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HEAPSORT
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Heapsort

¡ Unlike Mergesort and Quicksort, Heapsort is an in-place Θ(𝑛 lg 𝑛) algorithm.

¡ It uses the data structure: Heap.
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Binary Tree Review

¡ The depth of a node in a tree is the number of edges in the unique path from the root to that node.
¡ The depth 𝑑 of a tree is the maximum depth of all nodes in the tree.
¡ A leaf in a tree is any node with no children.
¡ An internal node in a tree is any node that has at least one child. 

¡ That is, it is any node that is not a leaf. 

¡ A complete binary tree is a binary tree that satisfies the following conditions: 
¡ All internal nodes have two children.
¡ All leaves have depth d. 

¡ An essentially complete binary tree is a binary tree that satisfies the following conditions: 
¡ It is a complete binary tree down to a depth of d − 1.
¡ The nodes with depth d are as far to the left as possible. 
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An essentially complete binary tree

Image source: Figure 7.4, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Heap

¡ A heap is an essentially complete binary tree such that 
¡ The values stored at the nodes come from an ordered set.

¡ The value stored at each node is greater than or equal to the 
values stored at its children. This is called the heap property. 

4

Image source: Figure 7.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

A heap



Sort by Heap

¡ Because key at the root is always the largest, we can iteratively:
¡ Remove the key at the root and store it in an array.

¡ Restore the property of the heap.

¡ The array will be sorted.
¡ Placing backwards from the end results a nondecreasing array.

¡ How to restore?
¡ Copy the key at the bottom node (the farthest and rightest node) to the root.

¡ Delete the bottom node.

¡ Sift the key at the root to a proper position that satisfy the property of a 
heap.
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Image source: Figure 7.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

A heap
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Restore a Heap by Siftdown
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Image source: Figure 7.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

¡ Now we know how to sort by heap and how to restore a heap.

¡ The remaining problem is how to construct a heap.
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Procedure siftdown sifts 6 down until the heap property is restored



Construct a Heap

¡ We transform the tree into a heap by 
repreatedly calling siftdown from bottom.

¡ Start from all subtrees whose roots have 
depth 𝑑 − 1, 𝑑 − 2,… , 0.
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Depth 2

Depth 1

Depth 0

Image source: Figure 7.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Implementation of Heapsort

¡ We directly use array and its index to do tree operations
rather than use specific tree data structure.

¡ If the index of a parent node is 𝑥, the index of the left
child and right child is simply 2𝑥 and 2𝑥 + 1.
¡ Only essentially complete binary tree can be indexed like this.

8

𝑆[1]

𝑆[2] 𝑆[3]

𝑆[4] 𝑆[5] 𝑆[6] 𝑆[7]

𝑆[8] 𝑆[9] 𝑆[10]

Image source: Figure 7.8, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Pseudocode of Heapsort

9



Space Complexity of Heapsort

¡ During removekeys, we are actually moving the first item
to the tail of the array, and then restore the shrunken
heap.

¡ Thus, Heapsort is a true in-place sorting algorithm.
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Worst-Case Time Complexity Analysis of Makeheap

¡ Worst-case: each item needs to be sifted to the bottom.

¡ Assume 𝑛 is a power of 2. We have a heap like the figure when 𝑛 = 8.

¡ We first ignore the 𝑛th item in the heap. Thus, we have 2! nodes with the 
𝑗th depth and the greatest number of siftdown operation is 𝑑 − 𝑗 − 1 for 
each node.
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Image source: Figure 7.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Depth Number of Nodes with 
this Depth

Greatest Number of 
Siftdown Operation for 

Each Node

0 2! 𝑑 − 1

1 2" 𝑑 − 2

2 2# 𝑑 − 3

… … …

𝑗 2$ 𝑑 − 𝑗 − 1

… … …

𝑑 − 1 2%&" 0



Worst-Case Time Complexity Analysis of Makeheap

¡ Therefore, if upper bound of the number of siftdown operations in makeheap is:

"
!"#

$%&

2! 𝑑 − 𝑗 − 1

= 𝑑 − 1 "
!"#

$%&

2! −"
!"#

$%&

𝑗 2!

= 𝑑 − 1 2$ − 1 − 𝑑 − 2 2$ + 2
= 2$ − 𝑑 − 1.

¡ The ignored 𝑛th node has 𝑑 ancestors, so at most d more siftdown operations will be conducted. 
Therefore, the actual upper bound is 

2$ − 𝑑 − 1 + 𝑑 = 2$ − 1 = 𝑛 − 1.
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Worst-Case Time Complexity Analysis of Makeheap

¡ Because there are two comparisons of keys for each siftdown opearation, the 
number of comparisons of keys done by makeheap is at most 2(𝑛 − 1).

¡ It is actually superising that heap can be constructed in linear time. If removekeys is 
also linear time, then we may obtain a linear-time sorting algorithm!
¡ Is it possible?
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Worst-Case Time Complexity Analysis of RemoveKeys

¡ The examples shows the case of 𝑛 = 8 and 𝑑 =
lg 8 = 3.

¡ When the first four keys are removed, the new key 
in the root sifts through at most 2 nodes.

¡ Then, when the next two keys are removed, the 
new key in the root sifts through at most 1 nodes.

¡ Finally, when there’s only two keys, the new key in 
the root doesn’t need to be sifted.
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Image source: Figure 7.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Worst-Case Time Complexity Analysis of RemoveKeys

¡ Totally, the number of comparisons of keys done by removekeys is at most

2%
!"#

$%#

𝑗2! = 2 𝑑2$ − 2$&# + 1 = 2𝑛 lg 𝑛 − 4𝑛 + 4.

¡ Although makeheap is linear-time, removekeys still needs Θ(𝑛 lg 𝑛).

¡ Totally, the worst-case time complexity for Heapsort is 
𝑊 𝑛 ≈ 2𝑛 lg 𝑛 ∈ Θ 𝑛 lg 𝑛 .

¡ It is difficult to analyze Heapsort’s average-case time complexity analytically. However, 
empirical studies have shown that its average case is not much better than its worse case.
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Comparison of Mergesort, Quicksort, and Heapsort

Sorting Algrotihm Comparison of Keys Extra Space Usage

Mergesort
𝑊 𝑛 = 𝑛 lg 𝑛
𝐴 𝑛 = 𝑛 lg 𝑛 Θ(𝑛) records

Quicksort
𝑊 𝑛 = 𝑛!/2

𝐴 𝑛 = 1.38𝑛 lg 𝑛 Θ(lg 𝑛) indices

Heapsort 𝑊 𝑛 = 2𝑛 lg 𝑛
𝐴 𝑛 = 2𝑛 lg 𝑛 In-place
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COMPUTATIONAL COMPLEXITY ANALYSIS
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Sorting Algorithms

¡ So far we have learned Θ 𝑛' sorting algorithm exchange sort and Θ(𝑛 log 𝑛) sorting 
algorithms Mergesort, Quicksort and Heapsort.

¡ Is it possible to further decrease the complexity of sorting algorithm?
¡ Is a Θ(𝑛) sorting algorithm possible?

¡ There are two approaches for the problem: Prove you can do or prove you can’t do.
¡ The Θ(𝑛) sorting algorithm is developed.
¡ Prove that the Θ(𝑛) sorting algorithm is not possible.

¡ Once we have such a proof, we don’t struggle to improve sorting algorithms and do 
something intereting else.
¡ Actually, people have proven that an sorting algorithm better than Θ(𝑛 log 𝑛) is impossible.
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Computational Complexity

¡ Previously, we determine the time complexity of an algorithm.

¡ We do not analyze the problem that the algorithm solves.

¡ For example:
¡ We have a Θ(𝑛') algorithm to solve the matrix multiplication problem.

¡ It doesn’t mean that the problem requires a Θ(𝑛') algorithm.

¡ We have further propose Θ(𝑛(.*&) and Θ(𝑛(.'*) algorithm for the problem.

¡ What is the minimum complexity requirement for a problem to be solved?
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Computational Complexity

¡ A computational complexity analysis tries to determine a lower bound on the 
efficiency of all algorithms for a given problem.

¡ It has been proved that the computational complexity of matrix multiplication 
problem is Ω(𝑛0).
¡ Up to now, nobody finds a Θ(𝑛() algorithm for matrix multiplication.

¡ And nobody finds a lower bound higher than Ω(𝑛() either.

¡ We usually use Ω notation for computational complexity analysis and Θ or O notation 
for time complexity analysis.
¡ We are interested in the lower bound of a problem, and the upper bound of an algorithm.
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Decision Tree for Sorting Algorithms

¡ We can associate the sorting process with a 
binary tree by representing each node as a 
comparison.

¡ This tree is called a decision tree because at each 
node a decision must be made as to which node 
to visit next.

¡ A decision tree is called valid for sorting 𝑛 keys if 
it can sort every permutation of array with size 𝑛.

¡ A decision tree is called pruned if every leaf can 
be reached from the root by making a consistent 
sequence of decision.
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Image source: Figure 7.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Lower Bounds for Worst-Case Behavior

Lemma 1

To every deterministic algorithm for sorting 𝑛 distinct keys there corresponds a pruned, valid, binary decision tree containing 
exactly 𝑛! leaves. 

Lemma 2
The worst-case number of comparisons done by a decision tree is equal to its depth. 

Lemma 3
Assume that a binary tree with depth 𝑑 and number of leaves 𝑚:

𝑑 ≥ lg𝑚
Proof in scratch:

For a complete binary tree, 2* = 𝑚. Thus, for any binary tree, 2* ≥ 𝑚. Since d is an integer, by taking lg of both side we have 
𝑑 ≥ lg𝑚 . You may refer to the textbook for the more rigorous proof.
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Lower Bounds for Worst-Case Behavior

Theorem 1
Any deterministic algorithm that sorts 𝑛 distinct keys only by comparisons of keys must 
in the worst case do at least 

lg 𝑛! comparison of keys.

Proof: 
¡ By Lemma 1, 𝑚 = 𝑛!.
¡ By Lemma 2, worst-case number of comparisons is 𝑑. 
¡ By Lemma 3, 𝑑 ≥ lg𝑚 .
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Lower Bounds for Worst-Case Behavior

Lemma 4

For any positive integer 𝑛,
lg(𝑛!) ≥ 𝑛 lg 𝑛 − 1.45𝑛.

Proof:

lg 𝑛! = lg[𝑛 𝑛 − 1 𝑛 − 2 … 2 (1)] =6
+,-

.

lg 𝑖

≥ 8
-

.
lg 𝑥 𝑑𝑥 =

1
ln 2 𝑛 ln 𝑛 − 𝑛 + 1 ≥ 𝑛 lg 𝑛 − 1.45𝑛.

Theorem 3
Any deterministic algorithm that sorts 𝑛 distinct keys only by comparisons of keys must in the worst case do at least 

𝑛 lg 𝑛 − 1.45𝑛 comparison of keys.
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Image source: https://www.quora.com/What-is-the-difference-between-improper-integral-and-infinite-sum

https://www.quora.com/What-is-the-difference-between-improper-integral-and-infinite-sum


Lower Bounds for Average-Case Behavior

¡ We see that Mergesort’s worst-case performance of 𝑛 lg 𝑛 − (𝑛 − 1) is close to 
optimal.

¡ Next we show that thia also holds for its average-case performance.
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2-Tree

¡ A binary tree in which every nonleaf contains exactly two children is called a 2-tree.
¡ If the decision tree for sorting 𝑛 distinct keys contains any comparison nodes with only one child, we 

can change it to a 2-tree.
Lemma 5
To every pruned, valid, binary decision tree for sorting 𝑛 distinct keys, there corresponds a pruned, valid 
decision 2-tree that is at least as efficient as the original tree. 
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Image source: Figure 7.11-12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

A 2-tree



External Path Length (EPL)

¡ The external path length (EPL) of a tree is the total length of all 
paths from the root to the leaves. For example, for the tree in 
the figure, 𝐸𝑃𝐿 = 2 + 3 + 3 + 3 + 3 + 2 = 16.

¡ The EPL of a decision tree is the total number of comparisons 
done by the decision tree to sort all 𝑛! possible inputs.

¡ The average number of comparisons done by a decision tree for 
sorting 𝑛 distinct keys is given by 

𝐸𝑃𝐿
𝑛! .
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Image source: Figure 7.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Minimum EPL

¡ First we define 𝑚𝑖𝑛𝐸𝑃𝐿(𝑚) as the minimum of the 𝐸𝑃𝐿 of 2-trees containing 𝑚
leaves 

Lemma 6 

Any deterministic algorithm that sorts 𝑛 distinct keys only by comparisons of keys must 
on the average do at least 

123456 3!
3!

comparison of keys.

28



Minimum EPL

Lemma 7

Any 2-tree that has 𝑚 leaves and whose 𝐸𝑃𝐿 equals 𝑚𝑖𝑛𝐸𝑃𝐿(𝑚) must have all of its leaves on 
at most the bottom two levels.

Proof:

¡ We use proof by contradiction. Suppose that some 2-tree whose 𝐸𝑃𝐿 equals 𝑚𝑖𝑛𝐸𝑃𝐿(𝑚)
does not have all of its leaves on the bottom two levels.

¡ Let 𝑑 be the depth of the tree, let 𝐴 be a leaf in the tree that is not on one of the bottom two 
levels, and let 𝑘 be the depth of 𝐴. 

¡ Because nodes at the bottom level have depth 𝑑, we have 𝑘 ≤ 𝑑 − 2.
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Minimum EPL

Proof of Lemma 7 (cont’d):

¡ We can choose a nonleaf 𝐵 at level 𝑑 − 1 in the 2-
tree, remove its two children, and give two children 
to 𝐴.

¡ We lose two children of 𝐵 and 𝐴 as the leaf, so that 
𝐸𝑃𝐿 is decrease by 2𝑑 + 𝑘.

¡ We add two children to 𝐴 and 𝐵 as the new leaf, so 
that EPL is increased by 2(𝑘 + 1) + 𝑑 − 1.

¡ The difference of 𝐸𝑃𝐿 is −1 after moving children. 
It means that the 𝐸𝑃𝐿 of original 2-tree is not 
𝑚𝑖𝑛𝐸𝑃𝐿(𝑚).
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Image source: Figure 7.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Minimum EPL

Lemma 8
Any 2-tree that has 𝑚 leaves and whose 𝐸𝑃𝐿 equals 𝑚𝑖𝑛𝐸𝑃𝐿(𝑚) must have

2$ −𝑚 leaves at level 𝑑 − 1 𝑎𝑛𝑑 2𝑚 − 2$ leaves at level 𝑑,
And have no other leaves, where d is the depth of the tree.
Proof:
¡ Because Lemma 7 says that all leaves are at the bottom two levels and because nonleaves in a 2-tree 

must have two children, there must by 2$%& nodes at level 𝑑 − 1 (including leaves and nonleaves).
¡ If we set 𝑟 as the number of leaves at level 𝑑 − 1, the number of nonleaves at that level is 2$%& − 𝑟.
¡ Because nonleaves in a 2-tree have exactly two children, there are 2(2$%& − 𝑟) on level 𝑑.
¡ Totally, there are 𝑚 = 𝑟 + 2(2$%& − 𝑟) leaves. We get 𝑟 = 2$ −𝑚.
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Minimum EPL

Lemma 9

For any 2-tree that has 𝑚 leaves and whose 𝐸𝑃𝐿 equals 𝑚𝑖𝑛𝐸𝑃𝐿(𝑚), the depth 𝑑 is 
given by 

𝑑 = lg𝑚 .
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Lower Bound of Minimum EPL

Lemma 10
For all integers 𝑚 ≥ 1

𝑚𝑖𝑛𝐸𝑃𝐿 𝑚 ≥ 𝑚 lg𝑚 .
Proof:
¡ By Lemma 8, we know that 

¡ There are 2* −𝑚 leaves at level 𝑑 − 1.

¡ There are 2𝑚 − 2* leaves at level 𝑑.

¡ Therefore
𝑚𝑖𝑛𝐸𝑃𝐿 𝑚 = 2. −𝑚 𝑑 − 1 + 2𝑚 − 2. 𝑑 = 𝑚𝑑 +𝑚 − 2..

¡ Replace 𝑑 = lg𝑚 by Lemma 9:
𝑚𝑖𝑛𝐸𝑃𝐿 𝑚 = 𝑚 lg𝑚 +𝑚 − 2 /0 1 .
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Lower Bound of Minimum EPL

Proof of Lemma 10 (cont’d):

¡ If m is a power of 2,
𝑚 lg𝑚 +𝑚 − 2 891 = 𝑚 lg𝑚 = 𝑚 lg𝑚 .

¡ If m is not a power of 2, then lg𝑚 = lg𝑚 + 1. So, in this case,
𝑚𝑖𝑛𝐸𝑃𝐿 𝑚 = 𝑚 lg𝑚 + 1 +m− 2 891

= 𝑚 lg𝑚 + 2𝑚 − 2 891 > 𝑚 lg𝑚 .

because in general 2𝑚 > 2 891 .
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Lower Bounds for Average-Case Behavior

Theorem 4

Any deterministic algorithm that sorts n distinct keys only by comparisons of keys must on the average do at least 
𝑛 lg 𝑛 − 1.45𝑛 comparisons of keys.

Proof:

¡ By Lemma 6, any such algorithm must on the average do at least
𝑚𝑖𝑛𝐸𝑃𝐿 𝑛!

𝑛!
comparison of keys.

¡ By Lemma 10, 𝑚𝑖𝑛𝐸𝑃𝐿 𝑚 ≥ 𝑚 lg𝑚 , this expression is greater than or equal to 
𝑛! lg(𝑛!)

𝑛!
= lg(𝑛!) .

¡ Follow Lemma 4, lg(𝑛!) ≥ 𝑛 lg 𝑛 − 1.45𝑛, the theorem is proved.
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Lower Bounds for Average-Case Behavior

¡ Now you can see, for the sorting problem:
¡ The worst-case needs at least 𝑛 lg 𝑛 − 1.45𝑛 comparison of keys.

¡ The average-case needs at least 𝑛 lg 𝑛 − 1.45𝑛 comparison of keys.

¡ You’re not required to remember all the details of the proof.

¡ But you should have mastered the idea of how to prove the computational 
complexity of sorting algorithm by using decision tree and EPL.
¡ Now, you know better of the essence of a sorting problem.
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RADIX SORT
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More Than Comparing by Keys

¡ We showed that any algorithm that sorts only by comparisons of keys can be no 
better than Θ(𝑛 lg 𝑛). 
¡ The computational analysis is only for the case of only by comparisons of keys.

¡ If we know nothing about the keys, we have no choice but to sort by comparing the 
keys. 

¡ However, when we have more knowledge we can consider other sorting algorithms.

¡ By using additional information about the keys, we next develop one such algorithm. 
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Divide into Piles

¡ Suppose that the keys are all nonnegative integers 
represented in base 10.

¡ We can first distribute them into distinct piles based on 
the values of the leftmost digits.
¡ Keys with the same leftmost digit are placed in the same pile.

¡ Then, the second and third digits from the left.
¡ After we have inspected all the digits, the keys will be 

sorted.
¡ A difficulty with this procedure is that we need a variable 

number of piles.
¡ You need lots of piles and most of them are empty.

39

Image source: Figure 7.14, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Divide into Piles

¡ Solution:
¡ We inspect digits from right to left, and we 

always place a key in the pile corresponding 
to the digit currently being inspected.

¡ On each pass, if two keys are to be placed in 
the same pile, they follow the order in the 
previous pass.
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Radix Sort

¡ This sorting method is called radix sort because the information used to sort the keys 
is a particular radix (base). 

¡ The radix could be any number base, or we could use the letters of the alphabet. 

¡ The number of piles is the same as the radix. 
¡ If we were sorting numbers represented in hexadecimal, the number of piles would be 16.

¡ If we were sorting alpha keys represented in the English alphabet, the number of piles would be 
26.
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Pseudocode of Radix Sort

¡ Because the number of keys in a particular pile 
changes with each pass, a good way to implement 
the algorithm is to use linked lists.

¡ Each pile is represented by a linked list. 
¡ After each pass, the keys are removed from the lists 

(piles) by coalescing them into one master linked 
list. 

42



Every-Case Time Complexity of Radix Sort

¡ numdigits passes of distribute and coalesce.

¡ 𝑛 passes through the while loop in distribute. 

¡ 10 passes through the for loop in coalesce. 

¡ Each of these procedures is called numdigits times from radixsort. Therefore, 
𝑇 𝑛𝑢𝑚𝑑𝑖𝑔𝑖𝑡𝑠, 𝑛 = 𝑛𝑢𝑚𝑑𝑖𝑔𝑖𝑡𝑠 𝑛 + 10 ∈ Θ 𝑛𝑢𝑚𝑑𝑖𝑔𝑖𝑡𝑠×𝑛 .

¡ It looks like a Θ(𝑛) algorithm, but not.
¡ E.g. sorting 10 numbers with 10 digits takes Θ(𝑛2).

¡ It is suitable for sorting records like social secrity numbers (9 digits integer).
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Conclusion

After this lecture, you should know:
¡ How does Heapsort work?

¡ Makeheap, siftdown, removekeys…

¡ What is the computational complexity?

¡ What is the computational complexity of sorting problem on worst- and average-case?

¡ How does Radix Sort work?
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Assignment 2

¡ Assignment 2 is released. The deadline is 18:00, 18th May.
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Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J
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