CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 12: Approximation Algorithms

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432
Office hour: 2pm-4pm Mon & Thur




Why Need Approximation Algorithms?

"= Many problems are NP-complete, but are too important to give up merely because
obtaining an optimal solution is intractable.

= |f a problem is NP-complete, we are unlikely to find a polynomial-time algorithm for
solving it exactly, but even so, there may be hope.
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Why Need Approximation Algorithms?

® There are at least three approaches to getting around NP-completeness:

= Approach 1: If the actual inputs are small, an algorithm with exponential running time may be
perfectly satisfactory.

= Approach 2: We may be able to isolate important special cases that are solvable in polynomial
time.

= Approach 3: It may still be possible to find near-optimal solutions in polynomial time (either in the
worst case or on average).

" |n practice, near-optimality is often good enough. An algorithm that returns near-
optimal solutions is called an approximation algorithm.
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Approximation Algorithms

= For example, if you only have 5 days to prepare final exams for 5 courses, you have two
strategies:

= Spend 4 days to make 1 course get A and 1 day to make all the other 4 courses get C.

= Evenly spend 5 days to 5 courses to make each course get B.

= |t is same for engineering, sometimes we don’t have to pursue perfect solution for a problem
due to high cost, because the resource (e.g. hardware, computational time, labour) is
limited.

= A relative good result is enough and we can focus on something else such that the total return is
maximized. (GPA for 5 Bs is higher than that of 1 A and 4 Cs).

® |n economics, it is call profit maximization, which is achieved when marginal revenue equals
marginal cost.
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Approximation Ratio

" The optimization problem may be either a maximization or a minimization problem.

= We say that an algorithm for a problem has an approximation ratio of p(n) if, for any
input of size n, the cost C of the solution produced by the algorithm is within a factor
of p(n) of the cost C* of an optimal solution:
C C°
maX(F,?) < p(n).
= We also call an algorithm that achieves an approximation ratio of p(n) a p(n)
approximation algorithm.
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Approximation Ratio

= For a minimization problems, we have 0 < C* < C.
= For a maximization problems, we have 0 < C < C*.
® The approximation ratio of an approximation algorithm is never less than 1.

" The smaller the approximation ratio, the better the approximation algorithm.

= A l-approximation algorithm produces an optimal solution.
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Approximation Algorithms

Now, we look at four problems that can be solved by approximation algorithms:
" The vertex-cover problem
" The set-covering problem
" The travel-salesman problem

= [MAX-CNF satisfiability problem
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THE VERTEX-COVER PROBLEM




The Vertex-Cover Problem

= A vertex cover of an undirected graph ¢ = (V, E) is a subset
V' € V such that if (u, v) is an edge of G, then eitheru € V’

or v € V’ (or both).
= The size of a vertex cover is the number of vertices in it. @_.

= The vertex-cover problem is to find a vertex cover of
minimum size in a given undirected graph. A vertex cover

® This problem is NP-hard and its corresponding decision
problem is NP-complete.

= For the decision problem with parameter k, a straightforward
solution is to check all subsets I/’ € V of size k.

1 H H k ’ .
= }'Lflinecjccli?ne)'complemty is [V|* (can’t be bounded by a polynomial AN minimum vertex cover
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https://en.wikipedia.org/wiki/Vertex_cover

Approximation Algorithm for the Vertex-Cover Problem

select (b, c¢), C={b, c}

_set approx_vertex_cover (graph G)

Ve 7";“\7 C,
ed ge_set E;
C =9;
E = all the edges of G;
ile (!'empty(E)){
let (u, v) be an arbitrary edge in E;
C=CuU {u, v};
remove from E every edge whose endpoint is either u or v;

return C;

The time complexity of this
algorithm is O(|V| + |E])
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Approximation Algorithm for the Vertex-Cover Problem

Theorem 1

approx_vertex cover is a polynomial-time 2-approximation algorithm.

Proof:
= We have already shown that approx vertex cover runs in polynomial time.
= |et A denote the set of edges that were picked in the while loop.

= An optimal cover C* must include at least one endpoint of each edge in 4, because C* covers
every edge in A.

= No two edges in A share an endpoint, since once an edge is picked, all other edges that share
the same endpoints with the picked edge are deleted from E.
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Approximation Algorithm for the Vertex-Cover Problem

Proof (cont’d):
= Thus, no two edges in A are covered by the same vertexin C*.

= |n other words, one vertex in C* can at most cover one edge in A.

= |tis possible that two vertex in C* covers one edge in A.

= Therefore, we have the lower bound

IC*] > |A|.
® Each edge pick puts two new endpoints in C, we have:
IC| = 2]A|
< 2|C*|.
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THE SET-COVERING PROBLEM




The Set-Covering Problem

= Aninstance (X, F) of the set-covering problem consists of a finite set X and a family F of
subsets of X, such that every element of X belongs to at least one subset in F:

X=US.

SEF
= The problem is to find a minimum number of subsets C € F, which include all elements of X:

x=|Js

SEc
® This problem is NP-hard and its corresponding decision problem is NP-complete.

= Similar to the vertex-cover problem, the time-complexity of a brute-force algorithm for the decision
problem is |F|¥.
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The Set-Covering Problem

" X consists of 12 black points, and F is a family
of subsets of X.
F: {51'52'53’54’55'56}' o s1 o o
= An optimal solution C* € F is: o o o
C" = {53,54, 55}
® ° S, °
" A solution produced by the greedy algorithm S
C CFis: o ° o °
S, S, S.

C = {51,53,54 55}
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Approximation Algorithm for the Set-Covering Problem

set greedy_set_cover (set X, set F)
{
-t U, C;
Uu=X;
C =20,
while (!empty(U)){ o [ ) S [ ) o
select an S from F that maximizes |S n U|; 1
U=U-S;
, cocv {s}; @ o ®
return C;
}
® ° S, °
= At each stage, pick the set S that covers the greatest o | Se ° °
number of remaining elements that are uncovered. S S S
3 4 5

= Result: Add to C the sets 54,54, S5, S3 in order.
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Approximation Algorithm for the Set-Covering Problem

= The number of iterations of the loop is bounded from
above by min(|X]|, |F]).

) ) ) ) ) set greedy_set_cover (set X, set F)
= |f |X| < |F|, the size of |U| is reduced in each iteration. { i
set U, C;
Therefore there are at most | X| loops. U~ X
C =g;

= |f |X| > |F|, we will not repeat selecting the same S from F.
while (!empty(U)){

Therefore there are at most |F| |OOpS. select an S from F that maximizes |S n U|;
Uu=uU-S5;
" The loop body can be implemented to run in time , C=Cuish
O(|X||F]). | retum G

= Total time complexity: O(|X||F |min(|X|, |F|)), which is
polynomial in |X| and |F].
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Approximation Algorithm for the Set-Covering Problem

Theorem 2

greedy set cover is a polynomial-time (In |X| 4+ 1)-approximation algorithm.

" The proof is skiped here due to high complexity.

= |n this example, the approximation ratio p(n) is not a constant but a logarithm
function of the size of input X.

= As the size of the instance gets larger, the size of the approximate solution may grow, relative to
the size of an optimal solution.

= Because the logarithm function grows rather slowly, however, this approximation algorithm may
nonetheless give useful results.
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THE TRAVEL-SALESMAN PROBLEM




The Travel-Salesman Problem

= Given a complete undirected graph G = (V, E') that has a nonnegative integer cost
c(u, v) associated with each edge (u, v) € E, and we must find a Hamiltonian cycle
(i.e. a tour) of G with minimum cost.

® This problem is NP-hard and its corresponding decision problem is NP-complete.
= Worst-case time complexity of dynamic programming solution is ©(n?2™).

= The state space tree in the branch-and-bound algorithm has (n — 1)! leaves. The worst-case is that
the optimal solution is found on the last leaf, i.e. no node is pruned.
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The Travel-Salesman Problem

® |n many practical situations, it is always cheapest to go directly from a place
u to a place w; going by way of any intermediate stop v can't be less

expensive. . )
= Usually true if the cost is distance you walk. /\

= Sometimes not true if the cost is the flight price. ¢

m Reversely, cutting out an intermediate stop never increases the cost. atb>c
a+c>b
= We formalize this notion by saying that the cost function c satisfies the bicsa

triangle inequality if for all verticesu,v,w €V,
c(u,w) < c(u,v) +c(v,w).
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Approximation Algorithm for the Travel-Salesman Problem

= We will first use Prim’s algorithm to compute a minimum spanning tree (MST), whose
weight is a lower bound on the length of an optimal TSP tour.

= Recall that the every-case time complexity for Prim’s algorithm is T (n?).

= The optimal cost for TSP must be less than the one for MST (removing any edge from the tour is a
spanning tree).

= We will then use the MST to create a tour whose cost is no more than twice that of
the MIST's weight, as long as the cost function satisfies the triangle inequality.

= Thus, it is a 2-approximation algorithm.
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Approximation Algorithm for the Travel-Salesman Problem

ycle approx_tsp_tour (graph G,
const number W[II[1)
{
tex r;
tex_list L;
r = a vertex in G;
T = prim(G, W, r);
L = the list of vertices visited in a preorder tree walk of T;
eturn the Hamiltonian cycle that visits the vertices in the order L;
}

= Assume that each two vertices are connected in the
undirected graph.

= Actually, Prim’s algorithm doesn’t need to specify the root.
However, here we need a root to do traversal.

= Full walk of the tree: a, b,c, b, h,b,a,d, e, f, e g, e, d,a,
Approx. tour Optimal tour shown in (C)

= Preorder walk of the tree: a, b, ¢, h, d, e, f, g, shown in (d).
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Approximation Algorithm for the Travel-Salesman Problem

= Now you may ask: what if c(h, d) is
super high, can the total cost of this
tour still be at most twice of that of the
optimal tour?

= No worry. The triangle inequality helps
us dispel worries.
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Approximation Algorithm for the Travel-Salesman Problem

Theorem 3

approx_tsp tour is a polynomial-time 2-approximation algorithm for TSP with the triangle inequality.
Proof:

= approx vertex cover is simply a call to Prim’s algorithm with a preorder traversal, that is obviously
in polynomial time.

= Let H® denote an optimal tour for the given set of vertices.

= Since we can obtain a spanning tree by deleting any edge from the optimal tour, the cost of the MST T
must be a lower bound on the cost of an optimal tour, i.e.

c(T)<c(H™),

where c(+) denotes the total cost of the edges in the tree/tour.
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Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

= Since the full walk of T (let us call this walk W) traverses every
edge of T exactly twice, we have

c(W) = 2¢(T).

= Hence, we have

c(W) < 2c(H").

= Thatis, the cost of W is within a factor of 2 of the cost of an
optimal tour.
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Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

= However, you may notice that a very important problem: W is generally not a
tour.
® |t visits each internal nodes twice in T.

= By the triangle inequality, we can delete a visit to any vertex from W and the cost

does not increases.
If a vertex v is deleted from W between visits to u and w, the resulting ordering specifies

|
going directly from u to w.
= By repeatedly applying this operation, we can remove from W all but the first o 1
visit to each vertex, i.e. we obtain the preorder walk of the tree finally. Lﬂ 0
i, )| NG i
" a,b,c,b,hb,adefegeda. R
The Hamiltonian cycle H

generated by full walk W
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Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

= Since H is obtained by deleting vertices from the full walk W, we have
c(H) < c(W).

= We therefore have:
c(H) < 2c(H).

® That is, the theorem is proved.
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MAX-CNF SATISFIABILITY PROBLEM




Randomized Approximation Algorithm

® Just as there are randomized algorithms that compute exact solutions, there are randomized
algorithms that compute approximate solutions.

= We say that a randomized algorithm for a problem has an approximation ratio of p(n) if, for

any input of size n, the expected cost E[C] of the solution produced by the randomized
algorithm is within a factor of p(n) of the cost C* of an optimal solution:

E[C] C*
c* 'E[C]

= We call this kind of algorithm randomized p(n)-approximation algorithm.

max( ) < p(n).

= |tis like a deterministic approximation algorithm, except that the approximation ratio is for an expected
value.
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MAX-CNF Satisfiability Problem

= The input consists of n Boolean variables x4, ..., x,,, each of which may be set to either true or false.

= mclauses Cy, ..., C,,, each of which consists of an “OR” operator of some number of the variables and
their negations

= For example, x3 V =1x5 V x11, where —x; is the negation of x;.
® A nonnegative weight w; for each clause C;.

= The objective of the problem is to find an assignment of true/false to the x; that maximizes the
total weights of the satisfied clauses.
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MAX-CNF Satisfiability Problem

" For example, we have:
" C1:xq1Vxp withw; =1,
" Cp:x1 VX Withw; = 2.
" (3:x1 V xy withwy = 3.

u C4_:_IX1 V X9 with W] = 4,

= The optimal solution is x; = false, x, = true with total weight 9.
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

= Now, we have an extremely simple randomized algorithm:

Set each x; to true independently with probability 1/2.

" And we have the following theorem:

Theorem 4

The randomized algorithm gives a randomized 2-approximation algorithm for the
maximum satisfiability problem.

32
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof:
= Consider a random variable Y] such that Y] is 1 if clause Cj is satisfied and 0 otherwise.

m letlWW = Z}nzl w; Y; be a random variable that is equal to the total weight of the satisfied clauses.

= Then, recall the lemma for probabilistic analysis: E[Y]] = Pr[clause C; satistied].

m m
E[W] = Z W]-E[Yj] = z WjPr[clause C; satistied] :
j=1 j=1

= For each clause (;, the probability that it is not satisfied is the probability of when

= each unnegated literal in C; is set to false;

= each negated literal in C; is set to true.
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof (cont’d):
= Because each of which happens with probability 1/2 independently, we have:

1\ _ 1
Pr|clause C; satistied| = (1 — (E) ) = 5

where [; = 1 the size of clause ;.
= Let OPT denote the optimum value of the MAX-CNF instance:

m m
1 1
E[W] = z W]-Pr[clause C; satistied] > Ez w; = > OPT,
j=1 j=1
because the sum over all w; is the upper bound of OPT.

AN XIAMEN UNIVERSITY MALAYSIA

S\ XIAM \ G B et (B s
W) BRMAL BErmE 4R ) BIIXKZEERER

a /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

) Z N AT HENHYR g




Conclusion

After this lecture, you should know:
= Why do we need approximation algorithms.
= How to measure the gap between an approximate solution and an optimal solution.

= How to get a polynomial-time approximation algorithm and prove its approximation ratio p(n).
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Assignment

= No tutorial this week.

= Assignment 6 is released. The deadline is 18:00, 13th July.
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Thank youl!

Reference:

® Chapter 35, Thomas H. Cormen, Introduction to Algorithms, Second Edition.
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