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DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 6: Dynamic Programming
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"= The time complexity of this algorithm

is O(2™). @ @

= A lot of time is wasted on recomputing

the same term. @ @ @

Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

int fib(int n)
{ . fib(})
if (n )
return n; - N N N
return fib(n-1) fib(n-2);
}
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Recall Calculation of the nth Fibonacci Term

= A straightforward solution: store the values
in an array to avoid recomputing.

= The time complexity reduces from 0(2™) to

O(n).

int fib2 (int n)
{
index 1i;
int f[ nl;
flo] ;
if (n ){
fl1] ;
fol (l
flil
¥
return f[nl;
¥

HEn

fli

n; i++)

]

fli

1;
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Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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Dynamic Programming

® Dynamic programming is similar to divide-and-cnoquer.
= Aninstance of a problem is divided into smaller instances.
= However, the difference is:
= Divide-and-cnoquer is a top-down approach.
= Dynamic programming is a bottom-up approach.
" The steps in the development of a dynamic programming algorithm are:

= Establish a recursive property that gives the solution to an instance of the problem.

= Solve an instance of the problem in a bottom-up fashion by solving smaller instances first.
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Outline

We discuss dynamic programming with six problems:
= The binomial coefficient
= Chained matrix multiplication
= Optimal binary search trees
= Knapsack problem

= Floyd’s algorithm for shortest paths

= Sequence alignment
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THE BINOMIAL COEFFICIENT




The Binomial Coefficient

" The binomial coefficient is calculated by:
n!

(Z) Tkl (n—k)!

for0 < k <n.

"= We cannot compute the binomial coefficient directly by the definition because n!is
very large even for moderate values of n.
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The Binomial Coefficient

= By representing binomial coefficients as the Pascal’s
traiangle, we can establish the recursive property:

I (3 PGP B BT
\ 1 k=0ork=n.

" Each entry is the sum of the two above.

= The computation of n! and k! is eliminated.
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Image source: https://en.wikipedia.org/wiki/Binomial coefficient

1 21
1 3 3 1
14 6 4 1
1 510 10 51

The Pascal’s triangle
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https://en.wikipedia.org/wiki/Binomial_coefficient

The Binomial Coefficient Solved By Recursion

= Like the recursive version of the nth Fibonacci term calculation algorithm, using recursion to
calculate binomial coefficient is very inefficient.

= A great number of terms are recomputed.

= bin_coef recursion(n-1,k-1) and bin_coef recursion(n-1,k) both need the result of
bin_coef recursion(n-2,k-1).

= The divide-and-conquer approach is always inefficient when an instance is divided into two
smaller instances that are almost as large as the original instance.

int bin_coef_recursive (int n, int k)
{
if (k n k)

eturn ;

eturn bin_coef_recursive(n , k ) + bin_coef_recursive(n , k);
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The Binomial Coefficient Solved By Dynamic Programming
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Store the computation result of (Il) in B[i][j] with an array B.

Recomputing can be avoided by directly indexing the array.

The steps for constructing a dynamic programming algorithm for this problem:
= Establish a recursive property:
ara _ \Bli—=1][j — 1] + B[i — 1][j] 0<j<i
B[l][/]—{ 1 j=0orj=i
= Solve an instance of the problem in a bottom-up fashion by computing from the first row of B.

The optimal solution is B[n][k].
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We only need to calculate up to the kth column for each row.

Actually, the calculation only needs the previous row. Therefore,
all the rows before the previous row can be discarded.

The algorithm can be further improved by just using a single 1-d array.
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int bin_coef_dp (int n, i

{

index i, j;

int B[ n]l kl;

ro(i ;
for (j D
if (]
B[il[j]

OBl L4]
eturn B[n] [k];

}

;1 n; i
min(i, k); j
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Bli-1][j-1] B[i-1][/]

B[i ][]
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Image source: Figure 3.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



" Every-case time complexity of this algorithm is determined by:
1+2+34+4++k+(k+D)+k+1D)+ -+ k+1).

n—k + 1 times n
" |t equals
( )+(n—k+1)(k+1)=( ) )EG)(nk).
2 2 Shape of the array
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CHAINED MATRIX MULTIPLICATION




Chained Matrix Multiplication

= To multiply an iXj matrix with a j Xk matrix using the standard method, it is
necessary to do i Xj Xk elementary multiplications.

® Consider the chained matrix multiplication:
A X B C x D

20%:2 2x30 30x12 12 x 8
" The total number of elementary multiplications depends on the multiplication order.

A(B(CD)) 30x12x8+4+ 2x30x 84+20x 2x8= 3.680
(AB)(CD) 20x2x30+4+30x12x 8420x30x8= 8,880
A(BC)D) 2x30x12+ 2x12x 84+20x 2

((ABYCYD 20x2x30420x30x 12420 x 12 x 8 = 10.320
(A(BCY)YD 2x30x124+20x 2x124+20x 12x8= 3.120

o= 1232
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Chained Matrix Multiplication

® Qur goal is to develop an algorithm that determines the optimal
order for multiplying n matrices.

®=  The input of the algorithm is the dimensions of these matrices.

= Letd, be the number of rows in A; and d; be the number of T
columns in Ay for 1 < k < n, the dimension of Ay, is dj_1Xd,. i I
= We have n + 1 dimensions for multiplying n matrices. T > o . 2| om
= We can decompose the matrices, such that the optimal solution %2 i1 l
with n matrices can be constructed in bottom-up fashion. ! i i
= Then, we can define for 1 < i < j < n, M[i][j] is the minimum
number of multiplications needed to multiply A; through 4;, if i <
j,and M|i][i] = 0.
= The optimal solution is M[1][n].
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Image source: Figure 3.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Chained Matrix Multiplication

= Assume we have six matrices, the optimal order must have one of the following
factorizations:

A1 (A2A3A,A546)

(A142)(A3A44A4546)

(A14243)(A4A546)

(A1A24344)(As46)

(A1A2A3A4A5)A6

= Generally, the optimal order must be with some k, forl1 <k <n — 1:
(A1 ... Ag) (Ak+140)
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Chained Matrix Multiplication

= We can obtain the following recursive propertyfor1 <i <j < n:
M[illj]l =  min (M[i][k] + M|k + 1][j] + d;_1dkd;), ifi <j.

i<k<j-1
Mlil[i] = 0.

= Different from the binomial coefficient problem that each term is calculated by the
top left and top terms, M|i]|j] needs the term on its left and its bottom.
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Pseudocode of Chained Matrix Multiplication

= Except the loop over diagonal and the loop over
i, find the minimum value is also a loop over k.

) ) ) int chained_mat_mult (int n, ‘
= For given values of diagonal and i, fori < k < o
Jj — 1, the number of passes through k is { o
. . . . . . index i, j, k, diagonal;
j—1—i+1=i+diagonal—1—-1i+ 1 =diagonal int M[1...n][1...n]
= The number of passes through i isn — diagonal. p:i[i”i]: 1<=n; i)
. . di 1 ; di 1 ; di 1
= The number of passes through diagonal isn — 1. S T L FIR I va b
. . . j = i + diagonal;
= Totally, the every-case time complexity is: MIi1 03] = min(MLi1IK] + MIk + 11031 + d[i - 11 * dIk] * d[§]);
P[il[j] = the value of k that gives the minimum;
n-—1 }
. ] 3 eturn M[1][n];
(n — diagonal)xdiagonal € ©(n>). [

diagonal=1
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Determine the Optimal Order

® The optimal order is determined by recursively examining the array P.

1 2 3 4 5 IS void order (index i, index j)
{
1 1 1 1 1 1 if (i j)
cout i;
2 2 3 4 5 else{
Optimal order: k = P[i]1[j];
3 3 4 5 cout ’
A1 ((((A243)A4)As) Ag) cout << *(*
4 4 5 order(k , 1)
cout ;
" }
: 5 }
P
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OPTIMAL BINARY SEARCH TREES




Optimal Binary Search Trees

" A binary search tree is a binary tree of keys that @
come from an ordered set, such that

= Each node contains one key.
= The keys in the left subtree of a given node are less than

or equal to the key in that node.
= The keys in the right subtree of a given node are greater
than or equal to the key in that node.
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Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




Optimal Binary Search Trees

® The number of comparisons done by search to

locate a key is called the search time. @

" We want to know the average search time of a

binary search tree while the keys do not have the
same probability.

= E.g. Tomis a common name is the United States. It has

higher probability to be a search key. @ @ @ @
= Thus, put the node whose key has high probability to

lower depth will decrease the average search time.
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Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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Optimal Binary Search Trees

" An optimal binary search tree minimizes the average time it takes to locate a key.

= Assume the search key is always in the tree. Let Key,, Key,, ..., Key, be the n keys in order,
and let p; be the probability that Key; is the search key.

= The actual values of the keys are not important.
= The search time ¢; for a given key is
c; = depth(Key;) + 1,
= Recall that depth(root) = 0.
" The average search time we want to minimize is

n
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Example

= The average search times are:
3(0.7)+2(0.2)+1(0.1)=2.6

. 2(0.7)+3(0.2)+1(0.1)=2.1
. 2(0.7)+1(0.2)+2(0.1)=1.8 @ @
. 1(0.7)+3(0.2)+2(0.1)=1.5
. 1(0.7)+2(0.2)+3(0.1)=1.4 @ @
= Tree 5 is optimal. @ @
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= This figure shows the five different trees whenn = 3. : : :
= The probabilities are: e @ @
p, =07 p,=02 p3=01 @ @ Q @
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Image source: Figure 3.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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Optimal Binary Search Trees by Dynamic Programming

= As usual, enumerating and calculating all cases is

impossible, which is again exponential. F;;.eflfhf% there is one
additiona companson at
= We can decompose the tree with subtrees, such T et l
that the optimal binary search tree can be

constructed in bottom-up fashion.

= We use A[i][j] to represent the optimal search

time of the binary search tree constructed from Average search time Average search time
. . in this subtree in this subtree
Key" to Key] ’ is A[1][k- 1] is A[&+ 1][n]

= The optimal solutionis A(1,n).

= For1l < k < n, there must exist an optimal
binary search tree whose root has Keyy,.

.....

" |ts subtrees must also be optimal.
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Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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Optimal Binary Search Trees by Dynamic Programming

= Because the subtrees have one more depth, we
should add the probabilities of all their keys.

= The average time in left subtree is:
All]lk = 1]+ py + -+ + Dr—1

= The average time in right subtree is:
Alk +1]In] + pr41 + -+ Pn

= The average time searching for root: p,

= Totally:

A[11[k — 1] + A[k + 1][n] + 2 p
m=1

For each key, there is one
additional comparison at

the root. l

Average search time
in this subtree
is A[&+ 1][n]

Average search time
in this subtree

is A[1][&- 1]

.....
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Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Optimal Binary Search Trees by Dynamic Programming

= We can derive the following recursive property:

J
AL = min (AL = 1] + Al + 10D + ) pm fori <
- == m=i
Alilli] = p;
Ali][i — 1] and A[j + 1][j] are defined to be O.

" The bottom-up strategy for solving this recursive property is similar to the chained
matrix multiplication problem.

= Use the diagonal trick.
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Pseudocode of Optimal Binary Search Trees

E; void opt_search_tree (int n,
. . = onst float pll],
= The every-case time complexity is ©(n?). Floats. ninave,
index P[1I[1)
{
index i, j, k, diagonal;
float Al n+1] [ nl;
node_pointer construct_opt_search_tree (index i, j) (i s i n: is+){
t Alil[i - 1]
index k; Alil[i] = plil;
node_pointer p; Pl[i] [i] i
o Plil[i ]
k = P[il[j]; }
if (k ) Aln 1[n]
eturn P[n 1'n] ;
struct nodetype { for (diagonal ; diagonal n ; diagonal++)
{ p ew nodetype; for (i ;i n - diagonal; i++){
keytype key; p —> key = Keyl[kl; j = i + diagonal;
nodetypex left; p —> left = construct_opt_search_tree(i, k ); Alil[j]1 = min(A[i] [k 1 + Alk 1031) + sum(pli...j1);
nodetype*x right; p —> right construct_opt_search_tree(k , 1) PLil[j] the value of k that gives the minimum;
eturn p; }
} minavg = A[1][n];
def nodetype } }
29
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KNAPSACK PROBLEM




Knapsack Problem

= Problem description:
= Given n items and a "knapsack.”
" |tem i has weight w; > 0 and has value v; > 0.
"  Knapsack has capacity of W'.
" Goal: Fill knapsack so as to maximize total value.

= Mathematical description:

= Given two n-tuples of positive numbers < v4,v,, ..., v, > and < wy,w,, ...,w,, >, and W > 0, we wish to determine

the subset T € {1,2, ..., n} that

maximize z V; subject to Z w, < W
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Example

= Weight capacity W = 5kg. i oy | ow |

" The possible ways to fill the knapsack: 1 $10 1kg
= {1, 2, 3} has value $37 with weight 4kg. 2 512 1kg
. . 3 $15 2kg
= {3, 4} has value S35 with weight 5kg.
4 $20 3kg
= {1, 2, 4} has value $42 with weight 5kg. (optimal)
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= We can decompose the item set and the maximum weight, such that the optimal solution
with n items and W capcity can be constructed in bottom-up fashion.

= We define V (i, ) as the optimal solution of items subset {1, ..., i} with capacity j.
= The optimal solution is V(n, W).

= There are two cases for V (i, j):

= V(i,j) does notinclude item i, because of out of capacity or not worthy.
= V(@) =V(i-1)).

= V(i,j) includes itemi.
= V(i,)=V(i-1,j —w;) +v;.
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Knapsack Problem by Dynamic Programming

" We can establish the recursive property:
V(i i) = V(i—1,)) if j —w; <0
Y T Ymax(VG —1,7), V@i —1,j —wy) +v;) ifj—w; =0
V(0,j) =0 forj=0
V(i,0) =0 fori >0

= The bottom-up construction is easy, just loop over i and j for calculating array V.
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Example

V(1,1) = max(V(0,1), V(1,1 — wy) + vy) V(2,2) =max(V(1,2),V(1,2 —w,) + v,)
7(0,1) =0 V(1,2) =10
V(1,0) + 10 = 10 V(1,1) + 12 = 22

i v w

0
1 $10 1kg
10 10
2 $12 1kg
22 22
3 $15 2kg
i il 4 S20 3k
12 37 42 ©
V(3,2) =max(V(2,2),V(2,2 —w3) + 15) \ V(4,5) = max(V(3,5),V(3,5 —ws) + vc)
V(2,2) =22 V(3,5) = 37
~ V(2,0)=0 V(3,2) +20 =42
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FLOYD’S ALGORITHM FOR SHORTEST PATHS




The Shortest Path Problem

= A common problem encounted by air travelers is
the determination of the shortest way to fly from
one city to another without a direct fight.

"= We represent this kind of problem by using a
graph.
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Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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Review of Graph Theory

" |n graph theory, the edges are linked between vertices.

= |f each edge has a direction, the graph is called a
directed graph.

= |f the edges have values associated with them, the

values are called weights and the graph is called a
weighted graph.

= Weights are usually assumed to be nonnegative.

= In many applications weights are used to represent distances.
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Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




Review of Graph Theory

" |n adirected graph, a path is a sequence of vertices
such that there is an edge from each vertex to its
successor.
= |nthe figure, [V, V4, V3] is a path and [v3, v4, V1] is not a

path.

" A pathis called simple if it never passes through
the same vertex twice.

" The length of a path in a weighted graph is the sum
of the weights on the path.

]
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Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




The Shortest Path Problem

" A shortest path must be a simple path.

= There are three simple paths from v to v, and
their lengths are:
length|v, vy, 3] =1+3 =4
length|vy,v,,v3] =14+2 =3
length|vy, vy, V4, 3] =1+ 2+ 2 =5.

= Obviously, [vq, V4, V3] is the shortest path from v,
to vs.
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Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



The Shortest Path Problem

= An obvious algorithm would be to determine all the paths from the starting vertex to the
ending vertex, and select the ones with the minimum length.

® Suppose all vertices are connected

= The second vertex in the path can be any of the n — 1 vertices.

®  The third vertex in the path can be any of the n — 2 vertices.

= The total number of paths:

m—-1)n-2)..1=(Mn-1)),
which has factorial complexity.
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" We create an array W called adjacency matrix to represent the graph.

(weight on edge if there is an edge from v; to v;
WIill[j] =S o0 if there is no edge from v; to v;
kO ifi =7J.
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Image source: Figure 3.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



= We can decompose the vertices, such that the optimal solution withn
vertices can be constructed in bottom-up fashion with its subsets.

= We create an array D that contains the lengths of the shortest paths in 1 ; ‘j 4
the graph. :

= DIi][j] is the shortest path from v; to v;. ol .

= To calculate D, we create a sequence of n 4+ 1 arrays D), where 0 < £ d

k < n. sle 7 2 3

= DW®[{][j] is the length of a shortest path from v; to v; using only verticesinthe 5|3z 4 & 0
set {vq, Uy, ..., U} as intermediate vertices. .
)

= Thus, we have DO =W and D™ = D.
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Shortest Path Problem by Dynamic Programming

= Therefore, to determine D from W we need only find a way to obtain D from D(©.
" The steps for using dynamic programming:
= Establish a recursive property with which we can compute D) from D=1,

= Solve an instance of the problem in a bottom-up fashion by repeating the process for k = 1 to n.
This creates the sequence D(®, DM p@ pm®)
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Shortest Path Problem by Dynamic Programming

= We accomlish Step 1 by considering the shortest path, using only vertices in
{v{, V5, ..., U} as intermediate vertices with two cases:

= Case 1. It does not use vi. Then

D®I[j] = DED[[].
= Case 2. It uses vg. Then

DW[i][j] = DU D[i][k] + D&V k][]
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Shortest Path Problem by Dynamic Programming

= Because we calculate D® in bottom-up fashion, we know all the values in pk-1),

= Thus, D™ could be determined by
DWI][j] = min(D*-V[][;], DYV [i][k] + D*-V[k][}]).

\ | \ |
| |
Case 1 Case 2

= After D is calculated, we have actually calculated the shortest path from v; to v; for
any i and j.
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Example

We calculate D[5][4] as an example.

= DO[5][4

= DW[5][4] = min(D@[5][4], D
[51[4], D™
51121, D©@[5][1] + D©@[1][2] = min(co,3 + 1) = 4.
(4], D2

= DP[5][4

5

[5]
[5]1[2] + D™M[2][4]) = min(4, 4 + 2) = 4.
] [
2] [4] = min(29+ 1) = 2.

[51[4], DD[5][3] + DP[3][4]) = ---

[
[
]
[1] + DO[1]
[
[
[

| |
= D@W[5][4 =min(D<3)[ 141, D®[5][2] + DP®[4][4]) = -
| |

/\
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D™[5][5] + D@W[5][4]) = ---
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Pseudocode of Floyd’s Algorithm

= The every-case time complexity is obviously ©(n?).

= We can use an array P to record the index of intermediate

vertex.

= |f at least one intermediate vertex exists, P[i][j] is the highest

index of an intermediate vertex on the shortest path from v; to vj;
otherwise P[i][j] is O.

path(5,3) calls path(5,4) .
and path(4,3).
path(5,4) calls path(5,1) 3
and path(1,4). 3
Output: v5vliv4v3

b

\XIAMEN UNIVERSITY MALAYSIA
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2 void path (index q, r)
i {
if (Plqllr] ){
" path(q, Plqllrl);
cout Plqllrl;
path(P[ql[r]l, r);
0
}
}

void floyd ( int n,
const number W[1I[1,
wmber DI1[],
index PI[1I[1)

si n; i++)
for (j ] n; j++)
Plil[j]

for (1 ;1 n; i++)

for (j i n; j++)
if (D[i] [K] DIk][j]

PIil[j] = k;

D[i]l [j] D[i] [Kk]
¥

DIl [ 1A

DLkIL[j1;
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Dynamic Programming and Optimization Problems

= For an optimization problem like the shortest path problem, it has an optimal solution (e.g.
path) with an optimal value (e.g. length).

m The steps of developing a dynamic programming algorithm for an opimization problem can
be generalized as:

= Establish a recursive property that gives the optimal solution to an instance of the problem/
= Compute the value of an optimal solution in a bottom-up fashion.

= Construct an optimal solution in a bottom-up fashion.

Definition

The principle of optimality is said to apply in a problem if an optimal solution to an instance of a
problem always contains optimal solution to all subinstances.
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Example

= We show the following example shows that dynamic programming does
not apply in every optimization problem.

® Consider the longest path problem with single path.

= The optimal longest simple path from v; to v, is [V, V3, Uy, V4].

= However, the subpath [v4, V3] is not an optimal longest path from v; to
V3 because

length|v,,v3] =1 and length|v,,v,, v3] = 4.

= The reason is that the optimal path from v, to v5 ([v{,v,, V3]) and from
v3 to v, ([v3, vy, V4]) cannot be put together to construct a simple path.
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SEQUENCE ALIGNMENT




Sequence Alignment

m Sequence alignment finds the optimal way to align two sequences.

= Use DNA sequence as an example:

AACAGTTACC
TAAGGTCA
= The following shows two possible alignments:
_AACAGTTACC AACAGTTACC
TAA GGT_ _CA TA AGGT_CA

= There are two possible way to make alignments:

o

® |nsert a gap as represented by “_”.

®  Find a mismatch.
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Cost of Sequence Alignment

" The cost of these two alignments are different:
~_AACAGTTACC AACAGTTACC
TAA GGT_ CA TA AGGT CA

® By assignment the gap with cost 2 and mismatch with cost 1,
= The left one has a cost of 10.

= The right one has a cost of 7.

= The optimal sequence alignment is with the minimum cost.
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Sequence Alignment by Dynamic Programming

= Use x[0...m] and y[0 ...n] to represent the two sequences.

= We can decompose each sequence, such that the optimal solution for sequences
with length m and n can be constructed in bottom-up fashion.

= Let opt(i,j) be the cost of the optimal alignment of the subsequences x[i ... m] and
ylj ...n].
= The optimal alignment is opt(0,0).

= Now, how can we build the recursive property?
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Sequence Alignment by Dynamic Programming

The optimal alignment must start with one of the three cases:
= x[0]is aligned with y[0]. x[0] = y[0] has no cost and x[0] # y[0] has cost 1.
= The optimal cost is opt(1,1) + cost.
= x[0]is aligned with a gap and the cost is 2.
= The optimal cost is opt(1,0) + 2.
= y|0] is aligned with a gap and the cost is 2.
= The optimal cost is opt(0,1) + 2.
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Sequence Alignment by Dynamic Programming

®= Thus, we can establish the recursive property:
opt(i,j) = min(opt(i+1,j + 1) + cost,opt(i +1,j) + 2,0pt(i,j + 1) + 2)
= Different from the previous examples where the optimal solution is at the end of the array.
= opt(0,0) is the optimal solution.
= We should determine the terminal condition:

= |f we have passed the end of sequence x, that is when i = m, we should insert n — j gaps to make
alignment.

ATC___
m opt(m,j) =2(n—j). |ATCGTC

= |f we have passed the end of sequence y, that is when j = n, we should insert m — i gaps to make
alignment.

, , ATCGTC
= opt(i,n) =2(m—1). |a1c
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Sequence Alignment by Dynamic Programming

= Again, we use the diagonal trick for the recursive property:
opt(i,j) = min(opt(i +1,j + 1) + cost,opt(i + 1,j) + 2,0pt(i,j + 1) + 2)

1 2 3 4 5 6 7 8
i T A A G G T C A -
0 A
1 A
2 C
3 A
4 G
5 T
s 1 1‘_— ‘ Diagonal 3
7 A | /
e = B e e N I | Diagonal 2
8 C /
5 ] |
10 - 1 .
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Conclusion

For an optimization problem, to determine the decomposition and the representation
of array is the most difficult part for designing a dynamic programming algorithm.

= The binomial coefficient: calculate B[n][k] from B[i][j].

= The chained matrix multiplication: calculate M[1][n] from M[i][j].
= Optimal binary search tree: calculate A[1][n] by Ali][/].

= The knapsack problem: calculate V(n, W) by V (i, ).

= The shortest path problem: calculate D[i][j] from DU[i][/].

= Sequence alignment: calculate opt(0,0) by opt(i, j).

5 T\

i\ XIAMEN UNIVERSITY MALAYSIA

w Ay Ale — A4, prrie
ol AR BRBEES K 6y) BIIXRZEERFER

) /)
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

T AN AT HANNER Y




Conclusion

After this lecture, you should know:
= The difference between divide-and-conquer and dynamic programming.
= Why is dynamic programming efficient.
= The condition to use dynamic programming.

= The steps of designing a dynamic programming algorithm.
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Thank youl!

= Any question?

= Don’t hesitate to send email to me for asking questions and discussion. ©
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