CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 2: Theoretical Analysis

Lecturer: Dr.Yang Lu

Email: luyang@xmu.edu.my

Office:Al-432
Office hour:TBD

Sequential Search Versus Binary Search

Sequential Search Versus Binary Search

= Assume Sis a sorted array with 32 elements,and x> §32].

Sequential search: 32 comparisons

1] | ... |916]| ... [§24]| ... |928]|929]|930]|931] |F32]

! 1 ! ! 1 1
| st 2nd 3rd 4th 5th 6th

Binary search: 6 comparisons

Sequential Search Versus Binary Search

= For an array with size 32, sequential search needs N comparisons but binary search only
needs Ign + 1 comparisons (6 =1g32 + 1).

Array Size Number of Comparisons | Number of Comparisons
Y by Sequential Search by Binary Search

128 128 8

1,024 1,024 |]
1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

The number of comparisons done by sequential search and binary
search when x is larger than all the array items

Complexity Analysis

= |n general, a time complexity analysis of an algorithm is the determination of how
many times the basic operation is done for each value of the input size n.

= T'(n) is called every-case time complexity. It is defined as the number of times
the algorithm does the basic operation for an instance of size n.

Every-Case Time Complexity

Example | L — when 1=n,]=n+1>n, comparison does not execute
= For a given N, there are always n-1 passes through the for-i loop.

= For each for-i loop, there are n-1, n-2,...,1 passes though the
for-] loop.

= There are always T(n) comparisons for exchange sort.

for-i loop
|
| \ B
T(n):("_1)+("—2)+(n—3)+---+1:Q

T

first for-] loop

Worst-Case and Best-Case Time Complexity

= For some algorithms, each run has different running time.Therefore, T(n) does not
exist.

= |n this case, we use I/ (n), worst-case time complexity, or B(n), best-case

time complexity, to measure the maximum or minimum number of times of basic
operations.

= For sequential search, the complexity depends on both X and n.
= The worst case is when X is the last element or X is not in the array.

® The best case is when X is the first element.

W(n) =n,
B(n) = 1.

Average-Case Time Complexity

When T(n) does not exist, we may be interested in A(n), average-case time
complexity.

= Not every time we have that good or bad luck, right?
= For sequential search:

= The probability that X is in the kth slot is 1/n.

® The number of times to reach the kth slot is k.

n

T

How to Compare?

= Now we have two algorithms for the same problem:
= Algorithm A needs two loops and only one basic operation in the loop: T (n) = n“.
= Algorithm B needs one loop and 1000 basic operation in the loop: T(n) = 1000n.
= Which one is more efficient?

= When n < 1000, we choose Algorithm A.

= What if we have no idea how large n will be!?

Theoretical Analysis

" |n the theoretical analysis of an algorithm, we are interested in the eventual behavior.

= We compare algorithms for sufficiently large n.

= |n this case, any algorithm with T (n) = an will be eventually more efficient than any
algorithm with T'(n) = bn?, no matter how large is a or how small is b.

" How to formally compare algorithms in the sense of “eventual™?

Asymptotic Notations

= |ntuitively, just look at the dominant term.
g(n) = 0N\Nn3 + TOm=+5n—+25
= Drop lower-order terms (10n? + 5n + 25).
= |gnore constant coefficient (0.1).
= But we can’t say that g(n) equals to n>.
= It grows like n3. But it doesn’t equal to n3.
= Use 0 (called “big theta”) as the order of a function.

* We can say that g(n) is order of n3.

g(n) € 6(n?)

Logarithm Review

Definition m Useful identities for allreala > 0,b > 0,c >

: : c 0, and n, and where logarithm bases are not | :
logy, a is the unique number ¢ s.t. b® = a.

= Jog.(ab) =log.a +log.b

= Jog, a™ = nlog, a
= Notations: &b &b

= lgn = log, n (binary logarithm) = log, (2) = —logp a
" Inn = log, n (natural logarithm) = log,a= (log, b)™?!
= lghn = (Ign)* (exponentiation) m glogrc = logpa
= Iglgn =lg(lgn) (composition) . log,a = log, a

logc b

= Derivative:

B g = blogb a
d(loggx) 1

dx x1na

Big O

Definition

For a given complexity function f(n), 0(f(n)) is the set of complexity functions g(n) for which there
exists some positive real constant ¢ and some nonnegative integer N such that for alln = N,

gn) < cf(n).

o O(f(n)) is a set of functions in terms of f(n) that satisfy the definition.
If g(n) € O(f(n)), we say that g(n) is “big O” of f(n).

= No matter how large g(n) is, it will eventually be smaller than cf(n) for some c and some N.

= Big O puts an asymptotic upper bound on a function.

Display of Growth of Functions

Image source: http://bigocheatsheet.com/img/big-o-complexity-chart.png

Big O

Example 2
We show that n* + 10n € 0(n?). Because, for n > 1,

n® + 10n < n* + 10n° = 11n%,
we can take ¢ = 11 and N = 1 to obtain our result.

= To show a function is in big O of another function, the key is to find a specific value
of C and N that make the inequality hold.

= More examples of functions in 0(n?):
= n% n?+n, n?+1000n, 1000n? + 1000n, n, n/1000, n12°°%° n?/1glglgn.

Big O

Example 3
Is 2™ € 0(2™)?
Assume there exist constants ¢ > 0 and N = 0, such that
2°M < 2™,
for allm = N.Then
221 = 2NN < 2™,
2™ < c.

But we can’t find any constant c is greater than 2" for all n > N. So the assumption leads to a
contradiction.

Then we can certify that 22" ¢ 0(2™M).

Big ()

Definition

For a given complexity function f(n), Q(f (n)) is the set of complexity functions g(n) for

which there exists some positive real constant ¢ and some nonnegative integer N such that, for

alln > N,

g(n) = cf (n).

8 Q(f(n)) is the opposite of O(f(n)).
= Ifg(n) € Q(f(n)), we say that g(n)

is “big ()" of f(n).

= Big () puts an asymptotic lower bound on a function.

Formal Definition of Big ©

Definition
For a given complexity function f(n),

o(f(m) = 0(f(m)) n Q(f ().

This means that O(f(n)) is the set of complexity functions g(n) for which there exists some
positive real constants ¢ and d and some nonnegative integer N such that, for alln = N,

cf(n) < g(n) < df(n).

= If g(n) € O(f(n)), we say that g(n) is “big ©” or simply order of f(n).

Relation between Big O, Big () and Big ©

Small o

Definition

For a given complexity function f(n), o(f(n)) is the set of all complexity functions g(n) satisfying the
following: For every positive real constant ¢ there exists a nonnegative integer N such that, for alln = N,

gn) < cf(n).

= Ifg(n) € o(f(n)),we say that g(n) is “small 0” of f(n).

= Recall that big O requires “some ¢” but small o requires “every ¢”.Small o is

more strict.

= If g(n) € o(f(n)), g(n) € O(f () — Q(f (). 7

o(n?)

Small o

Example 4
Show that n € o(n?).

We need to find an N for every c¢ such that,forn > N,
n < cn?.

If we divide both sides of this inequality by cn, we get

1
—<n.
C

1

Therefore, for every c, it suffices to choose any N > ;

20

Small o

Example 5

Show that n € o(5n).

We will use proof by contradiction to show this.We select a value of ¢ which makes

the inequality unsatisfied.

_ 1 & = 5
nsoon=-n.
Let c = 1/6.lf n € 0(5n), then there must exist some N such that,forn > N,

This contradiction proves that n € o(5n).

21

Small w

Definition

For a given complexity function f(n), w(f(n)) is the set of all complexity functions
g(n) satisfying the following: For every positive real constant ¢ there exists a

nonnegative integer N such that, for alln = N,

g(n) = cf (n).
= [fg(n) € a)(f(n)),we say that g(n) is “small w” of f(n).

" __

= Now we have O, o, 0, (), and w. Intuitively, they just like “<”,“<”,“="“>" and “>" for
complexity functions.

22

Properties of Orders

= Transitivity

= If g(n) € 6(f(n)) and f(n) € O(h(n)) then
gn) € @(h(n)).

= Same for O, o, (), and w.
= Additivity

= Ifg(n) € @(h(n)) and f(n) € @(h(n)) then
gm) + f(n) € 8(h(n)).

= Same for O, o, (), and w.

= Reflexivity
= Ifg(n) € 0(g(n)).
= Same for O and ().
= Symmetry
= g(n) € G)(f(n)) if and only if f(n) € @(g(n)).
= Transpose Symmetry
= g(n) € 0(f(n)) ifand only if f(n) € Q(g(n)).
= gln) e o(f(n)) if and only if f(n) € a)(g(n))-

23

Properties of Orders

= g(n) € O(f(n)) and g(n) € Q(f(n)) if and only if g(n) € @(f(n)).
= Consider the following ordering of complexity categories:
O(gn) 0O(n) O(nlgn) O(?) O(n/) O(n*) 6(a™ 6™ oe(nh
wherek >j > 2and b > a > 1.If g(n) is to the left of f(n), then
gn) € o(f(n))

Notice: Big 0 is a set of functions.We can’t say O(Ign) < 0(n).

24

Properties of Orders

Example 6
Given g(n) = %n(n — 1), prove that g(n) € 0(n?)

Proof:
By the property, we first show that g(n) € 0(n?):

ntn—1)=:n2—n<n? (forc =

2 2 2 2
Then we show that g(n) € Q(n?):
%n(n —1) == -

2
Thus g(n) € O(n?).

1 1
2 2 2

%and N = 0).

1 1 1
n’—-n=-n’—-n-n=_n?(forc=7and N = 2).

25

Properties of Orders

Example 7
Given g(n) = (n + a)?, prove that g(n) € ©(n?), for any real constants a and b, where b > 0.
Proof:
By the property, we first show that g(n) € 0(n?):

(m+a)? < (m+la])? < (2n)? = 2Pn® (for ¢ = 2P, N = |a]).
Then we show that g(n) € Q(nb):

i+ = (—la? = (n=2) = (2) = () n forc = (2) N = 2]a)).

2

Thus g(n) € ©(n?). \ /

26

Using a Limit to Determine Order

(c implies g(n) € G)(f(n)) ifc>0

0 implies g(n) € o(f(n))
koo implies g(n) € a)(f(n))

lim M =
neo f (1)

A

27

Using a Limit to Determine Order

Example 8

Compare the orders of growth of %n(n — 1) and n?.

’ —n(n—l)_ll n® —n 1l . 1
n—1r>noo n2 2n1r>noo n? 2n1r>noo(B)_2

Thus,%n(’n — 1) = 0(n?).

28

Using a Limit to Determine Order

Example 9

Forb > a > 0,
a™ € o(b™)

because

lim £= lim (2) = 0.

n—->o0o b n—->o

The limit is 0 because 0 < % < 1.

29

Using a Limit to Determine Order

Theorem

L‘Hopital’s Rule If f(x) and g(x) are both differentiable with derivatives f*(x) and
g'(x), respectively, and if

Aim f(x) = lim g(x) = oo,

then

lim G, = lim f &)
x=>00 g(x) x=>0g'(x)’

whenever the limit on the right exists.

30

Using a Limit to Determine Order

Example 10
d(loggax) 1

dx " xlna

lgn € o(n)

because K////

. lgx o d(gx)/dx - 1/(xIn2)
lim — = Ilim = lim =0
x=>00 x x->o dx/dx X—>00 1

31

Exercises

= Show the correctness of the following statements.
= lgn € 0(n)
= ne€e0(nlgn)
= nlgn € 0(n?)
= 2n e qesinm

= Ig3n € o(n%>)

32

Thank you!

= Any question!

= Don’t hesitate to send email to me for asking questions and discussion. ©

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong and Prof. Yiu-ming Cheung

33

