
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 6: Dynamic Programming

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Recall Calculation of the 𝑛th Fibonacci Term

¡ The time complexity of this algorithm
is Θ(2!).

¡ A lot of time is wasted on recomputing
the same term.

1

Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Recall Calculation of the 𝑛th Fibonacci Term

¡ A straightforward solution: store the values
in an array to avoid recomputing.

¡ The time complexity reduces from Θ(2!) to
Θ(𝑛).

2

refer

refer

Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Dynamic Programming

¡ Dynamic programming is similar to divide-and-cnoquer.
¡ An instance of a problem is divided into smaller instances.

¡ However, the difference is:
¡ Divide-and-cnoquer is a top-down approach.

¡ Dynamic programming is a bottom-up approach.

¡ The steps in the development of a dynamic programming algorithm are:
¡ Establish a recursive property that gives the solution to an instance of the problem.

¡ Solve an instance of the problem in a bottom-up fashion by solving smaller instances first.

3

Outline

We discuss dynamic programming with six problems:
¡ The binomial coefficient

¡ Chained matrix multiplication

¡ Optimal binary search trees

¡ Knapsack problem

¡ Floyd’s algorithm for shortest paths

¡ Sequence alignment

4

THE BINOMIAL COEFFICIENT

5

The Binomial Coefficient

¡ The binomial coefficient is calculated by:
𝑛
𝑘 =

𝑛!
𝑘! 𝑛 − 𝑘 !

for 0 ≤ 𝑘 ≤ 𝑛.

¡ We cannot compute the binomial coefficient directly by the definition because 𝑛! is
very large even for moderate values of 𝑛.

6

The Binomial Coefficient

¡ By representing binomial coefficients as the Pascal’s
traiangle, we can establish the recursive property:

𝑛
𝑘 = 0

𝑛 − 1
𝑘 − 1 + 𝑛 − 1

𝑘 0 < 𝑘 < 𝑛
1 𝑘 = 0 or 𝑘 = 𝑛.

¡ Each entry is the sum of the two above.

¡ The computation of 𝑛! and 𝑘! is eliminated.

7

Image source: https://en.wikipedia.org/wiki/Binomial_coefficient

The Pascal’s triangle

n

k

https://en.wikipedia.org/wiki/Binomial_coefficient

The Binomial Coefficient Solved By Recursion

¡ Like the recursive version of the 𝑛th Fibonacci term calculation algorithm, using recursion to
calculate binomial coefficient is very inefficient.

¡ A great number of terms are recomputed.
¡ bin_coef_recursion(n-1,k-1) and bin_coef_recursion(n-1,k) both need the result of

bin_coef_recursion(n-2,k-1).

¡ The divide-and-conquer approach is always inefficient when an instance is divided into two
smaller instances that are almost as large as the original instance.

8

The Binomial Coefficient Solved By Dynamic Programming

¡ Store the computation result of
𝑖
𝑗 in 𝐵[𝑖][𝑗] with an array 𝐵.

¡ Recomputing can be avoided by directly indexing the array.

¡ The steps for constructing a dynamic programming algorithm for this problem:
¡ Establish a recursive property:

𝐵 𝑖 [𝑗] = '𝐵 𝑖 − 1 𝑗 − 1 + 𝐵 𝑖 − 1 [𝑗] 0 < 𝑗 < 𝑖
1 𝑗 = 0 or 𝑗 = 𝑖.

¡ Solve an instance of the problem in a bottom-up fashion by computing from the first row of 𝐵.

¡ The optimal solution is 𝐵 𝑛 [𝑘].

9

The Binomial Coefficient Solved By Dynamic Programming

¡ We only need to calculate up to the 𝑘th column for each row.
¡ Actually, the calculation only needs the previous row. Therefore,

all the rows before the previous row can be discarded.
¡ The algorithm can be further improved by just using a single 1-d array.

10

Image source: Figure 3.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Binomial Coefficient Solved By Dynamic Programming

¡ Every-case time complexity of this algorithm is determined by:
1 + 2 + 3 + 4 +⋯+ 𝑘 + 𝑘 + 1 + 𝑘 + 1 +⋯+ 𝑘 + 1 .

¡ It equals
𝑘 𝑘 + 1

2
+ 𝑛 − 𝑘 + 1 𝑘 + 1 =

2𝑛 − 𝑘 + 2 𝑘 + 1
2

∈ Θ 𝑛𝑘 .

11

Shape of the array

𝐵 𝑛 [𝑘]

𝑘

𝑛𝑛 − 𝑘 + 1 times

CHAINED MATRIX MULTIPLICATION

12

Chained Matrix Multiplication

¡ To multiply an 𝑖×𝑗 matrix with a 𝑗×𝑘 matrix using the standard method, it is
necessary to do 𝑖×𝑗×𝑘 elementary multiplications.

¡ Consider the chained matrix multiplication:

¡ The total number of elementary multiplications depends on the multiplication order.

13

Chained Matrix Multiplication

¡ Our goal is to develop an algorithm that determines the optimal
order for multiplying 𝑛 matrices.
¡ The input of the algorithm is the dimensions of these matrices.

¡ Let 𝑑! be the number of rows in 𝐴" and 𝑑# be the number of
columns in 𝐴# for 1 ≤ 𝑘 ≤ 𝑛, the dimension of 𝐴# is 𝑑#$"×𝑑#.
¡ We have 𝑛 + 1 dimensions for multiplying 𝑛 matrices.

¡ We can decompose the matrices, such that the optimal solution
with 𝑛 matrices can be constructed in bottom-up fashion.

¡ Then, we can define for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, 𝑀 𝑖 [𝑗] is the minimum
number of multiplications needed to multiply 𝐴% through 𝐴&, if 𝑖 <
𝑗, and 𝑀 𝑖 𝑖 = 0.

¡ The optimal solution is 𝑀[1][𝑛].

14

Image source: Figure 3.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Chained Matrix Multiplication

¡ Assume we have six matrices, the optimal order must have one of the following
factorizations:
¡ 𝐴!(𝐴"𝐴#𝐴$𝐴%𝐴&)

¡ (𝐴!𝐴")(𝐴#𝐴$𝐴%𝐴&)

¡ (𝐴!𝐴"𝐴#)(𝐴$𝐴%𝐴&)

¡ (𝐴!𝐴"𝐴#𝐴$)(𝐴%𝐴&)

¡ (𝐴!𝐴"𝐴#𝐴$𝐴%)𝐴&
¡ Generally, the optimal order must be with some 𝑘, for 1 ≤ 𝑘 ≤ 𝑛 − 1:

(𝐴'…𝐴()(𝐴()'𝐴!)

15

Chained Matrix Multiplication

¡ We can obtain the following recursive property for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛:
𝑀 𝑖 𝑗 = min

'()(*+,
(𝑀 𝑖 𝑘 +𝑀 𝑘 + 1 𝑗 + 𝑑'+,𝑑)𝑑*) , if 𝑖 < 𝑗.

𝑀 𝑖 𝑖 = 0.

¡ Different from the binomial coefficient problem that each term is calculated by the
top left and top terms, 𝑀 𝑖 𝑗 needs the term on its left and its bottom.

16

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6

𝑖 = 1 𝑀 1 [1] 𝑀 1 [2] 𝑀 1 [3] 𝑀 1 [4] 𝑀 1 [5] 𝑀 1 [6]

𝑖 = 2 𝑀 2 [2] 𝑀 2 [3] 𝑀 2 [4] 𝑀 2 [5] 𝑀 2 [6]

𝑖 = 3 𝑀 3 [3] 𝑀 3 [4] 𝑀 3 [5] 𝑀 3 [6]

𝑖 = 4 𝑀 4 [4] 𝑀 4 [5] 𝑀 4 [6]

𝑖 = 5 𝑀 5 [5] 𝑀 5 [6]

𝑖 = 6 𝑀 6 [6] 17

18

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5 𝑗 = 6

𝑖 = 1 𝑀 1 [1] 𝑀 1 [2] 𝑀 1 [3] 𝑀 1 [4] 𝑀 1 [5] 𝑀 1 [6]

𝑖 = 2 𝑀 2 [2] 𝑀 2 [3] 𝑀 2 [4] 𝑀 2 [5] 𝑀 2 [6]

𝑖 = 3 𝑀 3 [3] 𝑀 3 [4] 𝑀 3 [5] 𝑀 3 [6]

𝑖 = 4 𝑀 4 [4] 𝑀 4 [5] 𝑀 4 [6]

𝑖 = 5 𝑀 5 [5] 𝑀 5 [6]

𝑖 = 6 𝑀 6 [6] Diagnal 0

Diagnal 1

Diagnal 2

Diagnal 3

Diagnal 4

Diagnal 5

Pseudocode of Chained Matrix Multiplication

¡ Except the loop over 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 and the loop over
𝑖, find the minimum value is also a loop over 𝑘.

¡ For given values of 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 and 𝑖, for 𝑖 ≤ 𝑘 ≤
𝑗 − 1, the number of passes through 𝑘 is
𝑗 − 1 − 𝑖 + 1 = 𝑖 + 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 − 1 − 𝑖 + 1 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

¡ The number of passes through 𝑖 is 𝑛 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙.
¡ The number of passes through 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 is 𝑛 − 1.
¡ Totally, the every-case time complexity is:

;
'()*+,)-.!

,/!

(𝑛 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)×𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ∈ Θ 𝑛# .

19

Determine the Optimal Order

¡ The optimal order is determined by recursively examining the array 𝑃.

20

P

Optimal order:
𝐴!((((𝐴"𝐴#)𝐴$)𝐴%)𝐴&)

OPTIMAL BINARY SEARCH TREES

21

Optimal Binary Search Trees

¡ A binary search tree is a binary tree of keys that
come from an ordered set, such that
¡ Each node contains one key.

¡ The keys in the left subtree of a given node are less than
or equal to the key in that node.

¡ The keys in the right subtree of a given node are greater
than or equal to the key in that node.

22

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

¡ The number of comparisons done by search to
locate a key is called the search time.

¡ We want to know the average search time of a
binary search tree while the keys do not have the
same probability.
¡ E.g. Tom is a common name is the United States. It has

higher probability to be a search key.

¡ Thus, put the node whose key has high probability to
lower depth will decrease the average search time.

23

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

¡ An optimal binary search tree minimizes the average time it takes to locate a key.
¡ Assume the search key is always in the tree. Let 𝐾𝑒𝑦', 𝐾𝑒𝑦;, … , 𝐾𝑒𝑦! be the 𝑛 keys in order,

and let 𝑝< be the probability that 𝐾𝑒𝑦< is the search key.
¡ The actual values of the keys are not important.

¡ The search time 𝑐< for a given key is
𝑐' = 𝑑𝑒𝑝𝑡ℎ 𝐾𝑒𝑦' + 1,

¡ Recall that 𝑑𝑒𝑝𝑡ℎ 𝑟𝑜𝑜𝑡 = 0.

¡ The average search time we want to minimize is

:
'(!

)

𝑐'𝑝'

24

Example

¡ This figure shows the five different trees when 𝑛 = 3.
¡ The probabilities are:

𝑝" = 0.7 𝑝' = 0.2 𝑝(= 0.1
¡ The average search times are:

1. 3 (0.7) + 2 (0.2) + 1 (0.1) = 2.6
2. 2 (0.7) + 3 (0.2) + 1 (0.1) = 2.1
3. 2 (0.7) + 1 (0.2) + 2 (0.1) = 1.8

4. 1 (0.7) + 3 (0.2) + 2 (0.1) = 1.5
5. 1 (0.7) + 2 (0.2) + 3 (0.1) = 1.4

¡ Tree 5 is optimal.

25

Image source: Figure 3.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees by Dynamic Programming

¡ As usual, enumerating and calculating all cases is
impossible, which is again exponential.

¡ We can decompose the tree with subtrees, such
that the optimal binary search tree can be
constructed in bottom-up fashion.

¡ We use 𝐴 𝑖 [𝑗] to represent the optimal search
time of the binary search tree constructed from
𝐾𝑒𝑦% to 𝐾𝑒𝑦&.

¡ The optimal solution is 𝐴(1, 𝑛).
¡ For 1 ≤ 𝑘 ≤ 𝑛, there must exist an optimal

binary search tree whose root has 𝐾𝑒𝑦#.
¡ Its subtrees must also be optimal.

26

Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees by Dynamic Programming

¡ Because the subtrees have one more depth, we
should add the probabilities of all their keys.

¡ The average time in left subtree is:
𝐴 1 𝑘 − 1 + 𝑝" +⋯+ 𝑝#$"

¡ The average time in right subtree is:
𝐴 𝑘 + 1 𝑛 + 𝑝#)" +⋯+ 𝑝*

¡ The average time searching for root: 𝑝#
¡ Totally:

𝐴 1 𝑘 − 1 + 𝐴 𝑘 + 1 𝑛 + @
+,"

*

𝑝+

27

Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees by Dynamic Programming

¡ We can derive the following recursive property:

𝐴 𝑖 𝑗 = min
'()(*

(𝐴 𝑖 𝑘 − 1 + 𝐴 𝑘 + 1 𝑗) + B
;<'

*

𝑝; for 𝑖 < 𝑗

𝐴 𝑖 𝑖 = 𝑝'
𝐴 𝑖 𝑖 − 1 and 𝐴 𝑗 + 1 𝑗 are deGined to be 0.

¡ The bottom-up strategy for solving this recursive property is similar to the chained
matrix multiplication problem.
¡ Use the diagonal trick.

28

Pseudocode of Optimal Binary Search Trees

¡ The every-case time complexity is Θ(𝑛=).

29

KNAPSACK PROBLEM

30

Knapsack Problem

¡ Problem description:
¡ Given 𝑛 items and a "knapsack.”

¡ Item 𝑖 has weight 𝑤! > 0 and has value 𝑣! > 0.

¡ Knapsack has capacity of 𝑊.

¡ Goal: Fill knapsack so as to maximize total value.

¡ Mathematical description:
¡ Given two 𝑛-tuples of positive numbers < 𝑣", 𝑣#, … , 𝑣$ > and < 𝑤", 𝑤#, … , 𝑤$ >, and 𝑊 > 0, we wish to determine

the subset 𝑇 ⊆ {1,2, … , 𝑛} that

maximize 8
!∈&

𝑣! subject to8
!∈&

𝑤! ≤ 𝑊

31

Example

¡ Weight capacity 𝑊 = 5kg.

¡ The possible ways to fill the knapsack:
¡ {1, 2, 3} has value $37 with weight 4kg.

¡ {3, 4} has value $35 with weight 5kg.

¡ {1, 2, 4} has value $42 with weight 5kg. (optimal)

32

𝒊 𝒗𝒊 𝒘𝒊

1 $10 1kg

2 $12 1kg

3 $15 2kg

4 $20 3kg

Knapsack Problem by Dynamic Programming

¡ We can decompose the item set and the maximum weight, such that the optimal solution
with 𝑛 items and 𝑊 capcity can be constructed in bottom-up fashion.

¡ We define 𝑉(𝑖, 𝑗) as the optimal solution of items subset {1, … , 𝑖} with capacity 𝑗.
¡ The optimal solution is 𝑉(𝑛,𝑊).
¡ There are two cases for 𝑉(𝑖, 𝑗):

¡ 𝑉(𝑖, 𝑗) does not include item 𝑖, because of out of capacity or not worthy.
¡ 𝑉 𝑖, 𝑗 = 𝑉(𝑖 − 1, 𝑗).

¡ 𝑉(𝑖, 𝑗) includes item 𝑖.
¡ 𝑉 𝑖, 𝑗 = 𝑉 𝑖 − 1, 𝑗 − 𝑤! + 𝑣! .

33

Knapsack Problem by Dynamic Programming

¡ We can establish the recursive property:

𝑉 𝑖, 𝑗 = O
𝑉 𝑖 − 1, 𝑗 if 𝑗 − 𝑤' < 0
max(𝑉 𝑖 − 1, 𝑗 , 𝑉 𝑖 − 1, 𝑗 − 𝑤' + 𝑣') if 𝑗 − 𝑤' ≥ 0

𝑉 0, 𝑗 = 0 for 𝑗 ≥ 0
𝑉 𝑖, 0 = 0 for 𝑖 ≥ 0

¡ The bottom-up construction is easy, just loop over 𝑖 and 𝑗 for calculating array 𝑉.

34

Example

𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5

𝑖 = 0 0 0 0 0 0 0

𝑖 = 1 0 10 10 10 10 10

𝑖 = 2 0 12 22 22 22 22

𝑖 = 3 0 12 22 27 37 37

𝑖 = 4 0 12 22 27 37 42

35

𝒊 𝒗𝒊 𝒘𝒊

1 $10 1kg

2 $12 1kg

3 $15 2kg

4 $20 3kg

𝑉 4,5 = max(𝑉 3,5 , 𝑉 3,5 − 𝑤% + 𝑣%)
𝑉 3,5 = 37
𝑉 3,2 + 20 = 42

𝑉 2,2 = max(𝑉 1,2 , 𝑉 1,2 − 𝑤" + 𝑣")
𝑉 1,2 = 10
𝑉 1,1 + 12 = 22

𝑉 3,2 = max(𝑉 2,2 , 𝑉 2,2 − 𝑤# + 15)
𝑉 2,2 = 22
𝑉 2,0 = 0

𝑉 1,1 = max(𝑉 0,1 , 𝑉 1,1 − 𝑤! + 𝑣!)
𝑉 0,1 = 0
𝑉 1,0 + 10 = 10

FLOYD’S ALGORITHM FOR SHORTEST PATHS

36

The Shortest Path Problem

¡ A common problem encounted by air travelers is
the determination of the shortest way to fly from
one city to another without a direct fight.

¡ We represent this kind of problem by using a
graph.

37

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Review of Graph Theory

¡ In graph theory, the edges are linked between vertices.

¡ If each edge has a direction, the graph is called a
directed graph.

¡ If the edges have values associated with them, the
values are called weights and the graph is called a
weighted graph.
¡ Weights are usually assumed to be nonnegative.

¡ In many applications weights are used to represent distances.

38

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Review of Graph Theory

¡ In a directed graph, a path is a sequence of vertices
such that there is an edge from each vertex to its
successor.
¡ In the figure, [𝑣", 𝑣-, 𝑣(] is a path and [𝑣(, 𝑣-, 𝑣"] is not a

path.

¡ A path is called simple if it never passes through
the same vertex twice.

¡ The length of a path in a weighted graph is the sum
of the weights on the path.

39

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Shortest Path Problem

¡ A shortest path must be a simple path.

¡ There are three simple paths from 𝑣, to 𝑣=, and
their lengths are:

𝑙𝑒𝑛𝑔𝑡ℎ 𝑣", 𝑣', 𝑣(= 1 + 3 = 4
𝑙𝑒𝑛𝑔𝑡ℎ 𝑣", 𝑣-, 𝑣(= 1 + 2 = 3

𝑙𝑒𝑛𝑔𝑡ℎ 𝑣", 𝑣', 𝑣-, 𝑣(= 1 + 2 + 2 = 5.

¡ Obviously, 𝑣,, 𝑣M, 𝑣= is the shortest path from 𝑣,
to 𝑣=.

40

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Shortest Path Problem

¡ An obvious algorithm would be to determine all the paths from the starting vertex to the
ending vertex, and select the ones with the minimum length.

¡ Suppose all vertices are connected
¡ The second vertex in the path can be any of the 𝑛 − 1 vertices.

¡ The third vertex in the path can be any of the 𝑛 − 2 vertices.

¡ …

¡ The total number of paths:
𝑛 − 1 𝑛 − 2 …1 = 𝑛 − 1 !,

which has factorial complexity.

41

Shortest Path Problem by Dynamic Programming

¡ We create an array 𝑊 called adjacency matrix to represent the graph.

𝑊 𝑖 𝑗 = I
weight on edge if there is an edge from 𝑣% to 𝑣&
∞ if there is no edge from 𝑣% to 𝑣&
0 if 𝑖 = 𝑗.

42

Image source: Figure 3.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Shortest Path Problem by Dynamic Programming

¡ We can decompose the vertices, such that the optimal solution with 𝑛
vertices can be constructed in bottom-up fashion with its subsets.

¡ We create an array 𝐷 that contains the lengths of the shortest paths in
the graph.
¡ 𝐷 𝑖 [𝑗] is the shortest path from 𝑣(to 𝑣0.

¡ To calculate 𝐷, we create a sequence of 𝑛 + 1 arrays 𝐷((), where 0 ≤
𝑘 ≤ 𝑛.
¡ 𝐷(2) 𝑖 𝑗 is the length of a shortest path from 𝑣(to 𝑣0 using only vertices in the

set {𝑣!, 𝑣", … , 𝑣2} as intermediate vertices.

¡ Thus, we have 𝐷(@) = 𝑊 and 𝐷(!) = 𝐷.

43

Image source: Figure 3.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Shortest Path Problem by Dynamic Programming

¡ Therefore, to determine 𝐷 from 𝑊 we need only find a way to obtain 𝐷(!) from 𝐷(N).

¡ The steps for using dynamic programming:
¡ Establish a recursive property with which we can compute 𝐷(#) from 𝐷(#$").

¡ Solve an instance of the problem in a bottom-up fashion by repeating the process for 𝑘 = 1 to 𝑛.
This creates the sequence 𝐷(!), 𝐷("), 𝐷('), … , 𝐷(*).

44

Shortest Path Problem by Dynamic Programming

¡ We accomlish Step 1 by considering the shortest path, using only vertices in
{𝑣,, 𝑣O, … , 𝑣)} as intermediate vertices with two cases:
¡ Case 1. It does not use 𝑣#. Then

𝐷(#) 𝑖 𝑗 = 𝐷(#$") 𝑖 𝑗 .

¡ Case 2. It uses 𝑣#. Then
𝐷(#) 𝑖 𝑗 = 𝐷(#$") 𝑖 𝑘 + 𝐷(#$") 𝑘 𝑗

45

Shortest Path Problem by Dynamic Programming

¡ Because we calculate 𝐷()) in bottom-up fashion, we know all the values in 𝐷()+,).

¡ Thus, 𝐷()) could be determined by
𝐷()) 𝑖 𝑗 = min 𝐷)+, 𝑖 𝑗 , 𝐷)+, 𝑖 𝑘 + 𝐷)+, 𝑘 𝑗 .

¡ After 𝐷 is calculated, we have actually calculated the shortest path from 𝑣' to 𝑣* for
any 𝑖 and 𝑗.

46

Case 1 Case 2

Example

We calculate 𝐷 5 [4] as an example.

¡ 𝐷(() 5 4 = 𝑊 5 4 = ∞.

¡ 𝐷(") 5 4 = min(𝐷 (5 4 , 𝐷 (5 1 + 𝐷 (1 4) = min ∞, 3 + 1 = 4.

¡ 𝐷(#) 5 4 = min(𝐷 " 5 4 , 𝐷 " 5 2 + 𝐷 " 2 4) = min 4, 4 + 2 = 4.

¡ 𝐷 ! 5 2 = min𝐷 " 5 2 , 𝐷 " 5 1 + 𝐷 " 1 2 = min(∞, 3 + 1) = 4 .

¡ 𝐷 ! 2 4 = min𝐷 " 2 4 , 𝐷 " 2 1 + 𝐷 " 1 4 = min(2,9 + 1) = 2 .

¡ 𝐷(*) 5 4 = min(𝐷 # 5 4 , 𝐷 # 5 3 + 𝐷 # 3 4) = ⋯

¡ 𝐷(+) 5 4 = min(𝐷 * 5 4 , 𝐷 * 5 2 + 𝐷 * 4 4) = ⋯

¡ 𝐷(,) 5 4 = min(𝐷 + 5 4 , 𝐷 + 5 5 + 𝐷 + 5 4) = ⋯

47

Pseudocode of Floyd’s Algorithm

¡ The every-case time complexity is obviously Θ 𝑛A .
¡ We can use an array 𝑃 to record the index of intermediate

vertex.
¡ If at least one intermediate vertex exists, 𝑃 𝑖 [𝑗] is the highest

index of an intermediate vertex on the shortest path from 𝑣(to 𝑣0;
otherwise 𝑃 𝑖 [𝑗] is 0.

48

𝑃

path(5,3) calls path(5,4)
and path(4,3).
path(5,4) calls path(5,1)
and path(1,4).
Output: v5 v1 v4 v3

Image source: Figure 3.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Dynamic Programming and Optimization Problems

¡ For an optimization problem like the shortest path problem, it has an optimal solution (e.g.
path) with an optimal value (e.g. length).

¡ The steps of developing a dynamic programming algorithm for an opimization problem can
be generalized as:
¡ Establish a recursive property that gives the optimal solution to an instance of the problem/
¡ Compute the value of an optimal solution in a bottom-up fashion.
¡ Construct an optimal solution in a bottom-up fashion.

Definition
The principle of optimality is said to apply in a problem if an optimal solution to an instance of a
problem always contains optimal solution to all subinstances.

49

Example

¡ We show the following example shows that dynamic programming does
not apply in every optimization problem.

¡ Consider the longest path problem with single path.

¡ The optimal longest simple path from 𝑣' to 𝑣B is [𝑣', 𝑣A, 𝑣;, 𝑣B].
¡ However, the subpath [𝑣', 𝑣A] is not an optimal longest path from 𝑣' to
𝑣A because

𝑙𝑒𝑛𝑔𝑡ℎ 𝑣',𝑣A = 1 and 𝑙𝑒𝑛𝑔𝑡ℎ 𝑣',𝑣;, 𝑣A = 4.
¡ The reason is that the optimal path from 𝑣' to 𝑣A (𝑣',𝑣;, 𝑣A) and from
𝑣A to 𝑣B ([𝑣A, 𝑣;, 𝑣B]) cannot be put together to construct a simple path.

50

SEQUENCE ALIGNMENT

51

Sequence Alignment

¡ Sequence alignment finds the optimal way to align two sequences.
¡ Use DNA sequence as an example:

A A C A G T T A C C
T A A G G T C A

¡ The following shows two possible alignments:
_ A A C A G T T A C C A A C A G T T A C C
T A A _ G G T _ _ C A T A _ A G G T _ C A

¡ There are two possible way to make alignments:
¡ Insert a gap as represented by “_”.
¡ Find a mismatch.

52

Cost of Sequence Alignment

¡ The cost of these two alignments are different:

_ A A C A G T T A C C A A C A G T T A C C

T A A _ G G T _ _ C A T A _ A G G T _ C A

¡ By assignment the gap with cost 2 and mismatch with cost 1,
¡ The left one has a cost of 10.

¡ The right one has a cost of 7.

¡ The optimal sequence alignment is with the minimum cost.

53

Sequence Alignment by Dynamic Programming

¡ Use 𝑥[0…𝑚] and 𝑦[0…𝑛] to represent the two sequences.

¡ We can decompose each sequence, such that the optimal solution for sequences
with length 𝑚 and 𝑛 can be constructed in bottom-up fashion.

¡ Let 𝑜𝑝𝑡(𝑖, 𝑗) be the cost of the optimal alignment of the subsequences 𝑥[𝑖 …𝑚] and
𝑦[𝑗 …𝑛].

¡ The optimal alignment is 𝑜𝑝𝑡(0,0).

¡ Now, how can we build the recursive property?

54

Sequence Alignment by Dynamic Programming

The optimal alignment must start with one of the three cases:
¡ 𝑥[0] is aligned with 𝑦[0]. 𝑥 0 = 𝑦 0 has no cost and 𝑥 0 ≠ 𝑦 0 has cost 1.

¡ The optimal cost is 𝑜𝑝𝑡 1,1 + 𝑐𝑜𝑠𝑡.

¡ 𝑥[0] is aligned with a gap and the cost is 2.

¡ The optimal cost is 𝑜𝑝𝑡 1,0 + 2.

¡ 𝑦[0] is aligned with a gap and the cost is 2.

¡ The optimal cost is 𝑜𝑝𝑡 0,1 + 2.

55

Sequence Alignment by Dynamic Programming

¡ Thus, we can establish the recursive property:
𝑜𝑝𝑡 𝑖, 𝑗 = min(𝑜𝑝𝑡 𝑖 + 1, 𝑗 + 1 + 𝑐𝑜𝑠𝑡, 𝑜𝑝𝑡 𝑖 + 1, 𝑗 + 2, 𝑜𝑝𝑡 𝑖, 𝑗 + 1 + 2)

¡ Different from the previous examples where the optimal solution is at the end of the array.
¡ 𝑜𝑝𝑡 0,0 is the optimal solution.

¡ We should determine the terminal condition:
¡ If we have passed the end of sequence 𝑥, that is when 𝑖 = 𝑚, we should insert 𝑛 − 𝑗 gaps to make

alignment.
¡ 𝑜𝑝𝑡 𝑚, 𝑗 = 2(𝑛 − 𝑗).

¡ If we have passed the end of sequence 𝑦, that is when 𝑗 = 𝑛, we should insert 𝑚− 𝑖 gaps to make
alignment.
¡ 𝑜𝑝𝑡 𝑖, 𝑛 = 2(𝑚 − 𝑖).

56

A T C G T C
A T C _ _ _

A T C _ _ _
A T C G T C

Sequence Alignment by Dynamic Programming

¡ Again, we use the diagonal trick for the recursive property:
𝑜𝑝𝑡 𝑖, 𝑗 = min(𝑜𝑝𝑡 𝑖 + 1, 𝑗 + 1 + 𝑐𝑜𝑠𝑡, 𝑜𝑝𝑡 𝑖 + 1, 𝑗 + 2, 𝑜𝑝𝑡 𝑖, 𝑗 + 1 + 2)

57

Image source: Figure 3.19, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

58

_

_

C

ACC

CA

_CA

ACA

TACA

T_CA

GT_CA

TTACA

GTTACA

GGT_CA

AGGT_CA

AGTTACA

CAGTTACA

_AGGT_CA

A_AGGT_CA

ACAGTTACA

AACAGTTACA

TA_AGGT_CA

Image source: Figure 3.20, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Conclusion

For an optimization problem, to determine the decomposition and the representation
of array is the most difficult part for designing a dynamic programming algorithm.

¡ The binomial coefficient: calculate 𝐵[𝑛][𝑘] from 𝐵[𝑖][𝑗].

¡ The chained matrix multiplication: calculate 𝑀 1 𝑛 from 𝑀 𝑖 𝑗 .

¡ Optimal binary search tree: calculate 𝐴 1 [𝑛] by 𝐴 𝑖 [𝑗].

¡ The knapsack problem: calculate 𝑉(𝑛,𝑊) by 𝑉(𝑖, 𝑗).

¡ The shortest path problem: calculate 𝐷 𝑖 [𝑗] from 𝐷(#) 𝑖 [𝑗].

¡ Sequence alignment: calculate 𝑜𝑝𝑡 0,0 by 𝑜𝑝𝑡 𝑖, 𝑗 .

59

Conclusion

After this lecture, you should know:
¡ The difference between divide-and-conquer and dynamic programming.

¡ Why is dynamic programming efficient.

¡ The condition to use dynamic programming.

¡ The steps of designing a dynamic programming algorithm.

60

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

61

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong

