CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 8: Backtracking

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432
Office hour: 2pm-4pm Mon & Thur




Outlines

= n-Queens Problem

® The Sum-of-Subsets Problem

" Graph Coloring

®= The Hamiltonian Circuits Problem

® The 0-1 Knapsack Problem
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Backtracking

= Asimple and straightforward strategy to escape from a maze

IS. —l_l__ —

1]
L[]
ik

= Go as deep as possible until reach a dead end. BN | L[] - - D I:I_

= Go back to the last fork and choose another path. [ TL |_|_ _—|:| _

= |f we have a sign at the fork to show dead ends, we can avoid Inl | —1 ' |_

that path. T I |_I |

m  This is backtracking. T =N | —

o . . I ]|

® Backtracking is used to solve problems in which a sequence L _I | " _—‘ _

of objects is chosen from a specified set so that the sequence — | — | L 1 7
satisfies some criterion. A maze

Image source: https://upload.wikimedia.org/wikipedia/commons/thumb/2/28/Prim_Maze.svg/1200px-Prim_Maze.svg.png



Depth-First Search

" A preorder tree traversal is a depth-first

search (DFS) of the tree. 6 ° Q

= The root is visited first, and a visit to a node
is followed immediately by visits to all

descendants of the node. ° ‘ ‘ ° Q Q ° @

® Backtracking is a modified depth-first

search of a tree. ° ° e e
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Image source: Figure 5.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



n-QUEENS PROBLEM




n-Queens Problem

® The goal in this problem is to position n queens on an nXn chessboard
so that no two queens threaten each other.

= No two queens may be in the same row, column, or diagonal.

" The sequence in this problem is the n positions in which the queens are g
placed. g

= The set for each choice is the n? possible positions on the chessboard. g

® The criterion is that no two queens can threaten each other. g

= The n-Queens problem is a generalization of its instance whenn = 8§,
which is the instance using a standard chessboard.

=  For the sake of brevity, we will illustrate backtracking using the instance when
n = 4.
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Image source: Figure 5.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




n-Queens Problem

® Qur task is to position four queens on a 4X4 chessboard so that no two queens
threaten each other.

= We can immediately simplify matters by realizing that no two queens can be in the
same row.

® The instance can then be solved by assigning each queen a different row and
checking which column combinations yield solutions.

® There are 4x4X4%X4 = 256 candidate solutions.
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n-Queens Problem

= We can create the candidate X X @
solutions by constructing a state

space tree. Q

" A path from the root to a leaf is a
candidate solution. Q

= Actually, we don’t need to check

every leaf. Q Q Q

= We may early stop if we find out that
this path definitely leads to a dead

end. CIQIGISISICHCID
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Image source: Figure 5.2-5.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Promising Function

® Backtracking is the procedure whereby, after determining that a node can lead to
nothing but dead ends, we go back (“backtrack”) to the node’s parent and proceed
with the search on the next child.

"= We call a node nonpromising if when visiting the node we determine that it cannot
possibly lead to a solution. Otherwise, we call it promising.

" The promising checking is done with DFS.

" This process called pruning the state space tree, and the subtree consisting of the
visited nodes is called the pruned state space tree.
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= The root of the state space tree is passed to checknode at the top
level.

= Avisit to a node consists of first checking whether it is promising.

= Ifitis promising and there is a solution at the node, the solution is

printed.

= |f there is not a solution at a promising node, the children of the node are

visited.

= We call it the promising function for the algorithm, which is

different in each application of backtracking.

= A backtracking algorithm is same as DFS, except that the children
of a node are visited only when the node is promising and there is

not a solution at the node.
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void checknode (node v)

{

10de u;

if (promising(v))
if (there is a solution at v)
write the solution

or (each child u of v)
checknode(u);




Backtracking of n-Queens Problem
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The backtracking algorithm only checks 27 nodes, while DFS checks 155 nodes before finding that same solution.
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Backtracking

= Notice that a backtracking algorithm does not need to actually create a tree.

= Usually, they are implemented by recursion (thus a stack).

= Rather, it only needs to keep track of the values in the current branch being
investigated.

" The state space tree exists implicitly in the algorithm because it is not actually
constructed.
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n-Queens Problem

= For each row, we put one queen. Thus, the promising function only 1 2 3 4 5 6 7 8
needs to check if two queens are in the same column or diagonal.

= Let col(i) be the column where the queen in the ith row is located. [}

= Condition that two queens are in the same column:
col(i) = col(k).

6 i
= Condition that two queens are in the same diagonal : 7
col(i)—col(k) =i—k or col(i)—collk)=k—1. :
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Image source: Figure 5.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Pseudocode of n-Queens Problem

® As usual, non-changing variables n and col are
not inputs to the recursive function. They are

defined globally.

" The top level call is queens (0).

" For the terminate condition i == n, the program
doesn’t stop, until all solutions are found.
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void queens (index 1i)
{
1N j;
if (promising(i))
if (i n)
cout col[1] through colln];
Cfor (3 = 1; § <= n; je)f
colli 1 =13;
queens (i );
¥
}
bool promising (index i)
{
index k;
bool flag;
k ;
flag H
while (k < 1 flag){
if (collil col[kl] (col[i] - collk]) k)
flag
k++;
}
eturn flag;
}
= ’ v
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Analysis of n-Queens Problem

For DFS, the tree contains 1 node at level 0, n nodes at level 1, n? nodes at level 2, ... , and n™ nodes
at level n. The total number of nodes is

nn+11
n—1"
= For backtracking, if we only check the column, the upper bound of promising nodes are
1+n+nn—-1)+nn—-1)(n-2)+ -+ nl
= Forn = 8, DFS has 19,173,961 nodes while backtracking only has at most 109,601 promising nodes.

l+n+n®+n’+--+n"=

= Thus, the purpose of backtracking is to use promising function to improve DFS as much as possible.

= Save time by stop earlier.
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THE SUM-OF-SUBSETS PROBLEM




The Sum-of-Subsets Problem

= In the Sum-of-Subsets problem, there are n positive integers (weights) w; and a positive integer W.

= Similar to 0-1 Knapsack problem but without value.
= The goal is to find all subsets of the integers that sum to W.

= Example:
"  Supposethatn =5, W = 21, and
w; =5w, =6w; =10,w, = 11, w; = 16.
= The solutions is {w;, wy, w3}, {w;,ws} and {ws, w,} because

W1+W2+W3:5+6+10=21,
wy +ws =5+4+16 =21,
ws +w, =10 + 11 = 21.
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= One approach is to create a state space tree.

m Each subset is represented by a path from the root to
a leaf.

= We go to the left from the root to include wy, and we go to
the right to exclude w;.

= We go to the left from a node at level 1 to include w5, and
we go to the right to exclude w;,.

= When we include w;, we write w; on the edge where
we include it. When we do not include w;, we write O.
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Image source: Figure 5.7, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




= |f we sort the weights in nondecreasing order before doing the search, there is an obvious
sign telling us that a node is nonpromising.

= Let weight to be the sum of the weights that have been included up, and remain is the sum
of the weight that is remained to be checked.

= There are two cases that a node at the ith level is nonpromising:

= Case 1: Including w;, 4 exceeds W'
weight + w1 > W.

m  Case 2: Including all the remaning can’t reach I/
weight + remain < W,
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Example

n=4W =13

wy=4
e ° ’ '\ 0+11<13
wy=5 5
12+6>13 — e +6<13
wy=6 X

\7+O<13
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Image source: Figure 5.9, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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= n,w, Wand include are defined globally.

= The top-level call is

sum of subsets (0,

0, remain)

where remain is initialized as:

n
remain = Z wlj].
j=1

= Actually, we don’t need to test if i==n, because it
has been tested by weight+remain>=Win

function promising.

® When i==n, remain must be O.
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void sum_of_subsets (index i,

{

int weight, int remain)

if (promising(i))
if (weight W)
cout include[1] through includel[il;
else{
include[i 1
sum_of_subsets(i
include[i 1
sum_of_subsets(i

, weight + wli 1, remain - wli

, weight, remain - wli 1)

[ promising (index 1i);

eturn (weight + remain W) (weight W weight + wli

1);

W) ;
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GRAPH COLORING




Graph Coloring

= The m-Coloring problem concerns finding all ways to color an undirected

graph using at most m different colors, so that no two adjacent vertices
are the same color.

= There is no solution to the 2-Coloring problem for this example graph.

= One solution to the 3-Coloring problem for this graph is as follows:

v; color1l
v, color 2
v3; color 3
v, color 2
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Image source: Figure 5.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014




Graph Coloring

® An important application of graph coloring is the coloring of
maps.

" |n mathematics, a very famous problem is called the four color
theorem.

= |t has been proved with a computer software in 1976.

® Given any separation of a plane into contiguous regions,
producing a figure called a map, no more than four colors are
required to color the regions of the map so that no two
adjacent regions have the same color.
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Image source: https://en.wikipedia.org/wiki/Four color theorem



https://en.wikipedia.org/wiki/Four_color_theorem

Graph Coloring

® Agraphis called planar if it can be drawn in a plane in such a way
that no two edges cross each other.

{'3

= However, if we were to add the edges (v, vs) and (v,, v,) it would no longer
be planar.

" To every map there corresponds a planar graph.

" The m-Coloring problem for planar graphs is to determine how
many ways the map can be colored, using at most m colors, so that
no two adjacent regions are the same color.

A planar graph
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Image source: Figure 5.11, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014



Graph Coloring

= A straightforward state space tree is:

Each possible color is tried for vertex v; at level 1;

Each possible color is tried for vertex v, at level 2;

Until each possible color has been tried for vertex v,, at level
n.

m Each path from the root to a leaf is a candidate solution.

®=  We can backtrack in this problem because a node is
nonpromising if a two adjacent vertices are colored by
the same color.
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Pseudocode of Graph Coloring

" The top level call is

m coloring(0).

" The pseudocode is
exactly same as the n-
Queens problem,
except the if-condition
in promising function.
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int color;

0oid m_coloring (index 1)

if (promising(i))

if (1

cout

}

n)
vcolor[

(color
veolor[i
m_coloring(i

1 through vcolor[n];

; color m; color++){

] color;

);
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bool promising (inde:

index j;

bool Kflag;

flag

j ’

while (j < i
if (W[il [j]

flag

j++;

}

etu 1 flag;

i)

flag){

vcolor[il]

vcolor([jl)




THE HAMILTONIAN CIRCUITS PROBLEM




The Hamiltonian Circuits Problem

® Given a connected, undirected graph, a
Hamiltonian Circuit (also called a tour) is a path
that starts at a given vertex, visits each vertex in
the graph exactly once, and ends at the starting
vertex.

= The graph in Figure (a) contains the Hamiltonian ‘ ‘ c
Circuit [vq, V5, Vg, V7, Vg, Us, Vg, V3, V1], but the
one in Figure (b) does not contain a Hamiltonian

Circuit. e 0

(b)
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The Hamiltonian Circuits Problem

= A state space tree for this problem is as follows.

Put the starting vertex at level 0 in the tree; call it the zeroth vertex on the path.
At level 1, consider each vertex other than the starting vertex as the first vertex.

At level 2, consider each of these same vertices as the second vertex, and so on.

Finally, at level n — 1, consider each of these same vertices as the (n — 1)st vertex.

" Consider backtrack in this state space tree:
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The ith vertex on the path must be adjacent to the (i — 1)st vertex on the path.
The (n — 1)st vertex must be adjacent to the Oth vertex (the starting one).

The ith vertex cannot be one of the first i — 1 vertices.
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The Hamiltonian Circuits Problem

9
()
v
=) %
2 . 9
/C\ (( |

5;[ dead end dead end

dead end

o

solution
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Image source: http://www.brainkart.com/article/Hamiltonian-Circuit-Problem 7981/



http://www.brainkart.com/article/Hamiltonian-Circuit-Problem_7981/

Pseudocode of the Hamiltonian Circuits Problem

" The top-level call is:

vindex[0]=1;

hamiltonian(0);
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void hamiltonian (index i)

{

index j;

if (promising(i))
if (i n )
cout vindex[2] through vindexI[n
(j i n; j++)A
vindex[i 1 =13;
hamiltonian(i );

;/»*E; EBIXFEERFR
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bool promising (index i)

index j;
bool flag;
if (i n Wlvindex[n 11 [vindex[0]1)
flag ;
else if (i Wlvindex[i
flag ;
else{
flag
j ;
while (j i flag){
if (vindex[i] vindex[jl)
flag

11 [vindex[il])

j
}

}
eturn flag;

%7 itHNEER
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THE O-1 KNAPSACK PROBLEM




Knapsack Problem Recall

= Problem description:
" Given n items and a "knapsack.”
®  |tem i has weight w; > 0 and has value v; > 0.
®  Knapsack has capacity of V.

®  Goal: Fill knapsack so as to maximize total value.
=  Mathematical description:

" Given two n-tuples of positive numbers < v4, V5, ..., v, > and < wq, Wy, ...,w, >, and W > 0, we wish to determine the
subset T € {1,2, ...,n} that

maximize Z v; subject toz w, < W
LET LET
= Can backtracking solve this problem?
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The 0-1 Knapsack Problem

" We can solve this problem using a state space tree exactly like the one in the Sum-of-
Subsets problem.

= We go to the left from the root to include the first item, and we go to the right to exclude it.

= We go to the left from a node at level 1 to include the second item, and we go to the right to

exclude it.

= Each path from the root to a leaf is a candidate solution.
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The 0-1 Knapsack Problem

® This problem is different from the others discussed in this chapter in that it is an
optimization problem.

= |t finds the maximum value, rather than a solution satisfying some conditions.
= \We do not know if a hode contains a solution until the search is over.

= |f the items included up to a node have a greater total profit than the best solution so
far, we change the value of the best solution so far.

= However, we may still find a better solution at one of the node’s descendants (by including more
items).

= Therefore, for optimization problems we always visit a promising node’s children.
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Promising Function

= Similar to the sum-of-subsets problem, there are two cases that a node is
nonpromising:

= Case 1: Weights of included items exceeds W: weight = W.

= weight = W is also nonpromising because it may not be a solution and it cannot expand to its children.

= Case 2: Even including all the remaining possible items can’t exceed the existing best profit.
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Promising Function

= For the second case, we should calculate the profit bound of including all remaining possible
items.

= We use the idea of fractional knapsack with greedy approach, because it can bring us the upper bound.
= We first sort the items in nonincreasing order according to the values of v; /w;.

= The profit bound is calculated by fill the knapsack with fractional items in this order.

" Forexample,n =4, W = 16:
= |f we don’t include any item yet, the profit bound is i v | we | wgwi

1 $40 2kg  205/kg
= |f now we include item 1 and don’t include item 2, the profit bound is 3 $50  10kg  5$/kg
4 $10 Skg 25/kg

40 + 50 + (16 — 2 — 10)x2 = 98.
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Promising Function

= Suppose the node is at level i, we first calculate k such that the level k is the one
that would bring the sum of the weights exceeds W'

= Then we have:

k-1
totweight = weight + z w;,
j=i+1
k-1
. . Uk
bound = profit + v; + (W —totweight) X —.
R Wk
L J=itl ) L )
| | ‘_I_'
Profit from first Capacity available Profit per unit
k — 1 items taken for kth item weight for kth item
SR XIAMEN UNIVERSITY MALAYSIA N = b = o= % 78 3
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Promising Function

k=3
(0, 0)
40 +30+ (16 — 2 — 5)x5 = 115 :
W =16
$40
i | v | owe [ vgwe i [ 7]
1 $40 2kg 20S/kg k=4
2 $30 Skg 65/kg - 30 +50+ (16 —5—10)x2 = 82
Item.?[ ; ]
3 S50 10kg 55/kg 3
4 $10 Skg  2$/kg =14

40 +50 + (16 —2 — 10)x2 = 98

ttem 3 [ 55
s 10 (3,1)

k=5
em s [ 2] 40 +10 = 50
k=5
40+ 30+ 10 =80
X X X X
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Pseudocode of the 0-1 Knapsack Problem

Top level call

numbest ;

maxprofit ;

knapsack(@, 0, 0);

cout maxprofit;

for (j ;o numbest; j++)
cout bestset[i];
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void knapsack (index i, int profit, int weight)
{
if (weight W profit > maxprofit){
maxprofit = profit;
numbest i;
bestset include;
}
if (promising(i))<{
include[i ] ;
knapsack(i , profit + vI[i 1, weight + wli
include[i 1 ;
kanpsack(i , profit, weight);
}
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bool promising (index 1)
index j, k;
int totweight;
at bound;
if (weight W)
eturn H
Y {
] 1 ;
bound profit;
totweight = weight;
while (j n totweight + wljl wW){
totweight = totweight + w[j];
bound = bound + vI[jl;
j++i
}
k =13;
if (k n)
bound = bound + (W - totweight) * v[k]l / wlkl;
eturn bound maxprofit;
}
= P g o 40
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Conclusion

General process of developing a backtracking algorithm:
= Construct a state space tree.

= Design a promising function to stop at some nonpromising nodes and thus avoid full DFS over this
state space tree.
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Conclusion

After this lecture, you should know:

= What is the difference between DFS and backtracking.

= What is a state space tree.

= What is a promising function.

= What kind of problems can be solved by backtracking.
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Thank youl!

= Any question?

= Don’t hesitate to send email to me for asking questions and discussion. ©
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