
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 10: Unsupervised Learning Algorithms

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outlines

¡ Clustering Algorithms
¡ 𝑘-means

¡ Spectral Clustering

¡ Principle Component Analysis

1

CLUSTERING ALGORITHMS

2

Basic Concepts

¡ Cluster: A collection of data objects.
¡ Similar (or related) to one another within the same cluster.

¡ Dissimilar (or unrelated) to the objects in other clusters.

¡ Clustering (or cluster analysis, data segmentation, ...)
¡ Finding similarities between data according to the characteristics found in the data and grouping

similar data objects into clusters.

3

Applications of Clustering

¡ Biology: taxonomy of living things.
¡ kingdom, phylum, class, order, family, genus and species.

¡ Information retrieval: document clustering.
¡ Automatic document organization, topic extraction and fast information retrieval or filtering.

¡ Land use: Identification of areas of similar land use in an earth observation database.
¡ Satellite image analysis.

¡ Marketing: product grouping, customer segmentation.
¡ Analytics can characterize their customer groups based on the purchasing patterns.

4

Requirements of Clustering

¡ Scalability − We need highly scalable clustering algorithms to deal with large databases.
¡ Ability to deal with different kinds of attributes − Algorithms should be capable to be applied on any kind

of data such as interval-based (numerical) data, categorical, and binary data.
¡ Discovery of clusters with attribute shape − The clustering algorithm should be capable of detecting

clusters of arbitrary shape. They should not be bounded to only distance measures that tend to find
spherical cluster of small sizes.

¡ High dimensionality − The clustering algorithm should not only be able to handle low-dimensional data but
also the high dimensional space.

¡ Ability to deal with noisy data − Databases contain noisy, missing or erroneous data. The real data is very
dirty. Some algorithms are sensitive to such data and may lead to poor quality clusters.

¡ Interpretability − The clustering results should be interpretable, comprehensible, and usable. As a big data
analyst, you should use clustering analysis to provide some insights to increase business value.

5

𝑘-Means

¡ Given a set of data points 𝒙!, 𝒙", … , 𝒙#, where each observation is a 𝑑-dimensional real
vector, 𝑘-means clustering aims to partition the 𝑛 data points into 𝑘(≤ 𝑛) clusters 𝐶 =
{𝐶!, 𝐶", … , 𝐶$} so as to minimize the within-cluster sum of squares (WCSS).

¡ Formally, the objective is to minimize:

𝐽 =/
%&!

$

/
'&!

#!

𝒙' − 𝒄%
"

¡ 𝒄! is called the centroid of the 𝑗th cluster, which is calculated by the mean of points in 𝐶".

¡ 𝑛! is the number of data points assigned to the 𝑗th cluster.

6

𝑘-Means Pseudocode

1. Determine the number of clusters 𝑘 and obtain the data points 𝒙' , 𝑖 = 1,… , 𝑛.

2. Choose the centroids 𝒄!, 𝒄", … , 𝒄$ randomly.

3. Repeat steps 4 and 5 until convergence or until the end of a fixed number of iterations.

4. For each data point 𝒙':
¡ Find the nearest centroid 𝒄𝒋 among 𝒄$, 𝒄%, … , 𝒄&.

¡ Assign the point to that 𝑗th cluster.

5. For each cluster 𝑗 = 1,… , 𝑘:
¡ The centroid 𝒄! is updated by the mean of all points assigned to 𝑗th cluster.

7

Step-by-step Example of 𝑘-Means

8

Prepare data points

Choose the centroids Find the nearest centroid for each data point

Update centroids

Assign each data point to the nearest cluster

Obtain result after convergence

Convergence of 𝑘-Means

¡ We can measure the difference of 𝐽 between each consecutive iterations. If the
difference is less than a pre-defined threshld, we stop and determine that the
convergence is achieved.

¡ 𝑘-means usually quickly converges to a local minimum.

9

𝑘-means Example

10

Imgae source: https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

https://dashee87.github.io/data%2520science/general/Clustering-with-Scikit-with-GIFs/

How to Choose 𝑘

¡ Because we don’t have the label information, the ideal
number of clusters is unknown when we are doing
clustering.

¡ It is necessary to select a proper 𝑘 that best fits the data.
¡ This is one of the most difficult problems for all clustering

algorithm.

¡ A simple solution is called the elbow method. Try a
different number of clusters and plot the total within-
cluster sum of square.
¡ In this example, the elbow point is at 𝑘 = 4.
¡ Even though the within-cluster distance decreases after 4, the

improvement is not obvious.

11

Image source: https://towardsdatascience.com/k-means-clustering-introduction-to-machine-learning-algorithms-c96bf0d5d57a

https://towardsdatascience.com/k-means-clustering-introduction-to-machine-learning-algorithms-c96bf0d5d57a

Unlucky Centroids

¡ Choosing poorly the initial centroids will take longer to
converge or get stuck on local optima which may result in
bad clustering.
¡ In the figure, the blue and red stars are unlucky centroids.

¡ There are two solutions:
¡ Distribute the initial centroids over the space.

¡ Try different sets of random centroids, and choose the best set.

12

Image source: https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6

https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6

𝑘-means++

¡ 𝑘-means++ is proposed to solve the centroid initialization problem.
¡ The algorithm is as follows:

1. Choose one centroid uniformly at random among the data points.

2. For each data point 𝑥, compute 𝐷(𝑥), the distance between 𝑥 and the nearest centroid that has
already been chosen.

3. Choose one new data point at random as a new centroid, using a weighted probability
distribution where a point 𝑥 is chosen with probability proportional to 𝐷 𝑥 !.

4. Repeat Steps 2 and 3 until 𝑘 centroids have been chosen.

5. Now that the initial centroids have been chosen, proceed using standard 𝑘-means clustering.

13

𝑘-means++ Example

14

Image source: https://www.geeksforgeeks.org/ml-k-means-algorithm/

https://www.geeksforgeeks.org/ml-k-means-algorithm/

15

𝑘-means deals with different kinds of data distribution
Image source: https://smorbieu.gitlab.io/k-means-is-not-all-about-sunshines-and-rainbows/#k-means-assumptions-and-criterion

https://smorbieu.gitlab.io/k-means-is-not-all-about-sunshines-and-rainbows/

Advantages and Disadvantages

¡ Advantages:
¡ Relatively simple to implement.

¡ Efficient and able to scale to large data sets.

¡ Guarantees convergence.

¡ Disadvantages:
¡ Choosing 𝑘 manually.

¡ Being dependent on initial values.

¡ Unable to handle non-spherical clusters.

¡ Scaling with number of dimensions.

16

MLlib API

¡ It is implemented with a 𝑘-means++ like initialization mode (the 𝑘-means|| algorithm by Bahmani et al).
¡ Commonly used hyperparameter:

¡ k: The number of clusters to create. Must be > 1.

¡ initMode: The initialization algorithm. This can be either "random" to choose random points as initial cluster centroids, or
"k-means||" to use a parallel variant of 𝑘-means++.

¡ initSteps: The number of steps for 𝑘-means|| initialization mode. Must be > 0.
¡ distanceMeasure: the distance measure. Supported options: 'euclidean' and 'cosine'.

¡ maxIter: max number of iterations (>= 0).
¡ tol: the convergence tolerance for iterative algorithms (>= 0).

17

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.clustering.KMeans

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html

MLlib Example

18

SPECTRAL CLUSTERING

19

Deal with Non-Spherical Data

¡ One of the problems of 𝑘-means is that it is not
able to deal with non-spherical data.

¡ When the data is non-spherical, using centroids
to represent the cluster center is meaningless.

20

Image source: https://www.kdnuggets.com/2019/05/guide-k-means-clustering-algorithm.html

https://www.kdnuggets.com/2019/05/guide-k-means-clustering-algorithm.html

𝑘-means vs. Spectral Clustering

21

Image source: http://scalefreegan.github.io/Teaching/DataIntegration/practicals/p2.html

¡ The result produced by spectral clustering is wonderful!
¡ How to achieve that?

http://scalefreegan.github.io/Teaching/DataIntegration/practicals/p2.html

Spectral Clustering

¡ Instead of clustering data points in their original Euclidean space, cluster them in the
space spanned by the “significant” eigenvectors of the normalized Laplacian matrix.

¡ Affinity matrix: a matrix 𝐴 where 𝐴"# is the similarity between data points 𝒙" and 𝒙#.

¡ E.g. heat kernel: 𝐴"# = exp(− 𝒙" − 𝒙#
!
/𝜎!).

¡ Normalized Laplacian matrix: 𝑊 = 𝐼 − 𝐷$%𝐴.
¡ 𝐼 is the identity matrix.

¡ 𝐷 is a diagonal matrix where 𝐷"" = ∑#$%& 𝐴"#.

22

Review of Eigenvector and Eigenvalue

¡ A (non-zero) vector 𝒗 of dimension 𝑁 is an eigenvector of a
square 𝑁×𝑁 matrix 𝐴 if it satisfies the linear equation

𝐴𝒗 = 𝜆𝒗

where 𝜆 is a scalar, termed the eigenvalue corresponding
to 𝒗.

¡ Put all the eigenvectors 𝒗 in 𝑛×𝑛 matrix 𝑄 whose 𝑖th
column is the eigenvector 𝑣" of 𝐴 and all the eigenvalues 𝜆
in the diagonal of Λ:

𝐴 = 𝑄Λ𝑄'%

23

Image source: https://www.sharetechnote.com/html/Handbook_EngMath_Matrix_EigenDecomposition.html

https://www.sharetechnote.com/html/Handbook_EngMath_Matrix_EigenDecomposition.html

Review of Eigenvector and Eigenvalue

¡ When 𝐴 is a real symmetric matrix, the eigenvectors can be chosen such that they
are orthogonal to each other.
¡ They can be used to represent the low-dimensional embedding of the matrix 𝐴.

24

25

Original data space

1st eigenvector

2nd eigenvector

Spectral Clustering

1. Choose 𝑘 and similarity function 𝑠.

2. Derive 𝐴 from 𝑠, let 𝑊 = 𝐼 − 𝐷$%𝐴.

3. Find eigenvectors and corresponding eigenvalues of 𝑊.

4. Pick the 𝑘 eigenvectors of 𝑊 with the smallest corresponding eigenvalues as
“significant” eigenvectors.

5. Project the data points onto the space spanned by these vectors.

6. Run 𝑘-means on the projected data points.

26

Solution for Big Data

¡ When the data is very large, it is impossible to calculate it eigenvectors.

¡ Can we find a low-dimensional embedding for clustering, as spectral clustering, but
without calculating these eigenvectors?
¡ Use the power of distributed computing with iterations.

27

Power Iteration Clustering

¡ Power Iteration Clustering (PIC) is a simple iterative method for finding the dominant
eigenvector of a matrix:

𝒗&'% = 𝑐𝑊𝒗&

¡ We set 𝑊 = 𝐷'%𝐴, which is called row-normalized affinity matrix.

¡ 𝒗(is the vector at iteration 𝑡; 𝒗) is typically a random vector.

¡ 𝑐 is a normalizing constant to avoid 𝒗(from getting too large or too small.

¡ Typically converges quickly, and is fairly efficient if 𝑊 is a sparse matrix.

28

29

Image source: Lin, Frank, and William W. Cohen. "Power iteration clustering”, ICML, 2010.

Power Iteration Clustering

¡ Input: A row-normalized affinity matrix 𝑊 and the number of clusters 𝑘.
¡ Output: Clusters 𝐶!, 𝐶", … , 𝐶$.
¡ Pick an initial vector 𝒗).
¡ Repeat

¡ Set 𝒗'($ ←)𝒗!

)𝒗! "
.

¡ Set 𝛿'($ ← |𝒗'($ − 𝒗'|.
¡ Increment 𝑡.
¡ Stop when |𝛿' − 𝛿'+$| ≈ 0.

¡ Use 𝑘-means to cluster points on 𝒗* and return clusters 𝐶!, 𝐶", … , 𝐶$.

30

Advantages and Disadvantages

¡ Advantages:
¡ Elegant, and well-founded mathematically.

¡ Handle clusters with any shape.

¡ Disadvantages
¡ Very noisy datasets cause problems

¡ Informative eigenvectors need not be in top few.

¡ Performance can drop suddenly from good to terrible.

¡ Computational cost is relative high.

31

MLlib API

¡ Currently, PIC is only
available on RDD-
based MLlib.

32

Source: https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.PowerIterationClustering

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html

MLlib Example

33

Source: https://spark.apache.org/docs/latest/mllib-clustering.html#power-iteration-clustering-pic

https://spark.apache.org/docs/latest/mllib-clustering.html

Evaluation Metrics for Clustering

¡ Generally, there are two categories of metrics to evaluate the performance of a
clustering algorithm:
¡ External criterion: evaluate the clustering results with ground truth.

¡ Internal criterion: evaluate the clustering results without ground truth.

34

External Criterion: Purity

¡ We define Ω = {𝜔%, 𝜔(, … , 𝜔)} as the set of obtained clusters and 𝐶 = {𝑐%, 𝑐(, … , 𝑐*}
as the set of ground truth classes.

¡ Purity is a simple and transparent evaluation measure.

¡ Each cluster is assigned to the class which is most frequent in the cluster, and then
count the number of correct assignments and dividing by 𝑛. Formally:

𝑝𝑢𝑟𝑖𝑡𝑦 Ω, 𝐶 =
1
𝑛
/
$

max
%
|𝜔$ ∩ 𝑐%| .

35

External Criterion: Purity

¡ High purity is easy to achieve when the number of clusters is large.
¡ In particular, purity is 1 if each data point gets its own cluster.

¡ Thus, we cannot use purity to trade off the quality of the clustering against the
number of clusters.

36

Image source: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

External Criterion: Normalized Mutual Information (NMI)

¡ A measure that allows us to make this tradeoff is NMI:

𝑁𝑀𝐼 Ω, 𝐶 =
𝐼 Ω; 𝐶

𝐻 Ω + 𝐻 𝐶 /2
.

¡ 𝐼 is mutual information:

𝐼 Ω; 𝐶 =;
&

;
!

𝑃 𝜔& ∩ 𝑐! log
𝑃(𝜔& ∩ 𝑐!)
𝑃(𝜔&)𝑃(𝑐!)

=;
&

;
!

|𝜔& ∩ 𝑐!|
𝑛

log
𝑛|𝜔& ∩ 𝑐!|
𝜔& |𝑐!|

.

¡ 𝐻 is entropy:

𝐻 Ω = −?
*

𝑃 𝜔* log 𝑃 𝜔* = −?
*

𝜔*
𝑛

log
𝜔*
𝑛

.

37

External Criterion: Normalized Mutual Information (NMI)

¡ Mutual Information tells us the reduction in the entropy of class labels that we get if
we know the cluster labels. (Similar to Information gain in decision trees).

¡ Since it’s normalized we can measure and compare the NMI between different
clustering results having different number of clusters.

¡ A step-by-step NMI calculation with examples can be found here.

38

https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf

Internal Criterion: Silhouette Coefficient

¡ If we don’t have ground truth labels, we can evaluate the quality of clusters by within-cluster
and between-cluster similarity.

¡ Silhouette Coefficient is the default evaluation metric in MLlib.
¡ The Silhouette Coefficient 𝑠 for a single data point is then given as:

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏)
.

¡ 𝑎 is the mean distance between this data point and all other data points in the same cluster.
¡ 𝑏 is the mean distance between this data point and all other data points in other clusters.

¡ The Silhouette Coefficient for a dataset is given as the mean of the Silhouette Coefficient for
each sample.

39

More about Clustering

¡ If you are interested in clustering algorithms and related issues, check sklearn
clustering documentation and the wikipedia page.

40

https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Cluster_analysis

PRINCIPLE COMPONENT ANALYSIS

41

Curse of Dimensionality

¡ In machine learning, we often have high-dimensional data.
¡ If we’re recording 60 different metrics for each of our shoppers, we’re working in a space with 60

dimensions.

¡ If we’re analyzing grayscale images sized 50x50, we’re working in a space with 2,500 dimensions.

¡ If the images are RGB-colored, the dimensionality increases to 7,500 dimensions (one dimension
for each color channel in each pixel in the image).

42

Curse of Dimensionality

¡ As the number of features increases, the
classifier’s performance increases as well
until we reach the optimal number of
features.

¡ Adding more features based on the same
size as the training set will then degrade
the classifier’s performance.

43

Image source: https://builtin.com/data-science/curse-dimensionality

https://builtin.com/data-science/curse-dimensionality

Dimensionality Reduction

¡ To get rid of the curse of dimensionality, a process called dimensionality reduction
was introduced.

¡ Dimensionality reduction techniques can be used to filter only a limited number of
significant features needed for training.

¡ Principal Components Analysis (PCA) is a dimensionality reduction technique that
enables you to identify correlations and patterns in a data set so that it can be
transformed into a data set of significantly lower dimension without loss of any
important information.

44

General Idea of Principal Components Analysis

¡ PCA is done by transforming the variables to a new set of
variables, which are known as the principal components.

¡ The principal components are orthogonal, ordered such
that the retention of variation present in the original
variables decreases as we move down in the order.

¡ So, in this way, the 1st principal component retains
maximum variation that was present in the original
components.

¡ The principal components are the eigenvectors of a
covariance matrix, and hence they are orthogonal.

45

Image source: https://medium.com/@raghavan99o/principal-component-analysis-pca-explained-and-implemented-eeab7cb73b72

https://medium.com/@raghavan99o/principal-component-analysis-pca-explained-and-implemented-eeab7cb73b72

Steps of PCA

1. Standardize the dataset.

2. Calculate the covariance matrix for the features in the dataset.

3. Calculate the eigenvalues and eigenvectors for the covariance matrix.

4. Sort eigenvalues and their corresponding eigenvectors.

5. Pick 𝑘 eigenvectors with top 𝑘 eigenvalues to form a matrix.

6. Transform the original matrix.

46

Standardize

¡ Let the 𝑑-dimensional data matrix be 𝑋 = [𝒙%, 𝒙(, … , 𝒙+].

¡ For the 𝑗th feature 𝒙#, subtract the mean 𝜇# and then divide it by its standard
deviation.

;𝒙# =
𝒙# − 𝜇#
𝜎#

.

¡ After that, each feature has 0 mean and 1 standard deviation.

¡ The standardized data matrix is >𝑋 = [;𝒙%, ;𝒙(, … , ;𝒙+].

47

Covariance Matrix

¡ Then calculate the covariance matrix 𝐶:

𝐶 =

𝐶𝑜𝑣 ;𝒙%, ;𝒙% 𝐶𝑜𝑣 ;𝒙%, ;𝒙(⋯ 𝐶𝑜𝑣 ;𝒙%, ;𝒙+
𝐶𝑜𝑣 ;𝒙(, ;𝒙%

⋮
𝐶𝑜𝑣 ;𝒙(, ;𝒙(

⋮
⋯
⋱

⋮
⋮

𝐶𝑜𝑣 ;𝒙+, ;𝒙% 𝐶𝑜𝑣 ;𝒙+, ;𝒙(⋯ 𝐶𝑜𝑣 ;𝒙+, ;𝒙+

48

Eigenvalues and Eigenvectors

¡ Calculate the eigenvalues and eigenvectors for the covariance matrix 𝐶.
𝐶 = 𝑄Λ𝑄$%

¡ Sort eigenvalues and their corresponding eigenvectors.
𝑄 = 𝒗%, 𝒗(, … , 𝒗+
Λ = 𝑑𝑖𝑎𝑔([𝜆%, 𝜆(, … , 𝜆+])

where 𝜆% ≥ 𝜆(≥ ⋯ ≥ 𝜆+.

49

Data Transormation

¡ Pick 𝑘 eigenvectors with top 𝑘 eigenvalues to form a matrix 𝑄,.
𝑄, = [𝒗%, 𝒗(, … , 𝒗,]

¡ Transform the original matrix to get the dimensional reduced data 𝑌.
𝑌 = >𝑋𝑄,

where >𝑋 is an 𝑛×𝑑 matrix and 𝑄, is a 𝑑×𝑘 matrix.

¡ Thus, 𝑌 is an 𝑛×𝑘 matrix, a 𝑘-dimensional data matrix.

50

PCA Example

51

MLlib API

¡ Currently, PCA is only
available on RDD-based MLlib.

¡ PCA is implemented as a
function of class RowMatrix.

¡ There are some other useful
functions to do operations on
matrix:
¡ multiply()

¡ columnSimilarities()

¡ computeCovariance()

¡ computeSVD()

52

Source: https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.RowMatrix

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html

MLlib Example

53

Source: https://spark.apache.org/docs/latest/mllib-dimensionality-reduction#principal-component-analysis-pca

https://spark.apache.org/docs/latest/mllib-dimensionality-reduction

Feature Normalization

¡ For numerical features, each feature has different scale.

¡ For example, as features of a house:
¡ Price is at the scale of $100,000.

¡ Size is at the scale of 1,000 ft2.

¡ Distance to the downtown is at the scale of 10km.

¡ House age is at the scale of 10 years.

¡ The features with high magnitudes will weigh in a lot more in weighted
combination or distance calculations than features with low magnitudes.

¡ The preprocessing step to align features to the same scale is called feature
normalization or feature scaling.

54

Image source: https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e

https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e

Feature Normalization

¡ Feature normalization is a general requirement for many machine learning
algorithms.
¡ For the algorithms that needs to use gradient descent, e.g. logistic regression, SVMs, perceptrons,

neural networks etc., if features are on different scales, certain weights may update faster than
others.

¡ For the algorithms that needs to calculate distances between data points, e.g. 𝑘-nearest neighbor,
𝑘-means etc., the feature with large scale will dominant the distance.

¡ In fact, tree-based classifier are probably the only classifiers where feature scaling
doesn’t make a difference.

55

Z-score Normalization

¡ Z-score normalization, aka standardization, is that the features will be rescaled so
that they’ll have the properties of a standard normal distribution with

𝜇 = 0 and 𝜎 = 1

¡ 𝜇 is the mean (average) and 𝜎 is the standard deviation from the mean. Standard
scores (also called z-scores) of the samples are calculated as follows:

𝑧 =
𝑥 − 𝜇
𝜎 .

56

Min-Max Scaling

¡ Min-max scaling scales the data to a fixed range - usually 0 to 1.

¡ A Min-max scaling is typically done via the following equation:

V𝑥 =
𝑥 − 𝑥-".

𝑥-/0 − 𝑥-".
¡ Min-max scaling will cause problems when a feature has outliers.

¡ E.g. a feature with all values in [0,10] except a outlier 10000. After min-max scaling, the outlier
becomes 1 and all the other values are in [0,0.001].

57

Feature Normalization

¡ One important thing to notice is that, when the data is seperated into training and
test set, it is improper to do feature normalization on them together.
¡ Information of test set will be utilized.

¡ One should scale the training data and use the scaling information (e.g. 𝜇, 𝜎, 𝑥-".,
𝑥-/0) to scale the test data.

58

MLlib API

¡ Parameters:
¡ withMean: data with mean.
¡ withStd: Scale to unit standard deviation.

59

¡ Parameters:
¡ max: Upper bound of the output feature range.
¡ min: Lower bound of the output feature range.

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.feature.MinMaxScaler

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html

MLlib Example

60

Source: https://spark.apache.org/docs/latest/ml-features.html#standardscaler

https://spark.apache.org/docs/latest/ml-features.html

MLlib Example

61

Source: https://spark.apache.org/docs/latest/ml-features.html#minmaxscaler

https://spark.apache.org/docs/latest/ml-features.html

Conclusion

After this lecture, you should know:
¡ What is clustering.

¡ How 𝑘-means works.

¡ What is the difference between 𝑘-means and spectral clustering.

¡ Why do we need dimensionality reduction.

¡ Why do we need feature normalization.

62

Assignment 4

¡ Assignment 4 is released. The deadline is 18:00, 29th June.

63

Thank you!

¡ Reference:
¡ PIC paper: Lin, Frank, and William W. Cohen. "Power iteration clustering”, ICML, 2010.

¡ sklearn clustering documentation: https://scikit-
learn.org/stable/modules/clustering.html#clustering-performance-evaluation.

64

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Yongxuan Lai

https://scikit-learn.org/stable/modules/clustering.html

