oil Pipeline
""’ U3
8 lIi i||
source Vs sink

" Informal definition of the max-flow problem: What is the
greatest rate at which material can be shipped from the source
to the sink without violating any capacity constraints?
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Max-Flow Problem

Flow network Example: Oil Pipeline
1% U3
=\
2 |
v Vs sink
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Max-Flow Problem

Flow network Example: Oil Pipeline
1% U3
=\
2 |
v Vs sink
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Max-Flow Problem

Flow network Example: Oil Pipeline




Max-Flow Problem

Can we improve
over here?

Flow network Example: Oil Pipeline




Max-Flow Problem

Flow network Example: Oil Pipeline




Max-Flow Problem

Flow network Example: Oil Pipeline

G,y) BIIXZERZ5
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Max-Flow Problem

Flow network Flow network




Definition 9.2

A real valued function f: VXV - Rin G = (V,E) is called flow (j7i) if it
satisfies 3 properties:

(1) Capacity constraint (24 %H): Vu,v € V:
fu,v) < c(u,v).
(2) Skew symmetry (R XFR): Vu, v € V:
fw,v) ==f(v,uw).

(3) Flow conservation (i 57 JH): Vu € V — {s, t}:

Zf(u,v) =0.

vev

where f(u, v) is called the flow from vertex u to vertex v. If f(u,v) = c(u, v),
we call (u, v) a saturated edge (7 A1 ).
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Flow Properties

We don’t draw
negative flow
and zero capacity
on the graph!

For vy: For vs:

f(vy,s) = —6 f(vs,v) = -3
f(vy,v3) =3 f(vs,v;) =3
f(vy,v4) =3 flvs,t) =6

ZvEV f(vl: U) =0 ZvEV f(vg, 17) =0
) BIIKRZEERER
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Cancellation

Cancellation

flu,v) =8
fv,u) =3

Not satisfy skew symmetry

16
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Definition 9.2
The value of a flow f (f {7 &) is defined as

Fl=) fsv).

vev
that is, the total flow out of the source s.

= Here, the | - | notation denotes flow value, not absolute value
or cardinality.

" Formal definition of the max-flow problem: The max-flow
problem is to find a valid flow for a given weighted directed
graph G, that has the maximum value over all valid flows.
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MAX-FLOW PROBLEM

THE FORD-FULKERSON METHOD




The Ford-Fulkerson Method

" The Ford-Fulkerson method is a way to find the max-flow.
" |t has three important concepts:

(1) Residual networks ()43 W 2%)

(2) Augmenting paths (34) #&1%)

(3) Cuts of flow networks (¥ 2% 4 1)

@) BITARESE 20
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Residual Networks

Definition 9.3

Given a flow f on G with capacity function c, the residual
capacity (43 %% ) function cr on the set of pairs of vertices is
defined as:

cr(uw,v) = c(u,v)- f(u,v)
for each pair of verticesu,v € V.

The residual network (Fo] 555 i 4%) for f is the direct graph Gy =
(V, Ef), with capacities defined by ¢f and edge set £ =

{(uw,v)[cr(u,v) > 0}.
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Residual Networks

P cr(u,v) =c(u,v)-f(u,v) )

12/12 12
1% U3
& t S
N . %
S e S t
S
(0% v 3 v W
1% Uy
11/14 ; 11
We don’t draw
G negative flow and zero Gf
capacity on the graph!

Note: G is different with different flow f.
6,y) BIIKFERER
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Residual Networks

G Gy

® Capacity in residual network simply means how much you can
increase the flow at most.
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Augmenting Paths

Definition 9.5

Given a residual network G¢ = (V, Ef), an augmenting path (34
I 1%4%) is a direct path from s to t.

If we can find such
a path in the
residual network, it
means we can still
increase the flow!
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Bottleneck Capacity

Definition 9.5
Given a residual network G and an g 12 Vs
augmenting path p from s to t, we “//11 S
define cf(p) as the bottleneck capacity NN % &
. — S g Il R I~ t
O S =): A “
cr(p) = min{cs(u,v): (w,v)isonpl| MY 3 L/ >
v (%
" c¢(p) is actually the maximum 11 =
amount by which we can increase the Gr
flow on each edge in an augmenting —
path p. @) =
25
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Augmenting Paths

: : 12
Let p be an augmenting path in Gy. v V3
Define a function fp: VXV — R by ¢ 3 7/6\
( : : N 5
ce(p) if(u,v)isonp sY - 2N\ - .
folw,v) =4 —cs(p) if(v,u)isonp . ©
. 0 otherwise CNUY 3 XS »
Then, f, is a flow in G with value |f,| = CANTIRE
= |f we can find a augmenting path, there
exists a flow of Gy. fo(s,v2) = f,(vy, v3)
= fp(v&t) = Cf(p) =4
BIIXZEERER ()20 »Tianusys 26




Definitions So Far...

Given a network G = (V, E), now we have a bunch of definitions:

= c(u,v): capacity of (u,v) € E.

= f(u,v): flow of (u,v) EE.

= fand |f]: a flow of G and its value.

= Gr = (V, Efr): residual network of f.

" ¢r(u, v): residual capacity of (u, v) € E.
= p:an augmenting path in G¢.

" ¢r(p): bottleneck capacity.

" f,: aflow of Gy with augmenting path p.

27
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Classroom Exercise

Compute the residual network and find an augmenting path and
its bottleneck capacity.
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Classroom Exercise
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Augmenting Paths

= Once we obtain an augmenting path, we can improve f by f,.
We first define the sum of flows.

Definition 9.4

Given two flows f; and f, on G, let (f1 + fo)(w,v) = f1(u,v) +
fo(u,v), f1 + f> is called the sum of flows f; and f5.

P IRy (Y
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Augmenting Paths

Let G = (V, E) be a flow network with source s and sink t, and
let f be a flow in G. Let G be the residual network of G induced

by f, and let /" be a flow in G¢. Then the flow sum f + f"is a
flow in G with value |f + f'| = |f| + |f'].

= This Lemma tells you: if you find a flow f’ of G¢, no worry and
simply add it onto f, the resulting flow sum is also a flow in G.

= Adding f' to f will not explode. Why?

31
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Augmenting Paths

To show that f + f” is also a flow in G, we need to show that f +
f' satisfies the three properties of flow, and |f + f'| = |f| + |f].

Proof:

Capacity
(1) Capacity constraint: Vu,v € V, f(u,v) < c(u,v). | constraint

F+fwv) = fwv) + f'wv) L
< f(u,v) + c¢(u, v)/

= f(w,v) + (c(w,v) — f(u,v))

= c(u,v) \

Definition of Cr.

@) BITASERSR
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Augmenting Paths

Proof (cont’d): Skew

symmetry

(2) Skew symmetry: Vu,v €V, f(u,v) = —f(v,u). |offand "
f+Hwv) =fwv) + (W)
=—f(v,w)-f(v, u)‘/
~(f,w + f(v, W)
=-(f+/)Hwuw
\ Definition

of flow sum

\ E»-igv [é M~ .}, HTREN#ESR 33




Augmenting Paths

Proof (cont’d):

(3) Flow conservation: Vu € V — {s, t}, Ypev f(u,v) = 0.

DU+ @) = ) () +f(wv)

veV vev
=) faw+ ) )
vev vev
=04+0=0

AT [% MDA .}, it ENESYR 34
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Augmenting Paths

Proof (cont’d):
Finally, we prove |f + f'| = |f| + |f|.

f+F1=) (F+ ()

vEV

=D v+ ) f6w)
vEV vEV

= f1+1f

35
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Augmenting Paths

® Everything is prepared for increase the value of flow to reach
max-flow.

Let G = (V, E) be a flow network, let f be a flow in G, p be an
augmenting path in Gy, f,, be a flow of Gy with augmenting path

p.
Then f + f,isaflow in G with value |f| + |f,| > |f].

= This Proposition tells you: Adding f,, must result in larger flow
value.

P IRy (Y
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Gandf + f,
If + 1| = 23
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Augmenting Paths

= Proposition 9.1 indicates:

\ 4

Find a f,, Canincrease |f|

= By contrapositive law ({E{ & & i), we know:

Can’tfind a f,

= However, we don’t know:

a

Can’tincrease |f|

\ 4

Can’tfind a f,

Can’tincrease |f|

6y BIIXFERFER
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Cuts of Flow Networks

Definition 9.7

A cut (#]) (S,T) of a flow network G = (V,E) is a partition of I/
intoSandT =V —Ssuchthats € Sandt €T.

The capacity c(S,T) of the cut {S, T} is denoted as:
c(S,T) = 2 c(u,v).

U€ES,veT
The flow f(S,T) across the cut {S, T} is denoted as:

FETY= ) fu).

UES, VET

6y BNIXFERFER () 0T tanues 39
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Cuts of Flow Networks

[

S = {S: U1, UZ}i T = {USI Uy, t}

c(§,T) =c(vy,v3) +c(vy,vy) =12+ 14 = 26
f(S,T) =f(v,v3) + f(v,v4) + f(vy,v3) =124+ 11 -0 = 23

ty) BIIKEERER AT HBENHER 40
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Property of Cuts

Given a flow network G = (V, E), for any cut {S, T} and a flow f,

fG5,T)=1fl.

® This Lemma tells you: No matter how you cut, the flow across
the cut is same and equals to the value of the flow.

41
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Property of Cuts

12/12

12/12

11714 i : 11/14
f(S,T) (S, T)
:f(v3't)+f(v4-lt) =f(S,171)+f(S,v2)
=19+4 =23 =11+4+12 =23
BlIXFEEEEER T /% MATHENHYS 42




Property of Cuts

12/12

,\/'\/
P
Pid ‘Zu)
11/14

f(S,T)

= f(s,v) + f(vy,v2) + f(v3,v4)
+ f(v3, t)
=12—-1—-7+4+19 =23

ty) BITAZ(EREER
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f(S,T)

= f(s,v1) + f(vp,v1) + f(v4, v3)
+ f (Vs t)
=11+1+7+4 =23

=
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Property of Cuts

12/12

11/14

Not a valid cut! s and t are not separated.
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Property of Cuts

Proof:

By induction on the number of vertices in S.
If S = {s}, it is true by the definition of flow: |f| = Y.,ey f (s, V).

Assume it is true for the cut {S, T}, namely f(S,T) = |f]|. We show
that it also holds for the cut {S U {w}, T — {w}} forw € T — {s, t}:

fFEUWLT —w)) = f(S,T—w)) +fw, T —{w})
=f&D - fEw)+fw,T)

By definition of cut B f(S’ T) N f(W' S) * f(W’ T)
=fST)+fw,V) \ Flow conservation
= F(S,T) +0 = |f| N Floweor

6y Bl ]7(54* %*B;i %7 tRNEER 45
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Property of Cuts

The value of any flow f in a flow network G is bounded from
above by the capacity of any cut of G, namely |f| < ¢(S,T).

Proof:

fl=f(ST)
— Ez:f(u,v) < EEC(UW) =c(5,T)
UES VET UES veT

® |t means that max-flow can’t exceed min-cut.

46



Max-Flow Min-Cut Theorem

If f is a flow in a flow network G = (V, E') with source s and sink
t, then the following conditions are equivalent:

(1) f is a maximum flow in G.
(2) The residual network G contains no augmenting paths.
(3)|f| = c(S,T) for some cut (S, T) of G.

® This Theorem tells you: When you can’t find an augmenting
path, you have obtained the max-flow.

= We prove (1)->(2), (2)->(3), and (3)->(1).

Z T tENHYE 47
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Max-Flow Min-Cut Theorem

(1) f is a maximum flow in G.

(2) The residual network G contains no augmenting paths.
Proof of (1)->(2):

= We prove by contradiction that f is a maximum flow in G but
there still exists an augmenting path p in G¢.

" Then by Corollary 9.1, we can augment the flow in G:
F1=1f +fl > 1f]

= The flow f” is strictly greater than f which is in contradiction to
our assumption that f is a maximum flow.

M *T RN HYS 48
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Max-Flow Min-Cut Theorem

(2) The residual network G¢ contains no augmenting paths.
(3) |f| = c(S,T) forsome cut (S,T) of G.
Proof of (2)->(3):

= Define

S ={v € V| 3Ipathp from s to v in G}
T=V-S

" Wehaves € Sandt &€ S, otherwise there
exists an augmenting path from s to t.

= Therefore, (S, T) is a cut of G by
definition.

ty) BITAZ(EREER
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Max-Flow Min-Cut Theorem

(2) The residual network G¢ contains no augmenting paths.

(3) |f| = c(S,T) forsome cut (S,T) of G.

Proof of (2)->(3) (cont’d):

= All edges (u,v) from S to T are saturated,
i.e. f(u,v) = c(u,v).

= Otherwise, there exists a path from u to v,
i.e. (u,v) € Er, whichmeansv € §
contradictingtov € T.

= Therefore, f(S,T) = ¢(S,T) and |f]| =
f(S,T) by Lemma 9.3, we have |f| =
c(S,T).

6y BIIXFERFER
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Max-Flow Min-Cut Theorem

(3)|f| = c(S,T) for some cut (S, T) of G.

(1) f is a maximum flow in G.

Proof of (3)->(1):

=" By Lemma 9.2, || < ¢(S,T) for any cut (S, T).

= Now we find a cut (5,T) such that |f| = ¢(S,T). It implies that
f is @ maximum flow.

= Cut (§,T) must be the minimum cut, otherwise |f| will be greater than
some other c(S,T).

= |f| must be maximum, otherwise some other |f| will be greater than
c(S,T).

51
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Ford-Fulkerson Method

FordFulkerson(G, s, t, ¢)

1 for each edge (u,v) € E do

2 f(uv)<0

4 while there 1s an augmenting path p in G¢ do
5  Letce(p) be the bottleneck capacity of p
6  for eachedge (u,v) inp do

7 fuwv) « f(w,v) +cr(p)

8 Update the residual graph Gy
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Initialization
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Find an augmenting path p
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Determine the bottleneck capacity ¢f(p) = 12

12 12/12

14
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Add the flow f, to f
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Update Gy
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Find an augmenting path p

12/12

14
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Determine the bottleneck capacity ¢f(p) = 4

12/12 12

14

@) BITKHERER

\\ 2
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) Z N AT HRNHYR 59




Add the flow f, to f

12/12

L
&
(&

3

%\

4/14
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Update Gy

12/12

L
&
(&

3

%\

4/14
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Find an augmenting path p

12/12

4/14
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Determine the bottleneck capacity ¢f(p) = 7

12/12

4/14
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Add the flow f, to f

12/12

o
>

()
%

%\

11/14
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Update Gy
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Example

Can’t find an augmenting path and |f| = ¢(S,T) = 23 for some cut (S, T).

12/12

11/14
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Ford-Fulkerson Method

FordFulkerson(G, s, t, ¢)
1 for each edge (u,v) € E do

2 f(u,v)«<0 N o(ED olIf*D
Total: 4 while there is an augmenting path p in Gy do

O(E|If*D 5 Let c¢(p) be the bottleneck capacity of pe— O(|E|)
for each edge (u, v) in p dow_

6
7 fwv) < f(w,v) + cr(p)
8  Update the residual graph G«

O(IE])

OdED

AL L4

® Each time we can find a augmenting path which can at least increase
the flow value by 1. Therefore, at most f ™ iterations in while loop.

= f*is the maximum flow value that the method can find.

ty) BIIRFERER f DR A RNEER 67

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Method vs. Algorithm

" YVe call It”a FordFulkerson(G, s, t, ¢)
method” rather 1 for cach edge (u,v) € E do
than an “algorithm” |2 f(u,v) <0
because thewayto [3 Gr< G
find the augmented 4 while|there 1s an augmenting path p in G¢ |do
oath is not identified. 5 Letcs(p) be the bottl.eneck capacity of p
. 6  for each edge (u,v) in p do
= Different 7 f(uw,v) « f(w,v) + cr(p)
8

implementations have Update the residual graph Gy
differing running times.

ty) BITAZ(EREER
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Find an augmenting path p and bottleneck capacity
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Add the flow f, to f and update Gf
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Find an augmenting path p and bottleneck capacity
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Add the flow f, to f and update Gf
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MAX-FLOW PROBLEM

SHORTEST PATH AUGMENTATION ALGORITHM




Shortest Path Augmentation Algorithm

Definition 9.8

The level (JZ1K) of a vertex v, denoted by d (v), is the least number of edges
in a path from s to v.

Given a directed graph G = (V, E), the level graph (JZ27X &) is defined as
G, = (V,E"), where E' = {(u,v): d(v) =d(u) + 1}.

12 12

Only contain
shortest paths

Gy BITAPIERSER "
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Shortest Path Augmentation Algorithm

" The level graph can be easily obtained by BFS.
® Can DFS do this?

= No, DFS doesn’t give the shortest unless each time we compare d[v].

12
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Shortest Path Augmentation Algorithm

® This algorithm is also called Edmonds-Karp algorithm.

" |dea: Select an augmenting path of minimum length and
increases the current flow by its bottleneck capacity.

" Generally there are two steps.

1. Compute the level graph G, from the residual graph G¢. If t is
not in G, then halt: otherwise continue.

= ¢t notin G;, means there’s no path from s to tin Gy.

2. Aslongasthereis apathp formstotin G, augment the
current flow by p, and update G, and G accordingly.

t,y) BIIKFERFR & D RT HENHER 76
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Shortest Path Augmentation Algorithm

ShortestPathAugmentation(G, s, t)
1 for each edge (u,v) € E do
2 f(u,v)<0

3 G <G There may be multiple shortest
4 find the level graph G, of G paths in G, from sjto ¢.
5 while t is a vertex in G; do /

6 while there is a path p from s to t in G; do
7 let ¢¢(p) be the bottleneck capacity on p
8 augment the current flow f by c¢¢(p)

9 update G;, and G along the path p

10 use Gy to compute a new level graph G,
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Example

Initialization
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Example

Find an augmenting path p and bottleneck capacity in G;

12

12
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Add the flow f, to f and update Gf and G,
12/12
9 @ ©
» \
12
G
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Find an augmenting path p and bottleneck capacity in G;

12
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Add the flow f, to f and update Gf and G,

12/12

4712
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No path from s to t in G, use Gr to compute a new Gy,

12/12

4/12
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Find an augmenting path p and bottleneck capacity in G;

12/12

4/12

@) BIIAREESR

Q &,
/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

84




Add the flow f, to f and update Gf and G,

12/12 12

11/12 "
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No path from s to t in G, use Gr to compute a new Gy,

12/12 12

11/12 1

G Gf GL

t is not a vertex in G . Algorithm terminates.
6y BITKAERER
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= Now, look back at this example again...

87

SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Analysis of Shortest Path Augmentation Algorithm

The while loop in Line 5 in ShortestPathAugmentation is executed
at most |V| times.

Proof:

= We show that the number of level graph computed using the
algorithm is at most |V/].

5 |while t is a vertex in G; do

6  while there is a path p from s to t in G; do
7 let ¢¢(p) be the bottleneck capacity on p
8

9

1

augment the current flow fby ¢f(p)
update G, and G along the path p
0 use Gy to compute a new level graph G,

) BIIASHESSR
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Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

= First, we show that the sequence of lengths of augmenting
paths using ShortestPathAugmentation is strictly increasing.

e}
Length of augmenting Length of augmenting

path of the first G : 3 path of the second G;: 4
(6y) BIIKRERE5R & * ] HRNHER 29
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Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

= Let p be any augmenting path in the
current Gj.

= After augmenting using p, at least one
edge will be saturated and will

disappear in Gy.

= At most |p| new edges will appear in
Gg, but they are back edges, and hence
will not contribute to a shortest path
from s to t.

= When all shortest paths are cut in the
current G, BFS will find strict longer
shortest paths for the next G; .

ty) BITAZ(EREER
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Analysis of Shortest Path Augmentation Algorithm

Proof (cont’d):

= When t is no longer in G;, we can’t find an augmenting path
any more.

= Since the length of any augmenting path is between 1 and

|V| — 1, the number of level graphs use for augmentations is at
most |V | — 1.

= Since one more level graph is computed in which t does not

appear, the total number of level graphs computed is at most
14r

91
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Analysis of Shortest Path Augmentation Algorithm

Given a flow network ¢ = (V, E'), ShortestPathAugmentation finds a
maximum flow in O(|V||E]?).

Proof:

= Given a G, there are at most |E| augmenting paths of the same
length.

= By Lemma 9.4, the number of augmenting steps is at most |V ||E].

= Computing each level graph takes O(|E|) using BFS.

= Therefore, the total time required to compute all level graphs is
O((IVIIEI?).

92
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Published in 1956

Method Complexity / Description

Linear programming Constraints given by the definition of a legal flow. See the linear program here.

As long as there is an open path through the residual graph, send the minimum of the residual capacities on the path.
Ford—Fulkerson

algorithm O(E |fm |) The algorithm is only guaranteed to terminate if all weights are rational, in which case the amount added to the flow in each step is at least the greatest common divisor of the

weights. Otherwise it is possible that the algorithm will not converge to the maximum value. However, if the algorithm terminates, it is guaranteed to find the maximum value.

Edmonds—-Karp

algorthan O(VE?) A specialization of Ford—Fulkerson, finding augmenting paths with breadth-first search.
T
Dini lgorith 0 (Vz B) In each phase the algorithms builds a layered graph with breadth-first search on the residual graph. The maximum flow in a layered graph can be calculated in O(V E) time,
inic's algorithm e
2 and the maximum number of phases is ¥ — 1. In networks with unit capacities, Dinic's algorithm terminates in O(min{V %/, E'/2} E) time lciation needed]
MKM (Malhotra,
Kumar, Maheshwari) O(VS) A modification of Dinic's algorithm with a different approach to constructing blocking flows. Refer to the original paper.
algorithm!°]
:Imc s'alt;;orlthm ity O(VElogV) The dynamic trees data structure speeds up the maximum flow computation in the layered graph to O(V E'log V).
lynamic trees

The push relabel algorithm maintains a preflow, i.e. a flow function with the possibility of excess in the vertices. The algorithm runs while there is a vertex with positive excess,
O(V2 E) i.e. an active vertex in the graph. The push operation increases the flow on a residual edge, and a height function on the vertices controls through which residual edges can flow
be pushed. The height function is changed by the relabel operation. The proper definitions of these operations guarantee that the resulting flow function is a maximum flow.

General push—
relabel algorithm[“]

Push-relabel
algorithm with FIFO
vertex selection
rulel""

Push-relabel algorithm variant which always selects the most recently active vertex, and performs push operations while the excess is positive and there are admissible residual

o(V?) .
edges from this vertex.

Push-relabel
algorithm with

o (V Elog V_z) The algorithm builds limited size trees on the residual graph regarding to the height function. These trees provide multilevel push operations, i.e. pushing along an entire
dynamic trees!'!]

saturating path instead of a single edge.

KRT (King, Rao, ) (

VEI 14
Tarjan)'s algorithm!'?! 08 L )

ViV

Binary blocking flow

V2
algorithm{™3 o (E -min{V?*3, EY/?} . 1og T logU ) The value U corresponds to the maximum capacity of the network.

James B Orlin's +

16
KRT (King, Rao, O(VE) Orlin's algorithm solves max-flow in O(V E) time for E < O(V ) while KRT solves it in O(V E) for E > V*,
Tarjan)'s algorithm(®]

Kathuria-Liu-Sidford FA/3+o() 1/3

10/771/7y [15]
algorithm [14] )-

Interior point methods and edge boosting using lp-norm flows. Builds on earlier algorithm of Madry, which achieved runtime O(m

BLNPSSSW /

BLLSSSW algorithm | _
(6] O((E+ v/ 2) logU) Interior point methods and dynamic maintenance of electric flows with expander decompositions.

17

Gao-Liu-Peng

~ 3 1
algorithm (18] O(E? 5 logU)

Gao, Liu, and Peng's algorithm revolves around dynamically maintaining the augmenting electrical flows at the core of the interior point method based algorithm from [Madry
JACM ‘16]. This entails designing data structures that, in limited settings, return edges with large electric energy in a graph undergoing resistance updates.

Submitted to arXiv on 18 Jan 2021 93

Image source: https://en.wikipedia.org/wiki/Maximum flow problem#cite note-18



https://en.wikipedia.org/wiki/Maximum_flow_problem

Classroom Exercise

= Use ShortestPathAugmentation to find the max-flow of the
following graph.
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Classroom Exercise
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Classroom Exercise

f] =14




Classroom Exercise

f] =19
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MATCHING PROBLEM




Matching Problem
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Matching Problem

Definition 9.14

Given an undirected graph G = (V, E), a matching (VLJif) is a subset of edges M C
E such that for all vertices v € V, at most one edge of M is connected on v.

We say that a vertex v € V is matched by matching M if some edge in M is
connected on v; otherwise, v is unmatched.

A maximum matching (& K PLJE) is a matching of maximum cardinality.

f A match Not a match A maximum match

&) EITASEESE AR HRNEER 100
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Matching Problem

Definition 9.15

Perfect matching (53 PLHE) is one in @
which every vertex in V' is matched.

= Not every undirected graph has perfect @ @ @ @
matching, e.g. graphs with odd number .
of vertices. @ @

® The maximum matching may not be
perfect, but perfect matching must be
maximum.

A maximum but not
perfect matching

HENHSR 101
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Matching Problem

Definition 9.15

Given an undirected graph ¢ = (V,E) and M is a matching of G.
We define:

Alternating path (2245 #%1%): A simple path alternating between
matching and non-matching edges.

Augmenting path (3] [#%45): A nontrivial alternating path that
begins and ends with unmatched vertices.
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Matching Problem

Alternating path

0y BIIXFERFR &R T tENRER 103
s/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




Matching Problem

Augmenting path
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Matching Problem

Definition 9.17

Let M; and M, be two matchings in a graph G, define
M, @ My, =M UM,) — (M N My)

Suppose M is a matching and p is an augmenting path, Then M @ p is
also a matching, and |[M @ p| = |M| + 1.

A matching is maximum if and only if there is no augmenting path.

= All these things tell you: once you can find a augmenting path,
adding it to the current matching results in a larger matching.
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S %
\&=+/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY







)—) D)—) —)

= What @ does is actually flipping matching and non-matching edges
inp.

= There are always one more non-matching edge in p, by its definition.

= Begins and ends with unmatched vertices

&M KT RN RER 107
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Max Matching Algorithm

MaximumMatching(G)
Il M<0

2 repeat

3 find an augmenting path p
4 M<M©@p

5 until no augmenting path in G
6 return M

Gy BNXRFERFER (0) ZHr7danuss 108
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Bipartite Graph

Definition

A bipartite graph (— /3, —#5&l) G = (V, E) is defined if V can be
partitioned into two subsets L and RwithV = LURandL NR = Q,
and Ve € E has one endpoint in L and the other endpoint in R.

(6y) BIIXZAERFH &R T HENHER 109
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Maximum Matching Algorithms for Bipartite Graph

Solution 1: Use the max-flow algorithm.

= \We define the corresponding flow network G’ = (', E’) for the
bipartite graph G as follows.

m (G’ is directed but G is undirected.

= We let the source s and sink t be new vertices: V' =V U {s, t}. The
directed edges of G’ contain three parts: edges from s to L, from L to
R, and from R to t:

E' = {(s,u):u € L}
U{(w,v):u€L,veER,(uv)EE}
U{(v,t):v € R}
= All edges in E' have capacity 1.

@) BITRHERER
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Maximum Matching Algorithms for Bipartite Graph

Let G = (V, E) be a bipartite graph with vertex partitionV = L UR,
and let G’ = (V', E") be its corresponding flow network.

If M is a matching in G, then there is an integer-valued flow f in G’ with
value |f| = |M].

Conversely, if f is an integer-valued flow in G’, then there is a matching
M in G with cardinality |M| = |f].

® This Theorem tells you: Just run max-flow algorithm and you will
obtain maximum matching.

= The value of flow needs to be integer because floating point flow
does not correspond to a match in G.
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Integer-valued flow Non integer-valued flow
() * V=== ¢ = P op an
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Maximum Matching Algorithms for Bipartite Graph

Solution 2: Hungarian tree algorithm (&) 71| #4 .322).

" |dea: Find augmenting path and add the path to increase
matching by MaximumMatching.

114




Hungry Tree Algorithm

= But how to find an augmenting path?

= \We can start from an unmatched vertex and use BFS or
DFS to search all alternating paths. The generated tree

is called alternating path tree (3245 B4 H).

= |f all leaves in the alternating path tree are matched,
this tree is called Hungarian tree (41 4 FI|#).

DFS:
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Hungry Tree Algorithm

HungryBipartiteGraph(G)
I begin with any matching M
2 while there exists an unmatched vertex in L and R respectively do
3 let r 1s an unmatched vertex in L
grow an alternating path tree T with root r using breadth first search
if T 1s a Hungarian tree then
G<G-T
else
find an augmenting path p in T
M<M®np
10 return M

O 0 1 ON LD &~
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Get Hungarian tree: do
G < G — T, and then
the algorithm exits the
while loop in Line 2.




Classroom Exercise

Use Hungarian tree algorithm to find the maximum matching of
the following bipartite graph.
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Classroom Exercise

Pick [; to generate alternating path tree, and
Select an augmenting path and add into G
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Classroom Exercise

Pick [, to generate alternating path tree, and
Select an augmenting path and add into G
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Classroom Exercise

Pick [; to generate alternating path tree, and
Select an augmenting path and add into G

DS
I
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Classroom Exercise

Pick [, to generate alternating path tree, and
Select an augmenting path and add into G
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Conclusion

After this lecture, you should know:

= What is network, capacity and flow in terms of graph.

® What properties does flow have.

" How to obtain the residual network.

" How to find an augmenting path and its bottleneck capacity.
" How to use the augmenting path to increase value of flow.

" How to use shortest path to improve max-flow problem.

" How to solve matching problem.

125
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Homework

Page 172-174

9.1
9.3
9.4
9.6
9.10
9.12
9.19
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DiDi scheduler problem

= In Beijing all streets are built as straight | (=200
lines intersecting at right angles at fixed
distances, with the distance between
intersections being a fixed 200 meters.

(1,5)

= Now, three passengers (marked yellow)
want to call available cars (marked red)
by DiDi. 62

= |f you are a DiDi scheduler, how many
passengers can you transported?
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You have to adhere to following constraints:
= Each car can only take one passenger (no JIlii Xl Z£).

" Passengers and cars always wait at intersections of roads.

® The car has to reach the passenger within a given time limit
(otherwise the passenger will cancel DiDi and use CaoCao)

) BIIASHESSR

) &
N2/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

\ E»-igv [% M~ .}, HTREN#ESR 128




1 \ \ LLJ
Experiment )ﬁ )ﬁﬁ kil
ajy —BBE— N EBHT—

Input:
= The first line contains: Input:
= The number of passengers p (1 <= p <= 400). ; 2 1040
® The number of available cars t (1 <=t <= 200). 59
® The speed s (1 <= s <= 2000) of the cars in meters per seconds. |2 3
= The time c to collect a passenger in seconds (1 <= ¢ <= 41
1000000). 44
= The next p lines contains the position of the passengers.
= The next t lines contain the position of the available cars. (Z)utput:

Output:
= The maximal number of passengers that can be picked up.
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