CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 9: Branch-and-Bound

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432
Office hour: 2pm-4pm Mon & Thur




Branch-and-Bound

= The branch-and-bound design strategy is very similar to backtracking in that a state space
tree is used to solve a problem.

= The differences are that the branch-and-bound method
1. does not limit us to any particular way of traversing the tree;
2. isused only for optimization problems.

= A branch-and-bound algorithm computes a bound at a node to determine whether the node
IS promising.

®  The backtracking algorithm for the 0-1 Knapsack problem is actually a branch-and-bound algorithm.

= The promising function returns false if the value of bound is not greater than the current value of
maxprofit.
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Breadth-First Search

= Branch-and-bound is

based on breadth-flrSt {Iw breadth_first_tree_search (tree T)
queue Q;
search (BFS). ode u, v;
initialize(Q);
\ root of T;
= BFS visits the nodes in a o0, )
while ('empty(Q)){
tree level by level. v - dequeve(Q);
for (each child u of v){
visit u;
= |t is usually implemented ,  cnaueueld, ul;
. }
by using a queue, rather }

than recursion (stack).
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Outlines

" 0-1 Knapsack Problem
"= The Assignment Problem

" The Traveling Salesperson Problem
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0-1 KNAPSACK PROBLEM




Bound

= Sort the items in non-increasing order according to the ratio between v, and wy,.

= Suppose the node is at level i, we first calculate k such that the level k is the one that would
bring the sum of the weights exceeds W.

= Then we have:

k-1
totweight = weight + Z w;,
j=i+1
k-1
%
bound = profit + Z v; + (W —totweight) X L.
Wi

\ I ) q \_'_I
Profit from first Capacity available  Profit per unit
k — 1 items taken for kthitem  weight for kth item
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Recall that by using DFS, node (1, 2) was found to be
nonpromising and we did not expand beyond the node.

However, in the case of BFS, node (1, 2) is the third
node visited.

= At the time it is visited, the value of maxprofit is only $40.
Because its bound $82 exceeds maxprofit at this point, we
expand beyond the node.

Unlike DFS, in BFS the value of maxprofit can change by
the time we actually visit the children.

® |n this case, maxprofit has a value of $90 by the time we
visit the children of node (2, 3).

= We then waste our time checking these children.
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void breadth_first_branch_and_bound (tree T,
iumberé& best)
{

initialize(Q);
u root of T;
best = value(u);
enqueue(Q, u);
while ('empty(Q)){
u = dequeue(Q);
for (each child of u_child of u){
if (value(u_child) is better than best)
best = value(u_child);
if (bound(u_child) is better than best)
enqueue(Q, u_child);

) EITRRER SR

/' SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

%7 itHNEER



Pseudocode of BFS Version of

0-1 Knapsack Problem

void knapsack_breadth (int n,

struct node

{
int level;
int profit;
int weight;

}

float bound (node u)

index j, k;

int totweight;
float result;

if (u.weight W)

return 0;

else{

result u.profit;

j u. level ;

totweight = u.weight;

while (j n totweight + wljl W){
totweight = totweight + wljl;
result = result + v[jl;
j++;

}

k = 3;

if (k n)

result = result + (W - totweight) * v[k]l / wlk];

return result;
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const int vI[],
const int wll],
int W,
int& maxprofit)
queue Q;
1ode u, u_child;
initialize(Q);
u. level ; u.profit ; u.weight ;
maxprofit ;
enqueue(Q, u);
while ('empty(Q)){
u = dequeue(Q);
u_child. level u. level R

u_child.weight = u.weight + wl[u_child. levell;
u_child.profit = u.profit + v[u_child.levell;
f (u_child.weight W
maxprofit = u_child.profit;
if (bound(u_child) > maxprofit)
enqueue(Q, u_child);

u_child.weight = u.weight;

u_child.profit = u.profit;

if (bound(u_child) > maxprofit)
enqueue(Q, u_child);
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Best-First Search with Branch-and-Bound Pruning

= Comparison between breadth-first and best-first search:
= Breadth-first: visit the unexpanded node according to its order in the queue.

= Best-first: visit the unexpanded node according to its value in the queue.

" For 0-1 knapsack problem, best-first search visit the node with maximum bound in
the queue first.

= Select the one who has the greatest hope!
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| v | v o/

$40 2kg 20S/kg
$30 Skg 65/ke
$50 10kg  5$/kg
$10 5kg 2S/kg

Pruned State Space Tree by Best-First Search

A W ON R

1. Visit node (0,0).
2. Visit node (1,1).

* maxprofit=40.
3. Visit node (1,2).

4. Determine promising, unexpanded node with
greatest bound.

= Select node (1,1) to expand.
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Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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$40 2kg 20S/kg
$30 Skg 65/ke
$50 10kg  5$/kg
$10 5kg 2S/kg

Pruned State Space Tree by Best-First Search

A W ON R

5. Visit node (2, 1).
" maxprofit=70.
6. Visit node (2, 2).

7. Determine promising, unexpanded node with
greatest bound.

= Select node (2,1) to expand.
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$40 2kg 20S/kg
$30 Skg 65/ke
$50 10kg  5$/kg
$10 5kg 2S/kg

Pruned State Space Tree by Best-First Search

A W ON R

8. Visit node (3, 1).
9. Visit node (3, 2).

10. Determine promising, unexpanded node with
greatest bound.

= Select node (2,2) to expand.
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$40 2kg 20S/kg
$30 Skg 65/kg
$50 10kg  5S/kg
$10 Skg 25/kg

Pruned State Space Tree by Best-First Search

A W ON R

11. Visit node (3, 3).
" maxprofit=90.
12. Visit node (3, 4).

13. Determine promising, unexpanded node with
greatest bound.

= Select node (3, 3) to expand.
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$40 2kg 20S/kg
$30 Skg 65/ke
$50 10kg  5$/kg
$10 5kg 2S/kg

Pruned State Space Tree by Best-First Search

A W ON R

14. Visit node (4,1).
15. Visit node (4,2).

= No promising and unexpanded node exists because the
bound of node (1, 2) is less than maxprofit=90.
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$40 2kg 20S/kg
$30 Skg 65/kg
$50 10kg  5S/kg
$10 Skg 25/kg

Pruned State Space Tree by Best-First Search

A W ON R

= Using best-first search, we have checked only 11
nodes.

® 6 less than the number checked using BFS.

= 2 |ess than the number checked using DFS.

" However, there is no guarantee that the node
that appears to be best will actually lead to an
optimal solution.

= |n this example, node (2, 1) appears to be better than

node (2, 2), but node (2, 2) leads to the optimal
solution.
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Pseudocode of a General Best-First Search with Branch-and-Bound

Algorithm

void best_first_branch_and_bound (tree T,
wumber& best)

{

[priority_queue PQ;]

0de u, u_child;

initialize(PQ);

u = root of T; Difference with

best = value(u); .

enqueue(PQ, u); BFS version

while (!empty(PQ)){

u = dequeue(PQ);
[if (bound(u) is better than best)|
for (each child of u_child of u){
if (value(u_child) is better than best)
best = value(u_child);
if (bound(u_child) is better than best)
enqueue(PQ, u_child);
}

}

}
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void kanpsack_best (int n,

const int v[],
const int wll,
int W,

int& maxprofit)

Pseodocode of Best-First Search Version

Ipriority_queue PQ;I
node u, u_child,

initialize(PQ);

u. level ; u.profit ; U.weight ;

maxprofit = 0; Difference with
enqueue(PQ, u);

while (lempty(PQ)){ BFS version

u = dequeue(P0):
[if (u.bound > maxprofit){ |
u_child. level = u. level 1;

struct node
{ u_child.weight = u.weight + w[u_child.level];
int level; u_child.profit u.profit + v[u_child.levell;
L] L] . N . [ s . . N ) . N
[ ] Func‘“on bound IS same. i;:é \ngrl]t i (u_chlld.welght . W. u_.cr.uld profit > maxprofit)
float bound; |u_child.bound bound(u_childﬂ
¥ it (u_child.bound = maxprofit)

enqueue(PQ, u_child);

u_child.weight = u.weight;

|u_child.bound bound(u_childﬂ

1T (u_child.bound maxprotit)
enqueue(PQ, u_child);
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THE ASSIGNMENT PROBLEM




The Assignment Problem

= The assignment problem aims to assign n people to n jobs so that the total cost of the
assignment is as small as possible.

= Aninstance of the assignment problem is specified by an nXn cost matrix C.

= Select one element in each row of the matrix so that no two selected elements are in the same column
and their sum is the smallest possible.

jobl job2 job3 job4
9 @ 7 81 persona

C = (@ 4 3 7| persond
B 8 @ person ¢
|7 6 9 é) person d

= For this example, the optimal solution is 2+6+1+4=13.
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State Space Tree of the Assignment Problem

® The final solution does not depend on the
starting person, we will start with person
a.

= We stop expanding the tree when we have ~ P®™°"°

assigned n — 1 people because, at that

time, the job of the nth person is uniquely person b
determined.
= For example, if we have assigned [2, 4, 3], person ¢

person d can only be assigned to job 1.
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The Assignment Problem

= |t seems that this problem can be solve by greedy approach.

= Always find the smallest cost in the unselected columns and rows.

= However, a counterexample can be easily obtained:

(10 10 2 10]

C = 10 10 2 10
2 2 1 2

110 10 2 10.

" The greedy solution is 1+10+10+10=31, while the optimal solution is 2+2+10+10=24.
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Lower Bound of Total Cost

® |n this case, the bound is a lower bound.

" The lower bound is calculated as the sum of minimum cost of each person.

person a: minimum(9,2,7,8) = 2 o 2 7 8
person b: minimum(6,4,3,7) = 3 c =6 4 3 7

.. 5 8 1 8
person c;: minimum(5,8,1,8) = 1 - p 9 .

person d: minimum(7,6,9,4) = 4
= Therefore, a lower bound of the total cost is:
2+3+14+4=10.

= Any solution can’t be smaller than this lower bound.
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= The lower bound in each node will change according to the assignment.

= For example, if person a is assigned to job 1.

person a: 9 2 i ; g
person b: minimum(4,3,7) = 3 C = c 3 1 3
person c¢: minimum(8,1,8) = 1 . 6 9 4
person d: minimum(6,9,4) = 4 ] ]
= Therefore, a lower bound of the total cost after person a being assigned to job 1 is:
9+3+14+4=17.
= We can thus use this calculation to build the pruned state space tree with best-first search.
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1. Visit root.
2. Visit node containing

3. Visit node containing
person a

w N R

4. Visit node containing |

5. Visit node containing [4].

6. Determine promising, unexpanded node with
the smallest bound.

= Node containing [2] is selected. We visit its children.
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7. Visit node containing [2, 1].

8. Visit node containing [2, 3].

9. Visit node containing [2, 4].

10. Determine promising, unexpanded node
with the smallest bound.

= Node containing [2, 1] is selected. We visit its
children.
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11. Visit node containing [2, 1, 3].

= Compute total cost: 13. mincost=13.

12. Visit node containing [2, 1, 4].

person a
= Compute total cost: 25.

13. Determine promising, unexpanded

node with the smallest bound. person b

= There are no more promising,
unexpanded nodes, because all the person ¢
nodes have higher bound than mincost.

A=\ XIAMEN UNIVERSITY MALAYSIA

t“" L Ale — AL i
() AMAS ErREE AR (ty) BIIXFERFR

496 4
\&z==/ SCHOOL OF INFORMATICS XIAMEN UNIVERSITY




THE TRAVELING SALESPERSON PROBLEM




A tour (also called a Hamiltonian circuit) in a directed graph is a path from a vertex
to itself that passes through each of the other vertices exactly once.

An optimal tour in a weighted, directed graph is such a path of minimum length.

The Traveling Salesperson problem (TSP) is to find an optimal tour in a weighted,
directed graph when at least one tour exists.

"  Because the weights are considered, it is the optimization version of Hamiltonian circuit
problem.

For example:

length|vy, vy, V3, Vs, V1] = 22
length|vy,vs3,v,,v,, ] = 26 3
length|vy,vs3, Vs, Uy, 1] = 21
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Image source: Figure 3.16-17, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014
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State Space Tree

= Because the starting vertex is irrelevant to the length of an 0
optimal tour, we will consider v; to be the starting vertex.

= The state space tree can be constructed by:

®  Each vertex other than v, is tried as the first vertex at level 1. Q @ 0 @

= Each vertex other than v; and the one chosen at level 1 is tried as
the second vertex at level 2.

= We stop expanding the tree when there are n — 1 vertices
in the path stored at a node because, at that time, the nth

vertex is uniquely determined.

" For example, the far-left leaf represents the tour [1, 2, 3,4, 5, 1]
because once we have specified the path [1, 2, 3, 4], the next
vertex must be vs.
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= |n this case, the bound is a lower bound.

= |nany tour, the length of the edge taken when leaving a vertex must be at least
as great as the length of the shortest edge from that vertex.

v.: minimum(14,4,10,20) = 4
v,: minimum(14,7,8,7) = 7
v3: minimum(4,5,7,16) = 4
v,: minimum(11,7,9,2) = 2
ve: minimum(18,7,17,4) = 4

= Because a tour must leave every vertex exactly once, a lower bound on the

length of a tour is the sum of these minimums. Therefore, a lower bound on the
length of a tour is

4+7+4+2+4=21.

= This is not to say that there is a tour with this length. Rather, it says that there
can be no tour with a shorter length.
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This adjacency matrix

assumes that every
vertex is connected
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= Suppose we have visited the node containing [1, 2].

= Any tour obtained by expanding beyond this node has the following
lower bounds on the costs of leaving the vertices:

- 14

: minimum(7,8,7) = 7 —

> no path to v,
4

= Alower bound on the length of any tour, obtained by expanding beyond
the node containing [1, 2], is the sum of these minimums, which is

14+7+4+2+4 =31

: minimum(4,7,16) = 4
: minimum(11,9,2) = 2
: minimum(18,17,4) =
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4

11

18

This adjacency matrix
assumes that every
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Visit node containing
Visit node containing
Visit node containing
Visit node containing

Visit node containing

1.
1, 2].
1, 3].
1, 4].

1, 5].

(1, 2]
Bound = 31 g 0)
[1,3,5] [1, 4, 3] [1, 4, 5]
Bound = 39 Bound =38/ \Bound =30

Determine promising, unexpanded node with

the smallest bound.

= Node containing [1, 3] is selected. We visit its children. @ @ m @
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Pruned State Space Tree with Best-First Search

7. Visit node containing [1, 3, 2]. @

8. Visit node containing [1, 3, 4]. @ @ @

9. Visit node containing [1, 3, 5]. N '

10. Determine promising, unexpanded node @ @ @
with the smallest bound. X" e gy

= Node containing [1, 3, 2] is selected. We visit its
children.
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Pruned State Space Tree with Best-First Search

11. Visit node containing [1, 3, 2, 4]. @
= Compute tour length, minlength=37.

12. Visit node containing [1, 3, 2, 5]. @ @ @

= Compute tour length, minlength=31.

13. Determine promising, unexpanded node @ @ @

with the smallest bound.

= Node containing [1, 3, 4] is selected. We visit its
children.
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Pruned State Space Tree with Best-First Search

14. Visit node containing [1, 3, 4, 2]. @
= Compute tour length, minlength=31.

15. Visit node containing [1, 3, 4, 5]. @ @

= Compute tour length, minlength=31.

16. Determine promising, unexpanded node @ @ @

with the smallest bound.

= Node containing [1, 4] is selected. We visit its
children.
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Pruned State Space Tree with Best-First Search

17. Visit node containing [1, 4, 2]. @

18. Visit node containing [1, 4, 3]. @ @

19. Visit node containing [1, 4, 5]. N S

20. Determine promising, unexpanded node @ @ @
with the smallest bound. X" AW,

= Node containing [1, 4, 5] is selected. We visit its
children.
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Pruned State Space Tree with Best-First Search

21. Visit node containing [1, 4, 5, 2]. @
= Compute tour length, minlength=30.

22. Visit node containing [1, 4, 5, 3]. @ @
Bound = 31 Bound = 30,

= Compute tour length, minlength=30.

23. Determine promising, unexpanded node o "o (oo
with the smallest bound. Bound - 39 Bound - 35 {Bound - 3

= There are no more promising, unexpanded nodes,
because all the nodes have higher bound than
minlength.
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Pseudocode of Best-First Search

Version of TSP

= Again, select the one
who has the greatest
hope!

struct node{

int level;
ordered_set path;
number bound;

= The key idea of branch- |,
and-bound.

= bound and length are
easy to implement.

}

void travel (int n,

cont number W[1[1,
ordered_set& opt_tour,
number& minlength)

priority_queue PQ;
node u, u_child;

initialize(PQ);
u. level
u.path = [1];
u.bound = bound(u);
minlength inf;
enqueue(PQ, u);
while ('empty(PQ)){
u = dequeue(PQ);
if (u.bound < minlength){
u_child u. level 1
for (all i such that i n
u_child.path = u.path;
put i at the end of u_child.path;
if (u_child.level n ){
put index of only vertex not in u_child.path at the end of u.path;
put 1 at the end of u_child.path;
if (length(u_child) < minlength){

i is not in u.path){

minlength = length(u_child);
opt_tour = u_child.path;
¥
}
else{
u_child.bound = bound(u_child);
if (u_child.bound < minlength)
enqueue(PQ, u_child);
}
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Conclusion

After this lecture, you should know:
= What is the difference between breadth-first search and best-first search.
= What is the difference between backtracking and branch-and-bound.
= What kind of problem that we can use branch-and-bound.

= How can we use the bound to eliminate unnecessary node checking.
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Assignment

= No tutorial this week. Just implementing 0-1 knapsack problem by branch-and-bound
in Python and submit to Attendance Quiz.

= Assignment 4 is released. The deadline is 18:00, 15th June.
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Thank youl!

= Any question?

= Don’t hesitate to send email to me for asking questions and discussion. ©

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong
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