
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 8: Backtracking

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outlines

¡ 𝑛-Queens Problem

¡ The Sum-of-Subsets Problem

¡ Graph Coloring

¡ The Hamiltonian Circuits Problem

¡ The 0-1 Knapsack Problem

1

Backtracking

¡ A simple and straightforward strategy to escape from a maze
is:
¡ Go as deep as possible until reach a dead end.

¡ Go back to the last fork and choose another path.

¡ If we have a sign at the fork to show dead ends, we can avoid
that path.
¡ This is backtracking.

¡ Backtracking is used to solve problems in which a sequence
of objects is chosen from a specified set so that the sequence
satisfies some criterion.

2

A maze

Image source: https://upload.wikimedia.org/wikipedia/commons/thumb/2/28/Prim_Maze.svg/1200px-Prim_Maze.svg.png

Depth-First Search

¡ A preorder tree traversal is a depth-first
search (DFS) of the tree.
¡ The root is visited first, and a visit to a node

is followed immediately by visits to all
descendants of the node.

¡ Backtracking is a modified depth-first
search of a tree.

3

Image source: Figure 5.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

𝑛-QUEENS PROBLEM

4

¡ The goal in this problem is to position 𝑛 queens on an 𝑛×𝑛 chessboard
so that no two queens threaten each other.
¡ No two queens may be in the same row, column, or diagonal.

¡ The sequence in this problem is the 𝑛 positions in which the queens are
placed.

¡ The set for each choice is the 𝑛! possible positions on the chessboard.
¡ The criterion is that no two queens can threaten each other.
¡ The 𝑛-Queens problem is a generalization of its instance when 𝑛 = 8,

which is the instance using a standard chessboard.
¡ For the sake of brevity, we will illustrate backtracking using the instance when
𝑛 = 4.

5

Image source: Figure 5.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

𝑛-Queens Problem

𝑛-Queens Problem

¡ Our task is to position four queens on a 4×4 chessboard so that no two queens
threaten each other.

¡ We can immediately simplify matters by realizing that no two queens can be in the
same row.

¡ The instance can then be solved by assigning each queen a different row and
checking which column combinations yield solutions.
¡ There are 4×4×4×4 = 256 candidate solutions.

6

𝑛-Queens Problem

¡ We can create the candidate
solutions by constructing a state
space tree.

¡ A path from the root to a leaf is a
candidate solution.

¡ Actually, we don’t need to check
every leaf.
¡ We may early stop if we find out that

this path definitely leads to a dead
end.

7

Image source: Figure 5.2-5.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Promising Function

¡ Backtracking is the procedure whereby, after determining that a node can lead to
nothing but dead ends, we go back (“backtrack”) to the node’s parent and proceed
with the search on the next child.

¡ We call a node nonpromising if when visiting the node we determine that it cannot
possibly lead to a solution. Otherwise, we call it promising.

¡ The promising checking is done with DFS.

¡ This process called pruning the state space tree, and the subtree consisting of the
visited nodes is called the pruned state space tree.

8

Promising Function

¡ The root of the state space tree is passed to checknode at the top
level.

¡ A visit to a node consists of first checking whether it is promising.
¡ If it is promising and there is a solution at the node, the solution is

printed.
¡ If there is not a solution at a promising node, the children of the node are

visited.

¡ We call it the promising function for the algorithm, which is
different in each application of backtracking.

¡ A backtracking algorithm is same as DFS, except that the children
of a node are visited only when the node is promising and there is
not a solution at the node.

9

Backtracking of 𝑛-Queens Problem

10

Image source: Figure 5.4-5.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The backtracking algorithm only checks 27 nodes, while DFS checks 155 nodes before finding that same solution.

Backtracking

¡ Notice that a backtracking algorithm does not need to actually create a tree.
¡ Usually, they are implemented by recursion (thus a stack).

¡ Rather, it only needs to keep track of the values in the current branch being
investigated.

¡ The state space tree exists implicitly in the algorithm because it is not actually
constructed.

11

𝑛-Queens Problem

¡ For each row, we put one queen. Thus, the promising function only
needs to check if two queens are in the same column or diagonal.

¡ Let 𝑐𝑜𝑙(𝑖) be the column where the queen in the 𝑖th row is located.

¡ Condition that two queens are in the same column:
𝑐𝑜𝑙 𝑖 = 𝑐𝑜𝑙 𝑘 .

¡ Condition that two queens are in the same diagonal :
𝑐𝑜𝑙 𝑖 − 𝑐𝑜𝑙 𝑘 = 𝑖 − 𝑘 or 𝑐𝑜𝑙 𝑖 − 𝑐𝑜𝑙 𝑘 = 𝑘 − 𝑖.

12

Image source: Figure 5.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of 𝑛-Queens Problem

13

¡ As usual, non-changing variables n and col are
not inputs to the recursive function. They are
defined globally.

¡ The top level call is queens(0).

¡ For the terminate condition i == n, the program
doesn’t stop, until all solutions are found.

Analysis of 𝑛-Queens Problem

¡ For DFS, the tree contains 1 node at level 0, 𝑛 nodes at level 1, 𝑛! nodes at level 2, ... , and 𝑛" nodes
at level n. The total number of nodes is

1 + 𝑛 + 𝑛! + 𝑛# +⋯+ 𝑛" =
𝑛"$%1
𝑛 − 1

.

¡ For backtracking, if we only check the column, the upper bound of promising nodes are
1 + 𝑛 + 𝑛 𝑛 − 1 + 𝑛 𝑛 − 1 𝑛 − 2 +⋯+ 𝑛!.

¡ For 𝑛 = 8, DFS has 19,173,961 nodes while backtracking only has at most 109,601 promising nodes.

¡ Thus, the purpose of backtracking is to use promising function to improve DFS as much as possible.
¡ Save time by stop earlier.

14

THE SUM-OF-SUBSETS PROBLEM

15

The Sum-of-Subsets Problem

¡ In the Sum-of-Subsets problem, there are 𝑛 positive integers (weights) 𝑤& and a positive integer 𝑊.
¡ Similar to 0-1 Knapsack problem but without value.

¡ The goal is to find all subsets of the integers that sum to 𝑊.

¡ Example:
¡ Suppose that 𝑛 = 5, 𝑊 = 21, and

𝑤! = 5,𝑤" = 6,𝑤# = 10,𝑤$ = 11,𝑤% = 16.

¡ The solutions is {𝑤!, 𝑤", 𝑤#}, {𝑤!, 𝑤%} and {𝑤#, 𝑤$} because
𝑤! + 𝑤" + 𝑤# = 5 + 6 + 10 = 21,

𝑤! + 𝑤% = 5 + 16 = 21,
𝑤# + 𝑤$ = 10 + 11 = 21.

16

The Sum-of-Subsets Problem

¡ One approach is to create a state space tree.

¡ Each subset is represented by a path from the root to
a leaf.
¡ We go to the left from the root to include 𝑤!, and we go to

the right to exclude 𝑤!.

¡ We go to the left from a node at level 1 to include 𝑤", and
we go to the right to exclude 𝑤".

¡ …

¡ When we include 𝑤", we write 𝑤" on the edge where
we include it. When we do not include 𝑤", we write 0.

17

Image source: Figure 5.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Promising Function

¡ If we sort the weights in nondecreasing order before doing the search, there is an obvious
sign telling us that a node is nonpromising.

¡ Let 𝑤𝑒𝑖𝑔ℎ𝑡 to be the sum of the weights that have been included up, and 𝑟𝑒𝑚𝑎𝑖𝑛 is the sum
of the weight that is remained to be checked.

¡ There are two cases that a node at the 𝑖th level is nonpromising:
¡ Case 1: Including 𝑤#$! exceeds 𝑊:

𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑤#$! > 𝑊.
¡ Case 2: Including all the remaning can’t reach 𝑊:

𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑟𝑒𝑚𝑎𝑖𝑛 < 𝑊.

18

Example

19

12+6>13

7+0<13

8+6>13 3+6<13 9+6>13

4+6<13

0+11<13

Image source: Figure 5.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

𝑛 = 4,𝑊 = 13

Pseudocode

¡ n, w, W and include are defined globally.
¡ The top-level call is

sum_of_subsets(0, 0, remain)

where remain is initialized as:

𝑟𝑒𝑚𝑎𝑖𝑛 =2
%&!

'

𝑤[𝑗] .

¡ Actually, we don’t need to test if i==n, because it
has been tested by weight+remain>=W in
function promising.
¡ When i==n, remain must be 0.

20

GRAPH COLORING

21

Graph Coloring

¡ The 𝑚-Coloring problem concerns finding all ways to color an undirected
graph using at most 𝑚 different colors, so that no two adjacent vertices
are the same color.

¡ There is no solution to the 2-Coloring problem for this example graph.

¡ One solution to the 3-Coloring problem for this graph is as follows:
𝑣# color 1
𝑣! color 2
𝑣$ color 3
𝑣% color 2

22

Image source: Figure 5.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Graph Coloring

¡ An important application of graph coloring is the coloring of
maps.

¡ In mathematics, a very famous problem is called the four color
theorem.
¡ It has been proved with a computer software in 1976.

¡ Given any separation of a plane into contiguous regions,
producing a figure called a map, no more than four colors are
required to color the regions of the map so that no two
adjacent regions have the same color.

23

Image source: https://en.wikipedia.org/wiki/Four_color_theorem

https://en.wikipedia.org/wiki/Four_color_theorem

Graph Coloring

¡ A graph is called planar if it can be drawn in a plane in such a way
that no two edges cross each other.
¡ However, if we were to add the edges (𝑣%, 𝑣') and (𝑣!, 𝑣() it would no longer

be planar.

¡ To every map there corresponds a planar graph.

¡ The 𝑚-Coloring problem for planar graphs is to determine how
many ways the map can be colored, using at most 𝑚 colors, so that
no two adjacent regions are the same color.

24

Image source: Figure 5.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

A planar graph

Graph Coloring

¡ A straightforward state space tree is:
¡ Each possible color is tried for vertex 𝑣! at level 1;

¡ Each possible color is tried for vertex 𝑣" at level 2;

¡ …

¡ Until each possible color has been tried for vertex 𝑣& at level
𝑛.

¡ Each path from the root to a leaf is a candidate solution.

¡ We can backtrack in this problem because a node is
nonpromising if a two adjacent vertices are colored by
the same color.

25

Image source: Figure 5.12, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of Graph Coloring

¡ The top level call is
m_coloring(0).

¡ The pseudocode is
exactly same as the 𝑛-
Queens problem,
except the if-condition
in promising function.

26

THE HAMILTONIAN CIRCUITS PROBLEM

27

The Hamiltonian Circuits Problem

¡ Given a connected, undirected graph, a
Hamiltonian Circuit (also called a tour) is a path
that starts at a given vertex, visits each vertex in
the graph exactly once, and ends at the starting
vertex.

¡ The graph in Figure (a) contains the Hamiltonian
Circuit [𝑣(, 𝑣), 𝑣*, 𝑣+, 𝑣,, 𝑣-, 𝑣., 𝑣/, 𝑣(], but the
one in Figure (b) does not contain a Hamiltonian
Circuit.

28

Image source: Figure 5.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Hamiltonian Circuits Problem

¡ A state space tree for this problem is as follows.
¡ Put the starting vertex at level 0 in the tree; call it the zeroth vertex on the path.

¡ At level 1, consider each vertex other than the starting vertex as the first vertex.

¡ At level 2, consider each of these same vertices as the second vertex, and so on.

¡ Finally, at level 𝑛 − 1, consider each of these same vertices as the (𝑛 − 1)st vertex.

¡ Consider backtrack in this state space tree:
¡ The 𝑖th vertex on the path must be adjacent to the (𝑖 − 1)st vertex on the path.

¡ The (𝑛 − 1)st vertex must be adjacent to the 0th vertex (the starting one).

¡ The 𝑖th vertex cannot be one of the first 𝑖 − 1 vertices.

29

The Hamiltonian Circuits Problem

30

Image source: http://www.brainkart.com/article/Hamiltonian-Circuit-Problem_7981/

http://www.brainkart.com/article/Hamiltonian-Circuit-Problem_7981/

Pseudocode of the Hamiltonian Circuits Problem

¡ The top-level call is:
vindex[0]=1;

hamiltonian(0);

31

THE 0-1 KNAPSACK PROBLEM

32

Knapsack Problem Recall

¡ Problem description:
¡ Given 𝑛 items and a "knapsack.”
¡ Item 𝑖 has weight 𝑤' > 0 and has value 𝑣' > 0.
¡ Knapsack has capacity of 𝑊.
¡ Goal: Fill knapsack so as to maximize total value.

¡ Mathematical description:
¡ Given two 𝑛-tuples of positive numbers < 𝑣!, 𝑣", … , 𝑣& > and < 𝑤!, 𝑤", … , 𝑤& >, and 𝑊 > 0, we wish to determine the

subset 𝑇 ⊆ {1,2, … , 𝑛} that

maximize <
'∈)

𝑣' subject to<
'∈)

𝑤' ≤ 𝑊

¡ Can backtracking solve this problem?

33

The 0-1 Knapsack Problem

¡ We can solve this problem using a state space tree exactly like the one in the Sum-of-
Subsets problem.
¡ We go to the left from the root to include the first item, and we go to the right to exclude it.

¡ We go to the left from a node at level 1 to include the second item, and we go to the right to
exclude it.

¡ …

¡ Each path from the root to a leaf is a candidate solution.

34

The 0-1 Knapsack Problem

¡ This problem is different from the others discussed in this chapter in that it is an
optimization problem.
¡ It finds the maximum value, rather than a solution satisfying some conditions.

¡ We do not know if a node contains a solution until the search is over.
¡ If the items included up to a node have a greater total profit than the best solution so

far, we change the value of the best solution so far.
¡ However, we may still find a better solution at one of the node’s descendants (by including more

items).

¡ Therefore, for optimization problems we always visit a promising node’s children.

35

Promising Function

¡ Similar to the sum-of-subsets problem, there are two cases that a node is
nonpromising:
¡ Case 1: Weights of included items exceeds 𝑊: 𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 𝑊.

¡ 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑊 is also nonpromising because it may not be a solution and it cannot expand to its children.

¡ Case 2: Even including all the remaining possible items can’t exceed the existing best profit.

36

Promising Function

¡ For the second case, we should calculate the profit bound of including all remaining possible
items.
¡ We use the idea of fractional knapsack with greedy approach, because it can bring us the upper bound.
¡ We first sort the items in nonincreasing order according to the values of 𝑣#/𝑤#.
¡ The profit bound is calculated by fill the knapsack with fractional items in this order.

¡ For example, 𝑛 = 4,𝑊 = 16:
¡ If we don’t include any item yet, the profit bound is

40 + 30 + (16 − 2 − 5)×5 = 115.
¡ If now we include item 1 and don’t include item 2, the profit bound is

40 + 50 + 16 − 2 − 10 ×2 = 98.

37

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Promising Function

¡ Suppose the node is at level 𝑖, we first calculate 𝑘 such that the level 𝑘 is the one
that would bring the sum of the weights exceeds 𝑊.

¡ Then we have:

𝑡𝑜𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡 + <
)*&$%

+,%

𝑤) ,

𝑏𝑜𝑢𝑛𝑑 = 𝑝𝑟𝑜𝑓𝑖𝑡 + <
)*&$%

+,%

𝑣) + 𝑊 − 𝑡𝑜𝑡𝑤𝑒𝑖𝑔ℎ𝑡 ×
𝑣+
𝑤+

.

38

Profit from first
𝑘 − 1 items taken

Capacity available
for 𝑘th item

Profit per unit
weight for 𝑘th item

Promising Function

39

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

40 + 30 + (16 − 2 − 5)×5 = 115

40 + 50 + 16 − 2 − 10 ×2 = 98

30 + 50 + 16 − 5 − 10 ×2 = 82

𝑊 = 16

40 + 10 = 50

40 + 30 + 10 = 80

𝑘 = 3

𝑘 = 4

𝑘 = 5

𝑘 = 5

𝑘 = 4

Image source: Figure 5.14, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of the 0-1 Knapsack Problem

Top level call

40

Conclusion

General process of developing a backtracking algorithm:
¡ Construct a state space tree.

¡ Design a promising function to stop at some nonpromising nodes and thus avoid full DFS over this
state space tree.

41

Conclusion

After this lecture, you should know:
¡ What is the difference between DFS and backtracking.

¡ What is a state space tree.

¡ What is a promising function.

¡ What kind of problems can be solved by backtracking.

42

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

43

