
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 2:Theoretical Analysis

Lecturer: Dr.Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: TBD

Sequential SearchVersus Binary Search

1

Sequential SearchVersus Binary Search

¡ Assume S is a sorted array with 32 elements, and x > S[32].

2

S[1] … S[16] … S[24] … S[28] S[29] S[30] S[31] S[32]

Sequential search: 32 comparisons

Binary search: 6 comparisons

1st 2nd 3rd 4th 5th 6th

Sequential SearchVersus Binary Search

¡ For an array with size 32, sequential search needs n comparisons but binary search only
needs lgn + 1 comparisons (6 = lg32 + 1).

3

Array Size Number of Comparisons
by Sequential Search

Number of Comparisons
by Binary Search

128 128 8

1,024 1,024 11

1,048,576 1,048,576 21

4,294,967,296 4,294,967,296 33

The number of comparisons done by sequential search and binary
search when x is larger than all the array items

Complexity Analysis

¡ In general, a time complexity analysis of an algorithm is the determination of how
many times the basic operation is done for each value of the input size !.

¡ "(!) is called every-case time complexity. It is defined as the number of times
the algorithm does the basic operation for an instance of size !.

4

Every-CaseTime Complexity

Example 1
¡ For a given n, there are always n-1 passes through the for-i loop.

¡ For each for-i loop, there are n-1, n-2,…,1 passes though the
for-j loop.

¡ There are always T(n) comparisons for exchange sort.

5

when i=n, j=n+1>n, comparison does not execute

! " = " − 1 + " − 2 + " − 3 +⋯+ 1 = " − 1 "
2

for-i loop

first for-j loop

Worst-Case and Best-CaseTime Complexity

¡ For some algorithms, each run has different running time.Therefore,!(#) does not
exist.

¡ In this case, we use%(#), worst-case time complexity, or &(#), best-case
time complexity, to measure the maximum or minimum number of times of basic
operations.

¡ For sequential search, the complexity depends on both x and n.
¡ The worst case is when x is the last element or x is not in the array.

¡ The best case is when x is the first element.

% # = #,
& # = 1.

6

Average-CaseTime Complexity

¡ When T(n) does not exist, we may be interested in !(#), average-case time
complexity.
¡ Not every time we have that good or bad luck, right?

¡ For sequential search:
¡ The probability that x is in the kth slot is 1/n.

¡ The number of times to reach the kth slot is k.

7

! # = &
'()

*
+× 1# = 1

#×&'()

*
+ = 1

#×
#(# + 1)

2 = # + 1
2 .

How to Compare?

¡ Now we have two algorithms for the same problem:
¡ AlgorithmA needs two loops and only one basic operation in the loop:! " = "$.
¡ Algorithm B needs one loop and 1000 basic operation in the loop:! " = 1000".

¡ Which one is more efficient?
¡ When " < 1000, we choose AlgorithmA.
¡ What if we have no idea how large n will be?

8

Theoretical Analysis

¡ In the theoretical analysis of an algorithm, we are interested in the eventual behavior.
¡ We compare algorithms for sufficiently large n.

¡ In this case, any algorithm with ! " = $" will be eventually more efficient than any
algorithm with ! " = %"&, no matter how large is a or how small is b.

¡ How to formally compare algorithms in the sense of “eventual”?

9

Asymptotic Notations

¡ Intuitively, just look at the dominant term.
! " = 0.1"' + 10") + 5n + 25

¡ Drop lower-order terms (10") + 5n + 25).

¡ Ignore constant coefficient (0.1).

¡ But we can’t say that ! " equals to "'.
¡ It grows like "'. But it doesn’t equal to "'.

¡ Use Θ (called “big theta”) as the order of a function.
¡ We can say that ! " is order of "'.

! " ∈ Θ("')
10

Logarithm Review

Definition

log$ % is the unique number & s.t. '(= %.

¡ Notations:
¡ lg * = log+ * (binary logarithm)

¡ ln* = log- * (natural logarithm)

¡ lg. * = lg * . (exponentiation)

¡ lg lg * = lg(lg *) (composition)

¡ Derivative:

¡
1 2345 6

16 = 7
6 28 9

¡ Useful identities for all real % > 0, ' > 0, & >
0, and *, and where logarithm bases are not 1：
¡ log((%') = log(% + log= '
¡ log$ %> = *log$ %

¡ log$ 7
9 = − log$ %

¡ log$ % = log9 ' @7

¡ %234A (= &234A 9

¡ log$ % = 234B 9
234B $

¡ % = '234A 9

11

Big O

Definition

For a given complexity function !(#), % ! # is the set of complexity functions & # for which there
exists some positive real constant ' and some nonnegative integer (such that for all # ≥ (,

& # ≤ '!(#).

¡ % ! # is a set of functions in terms of ! # that satisfy the definition.

¡ If & # ∈ % ! # , we say that & # is “big O” of ! # .

¡ No matter how large & # is, it will eventually be smaller than '! # for some ' and some (.

¡ Big O puts an asymptotic upper bound on a function.

12

Display of Growth of Functions

13

Image source: http://bigocheatsheet.com/img/big-o-complexity-chart.png

Big O

Example 2

We show that !" + 10! ∈ '(!"). Because, for ! ≥ 1,

!" + 10! ≤ !" + 10!" = 11!",
we can take - = 11 and . = 1 to obtain our result.

¡ To show a function is in big O of another function, the key is to find a specific value
of c and N that make the inequality hold.

¡ More examples of functions in '(!"):
¡ !", !" + !, !" + 1000!, 1000!" + 1000!, !, !/1000, !0.22222, !"/ lg lg lg !.

14

Big O

Example 3
Is 2"# ∈ %(2#)?
Assume there exist constants (> 0 and + ≥ 0, such that

2"# ≤ (2#,
for all / ≥ +.Then

2"# = 2#2# ≤ (2#,
2# ≤ (.

But we can’t find any constant (is greater than 2# for all / ≥ +. So the assumption leads to a
contradiction.
Then we can certify that 2"# ∉ %(2#).

15

Big Ω

16

Definition

For a given complexity function "($), Ω(" $) is the set of complexity functions & $ for
which there exists some positive real constant ' and some nonnegative integer (such that, for
all $ ≥ (,

& $ ≥ '"($).

¡ Ω " $ is the opposite of * " $.

¡ If & $ ∈ Ω " $, we say that & $ is “big Ω” of " $.

¡ Big Ω puts an asymptotic lower bound on a function.

Formal Definition of Big Θ

Definition

For a given complexity function " # ,

Θ " # = % " # ∩ Ω " # .
This means that Θ " # is the set of complexity functions) # for which there exists some
positive real constants * and + and some nonnegative integer , such that, for all # ≥ ,,

*" # ≤) # ≤ +"(#).

¡ If) # ∈ Θ " # , we say that) # is “big Θ” or simply order of " # .

17

Relation between Big !, Big Ω and Big Θ

18

Small o

Definition

For a given complexity function !(#), %(! #) is the set of all complexity functions & # satisfying the
following: For every positive real constant ' there exists a nonnegative integer (such that, for all # ≥ (,

& # ≤ '!(#).

19

%(#+)

¡ If & # ∈ % ! # , we say that & # is “small o” of ! # .

¡ Recall that big O requires “some '” but small o requires “every '”. Small o is
more strict.

¡ If & # ∈ % ! # ,& # ∈ - ! # − Ω ! # .

Small o

Example 4

Show that ! ∈ #(!%).
We need to find an ' for every (such that, for ! ≥ ',

! ≤ (!%.
If we divide both sides of this inequality by (!, we get

1
(≤ !.

Therefore, for every (, it suffices to choose any ' ≥ -
. .

20

Small o

Example 5

Show that ! ∉ #(5!).
We will use proof by contradiction to show this.We select a value of ' which makes
the inequality unsatisfied.

! ≤ 1
65! =

5
6!.

Let ' = 1/6. If ! ∈ #(5!), then there must exist some / such that, for ! ≥ /,

This contradiction proves that ! ∉ #(5!).
21

Small !

Definition

For a given complexity function "($), !(" $) is the set of all complexity functions
& $ satisfying the following: For every positive real constant ' there exists a
nonnegative integer (such that, for all $ ≥ (,

& $ ≥ '"($).
¡ If & $ ∈ ! " $, we say that & $ is “small !” of " $.

¡ Now we have O, o,Θ,Ω, and !. Intuitively, they just like “≤”,“<”,“=”,“≥”, and “>” for
complexity functions.

22

Properties of Orders

¡ Transitivity

¡ If ! " ∈ Θ % " and % " ∈ Θ ℎ " then
! " ∈ Θ ℎ " .

¡ Same for O, o,Ω, and (.

¡ Additivity

¡ If ! " ∈ Θ ℎ " and % " ∈ Θ ℎ " then
! " + %(") ∈ Θ ℎ " .

¡ Same for O, o,Ω, and (.

¡ Reflexivity

¡ If ! " ∈ Θ ! " .
¡ Same for O and Ω.

¡ Symmetry

¡ ! " ∈ Θ % " if and only if % " ∈ Θ ! " .

¡ Transpose Symmetry

¡ ! " ∈ - % " if and only if % " ∈ Ω ! " .
¡ ! " ∈ . % " if and only if % " ∈ (! " .

23

Properties of Orders

¡ ! " ∈ $ % " and ! " ∈ Ω % " if and only if ! " ∈ Θ % " .

¡ Consider the following ordering of complexity categories:

Θ lg " Θ " Θ "lg " Θ n+ Θ ", Θ "- Θ ./ Θ 0/ Θ("!)
where 4 > 6 > 2 and 0 > . > 1. If ! " is to the left of % " , then

! " ∈ 9 % "
Notice: Big Θ is a set of functions.We can’t say Θ lg " < Θ " .

24

Properties of Orders

Example 6

Given ! " = $
% "(" − 1), prove that ! " ∈ Θ("%)

Proof:
By the property, we first show that ! " ∈ ,("%):

$
% " " − 1 = $

% "
% − $

% " ≤
$
% "

% (for . = $
% and / = 0).

Then we show that ! " ∈ Ω "% :
$
% " " − 1 = $

% "
% − $

% " ≥
$
% "

% − $
% "

$
% " =

$
4 "

% (for . = $
4 and / = 2).

Thus ! " ∈ Θ("%).

25

Properties of Orders

Example 7

Given ! " = " + % &, prove that !(") ∈ Θ("&), for any real constants % and +, where + > 0.

Proof:

By the property, we first show that ! " ∈ .("&):
" + % & ≤ " + % & ≤ 2" & = 2&"& (for 1 = 2&,2 = |%|).

Then we show that ! " ∈ Ω "& :

" + % & ≥ " − % & ≥ " − 8
9
&
= 8

9
&
= :

9
&
"& (for 1 = :

9
&
,2 = 2|%|).

Thus ! " ∈ Θ("&).

26

Using a Limit to Determine Order

lim$→&
'())
+()) =

- implies ') ∈ Θ +) if - > 0
0 implies ') ∈ 6 +)
∞ implies ') ∈ 8 +)

27

Using a Limit to Determine Order

Example 8

Compare the orders of growth of !" #(# − 1) and #".

lim+,-.

1
2#(# − 1)

#" = 1
2 lim+,-.

#" − #
#" = 1

2 lim+,-.(1 −
1
#) =

1
2 ,

Thus, !" # # − 1 = Θ(#").

28

Using a Limit to Determine Order

Example 9

For ! > # > 0,
#% ∈ '(!%)

because

lim%-./
#%
!% = lim%-./

#
!

%
= 0.

The limit is 0 because 0 < 3
4 < 1.

29

Using a Limit to Determine Order

Theorem

L‘Hôpital’s Rule If !(#) and %(#) are both differentiable with derivatives !′(#) and
%′(#), respectively, and if

lim*+,-! # = lim*+,-% # = ∞,
then

lim*+,-
!(#)
%(#) = lim*+,-

!′(#)
%′(#) ,

whenever the limit on the right exists.

30

Using a Limit to Determine Order

Example 10
lg # ∈ %(#)

because

lim*+,-
lg .
. = lim*+,-

0(lg .)/0.
0./0. = lim*+,-

1/(. ln2)
1 = 0.

31

0 log8 .
0. = 1

. ln 9

Exercises

¡ Show the correctness of the following statements.
¡ lg # ∈ % #
¡ # ∈ %(# lg #)
¡ # lg # ∈ %(#()
¡ 2* ∈ Ω(5-. *)
¡ lg/ # ∈ 0(#1.3)

32

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion.J

33

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong and Prof. Yiu-ming Cheung

