
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 11: Recommender Systems & Collaborative Filtering

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outlines

¡ Recommender Systems

¡ Content-based Methods

¡ Collaborative Filtering

¡ Related Issues

1

RECOMMENDER SYSTEMS

2

Recommender Systems

¡ During the last few decades, with the rise of YouTube, Amazon, Netflix and many
other such web services, recommender systems have played an important role in our
lives.

¡ From e-commerce, to entertainment, to online advertisement, recommender
systems are today unavoidable in our daily online journeys.
¡ We can’t even escape from it today.

3

Recommender Systems

¡ In a very general way, recommender systems are nothing but algorithms and data,
aimed at suggesting relevant items to users.
¡ The word “item” here is an abstraction, which can be movies to watch, text to read, products to

buy, advertisements to click, or anything else that a user will interact with.

¡ Recommender systems are really critical in some industries as they can generate a
huge amount of income when they are accurate.
¡ Now, it becomes a way to stand out significantly from competitors.

4

Amazon

¡ 35% of Amazon.com’s revenue is
generated by its
recommendation engine.

¡ It is based on the analysis and
modeling of a large number of
user behaviors.

5

Data source: https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers

ByteDance

¡ ByteDance’s operating revenue has shown
exponential growth in the past years:
¡ $900 million in 2016;

¡ $2.4 billion in 2017;

¡ $7.4 billion in 2018;

¡ $17 billion in 2019.

¡ Recommender system is one of the most
important techniques adopted for its products.

6

Data source: https://pandaily.com/bytedance-rumored-to-hit-20-billion-revenue-goal-for-2019/

https://pandaily.com/bytedance-rumored-to-hit-20-billion-revenue-goal-for-2019/

CONTENT-BASED METHODS

7

Content-Based Methods

¡ Content-based methods first extract user features and item feature, and then build
classification or regression models on them.

¡ Take movie recommendation as an example:
¡ User features may include age, gender, occupation, income, country, speaking language, etc.

¡ Item features may include category, cast, rating, duration, language, company, director, etc.

¡ Some feature correlations can be captured by the model:
¡ Teenagers tend to watch Marvel movies / young ladies tend to watch love movies.

¡ People tend to watch the movie whose language is same as the speaking language.

8

Content-Based Methods

¡ As we usually do for supervised learning, we can construct training and test datasets:
¡ For example, user 1 clicked item 1, user 2 clicked item 2.

¡ Recommend by ranking the predicted probabilities of all unclicked items for a given user.

9

Features of user 1 Features of item 1 1

1

0

0

User features Item features Label

from user
behavior record Features of user 2 Features of item 2

Features of user 1 Features of item 6

Features of user 2 Features of item 9

…

from random
sampling

COLLABORATIVE FILTERING

10

Collaborative Filtering

¡ Collaborative methods for recommender systems are methods that
are based solely on the past interactions recorded between users and
items in order to produce new recommendations.
¡ No user feature and item feature is needed.

¡ These interactions are stored in the so-called user-item interaction
matrix.

¡ The values stored in the user-item interaction matrix can be:
¡ 0/1 for product click or purchase.
¡ Score or rating for product review.
¡ 1/-1 for like/dislike.

11

Image source: https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

User-Item Interaction Matrix

¡ Now, the task is simply to fill in the blank in the user-
item interaction matrix.
¡ It becomes a matrix completion problem, i.e. estimate the value

of missing entries for a matrix.

¡ It is a general problem in mathematics and computer science
and has numerous applications (recommendation is one of the
most important applications).

¡ After that, sort the predicted value in the blank cell for
each user and show the top ones to them.

12

Predict the scores

Collaborative Filtering

Generally, there are two types of collaborative filtering methods:

¡ Memory-based methods (aka Neighborhood-based).

¡ No latent model is assumed.

¡ The algorithms directly works with the user-item interaction matrix.

¡ Model-based methods.

¡ Some latent interaction model is assumed.

¡ A model is trained to reconstruct the missing values in user-item interaction matrix.

13

Memory-Based Methods

Two dimensions can be explored:

¡ User-based methods: Given a user, search for similar users, recommend items that
are interacted with similar users to the user.

¡ Item-based methods: Given a user, find the user’s prefered items, search for
similar items and recommend them to the user.

14

𝑘-Nearest Neighbor

¡ 𝑘-Nearest Neighbor (𝑘NN) is a non-parametric and lazy
learning algorithm.
¡ Non-parametric means there is no assumption for underlying data

distribution.

¡ Lazy algorithm means it does not need to have a training process.
Actually, it doesn’t have a model.

¡ Given a test sample, 𝑘NN has the following basic steps:
¡ Calculate distance to all training samples.

¡ Find the nearest 𝑘 neighbors.

¡ Vote for labels (required only for classification).

15

Image source: https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

User-Based Methods

16

Image source: https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

Item-Based Methods

17

Image source: https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

User-Based Methods vs. Item-Based Methods

¡ The user-based methods are based on the search of similar users.
¡ In general, every user have only interacted with a few items, it makes the method pretty sensitive to any

recorded interactions (high variance).
¡ On the other hand, as the final recommendation is only based on interactions recorded for users similar

to our user of interest, we obtain more personalized results (low bias).

¡ The item-based methods are based on the search of similar items.
¡ In general, a lot of users have interacted with an item, the neighborhood search is far less sensitive to

single interactions (low variance).
¡ As a counterpart, interactions coming from every kind of users are considered in the recommendation,

making the method less personalized (high bias).
¡ Thus, this approach is less personalized than the user-based approach but more robust.

18

Complexity

¡ One of the biggest flaw of memory-based collaborative filtering is that they do not
scale easily.
¡ For systems with millions of users and millions of items, the nearest neighbors search step can

become intractable.

¡ That is also why Spark and MLlib do not support 𝑘NN, and thus do not support memory-based
collaborative filtering.

¡ You can think about whether you can implement 𝑘NN in Spark.

19

Model-Based Methods

¡ Model-based methods assume a latent model supposed to explain these user-item
interactions.

¡ A representative model-based method is called matrix factorization.

¡ The main assumption behind matrix factorization is that there exists a pretty low
dimensional latent space of features in which we can represent both users and
items.

¡ Then, the interaction between a user and an item can be obtained by computing the
dot product of corresponding dense vectors in that space.

20

Motivation of Matrix Factorization

¡ For example, consider that we have a user-movie rating matrix. In order to model the
interactions between users and movies, we can assume:
¡ There exists some features describing pretty well movies.

¡ These features can also be used to describe user preferences or popularity.

¡ However we don’t want to give explicitly these features to our model like content-
based methods.

¡ Instead, we prefer to let the system discover these useful features by itself and make
its own representations of both users and items.
¡ Design an algorithm to learn useful features.

21

Motivation of Matrix Factorization

¡ These learned features are also called embeddings.
¡ Each dimension in the embeddings is a real number.

¡ As they are learned and not given, embeddings have a mathematical meaning for
model prediction but no intuitive interpretation.
¡ It is almost impossible know the meaning of each dimension of embeddings.

¡ Indeed, the consequence of such factorization is that similar users in terms of
preferences as well as similar items in terms of characteristics ends up having close
embedding representations in the latent space.

22

Matrix Factorization

23

Image source: https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

𝑀 = 𝑋𝑌" + 𝑅

𝑀

𝑋

𝑌!

𝑋𝑌! 𝑅

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

Mathematics of Matrix Factorization

¡ Let’s consider an 𝑛×𝑚 user-item interaction matrix 𝑀 of ratings where only some
items have been rated by each user.
¡ Most of the entries in 𝑀 are set to 𝑁𝑜𝑛𝑒 to express the lack of rating.

¡ We want to factorize that matrix such that
𝑀 ≈ 𝑋𝑌".

¡ 𝑋 is an 𝑛×𝑙 “user latent matrix” whose 𝑖th row 𝑋! represents the 𝑖th user.

¡ 𝑌 is an 𝑚×𝑙 “item latent matrix” whose 𝑗th row 𝑌" represents the 𝑗th item.

¡ 𝑙 is the embedding dimension in the latent space in which users and item will be represented.

24

Mathematics of Matrix Factorization

¡ So, we search for matrices 𝑋 and 𝑌 whose matrix product best approximates the existing interactions
in 𝑀.

¡ Denoting 𝐸 the set of pairs (𝑖, 𝑗) such that 𝑀!" is not 𝑁𝑜𝑛𝑒, we want to find 𝑋 and 𝑌 that minimize the
reconstruction error:

𝑋, 𝑌 = argmin
#,%

9
(!,")∈)

𝑋!𝑌"* −𝑀!"
+ .

¡ To prevent overfitting, we can limit the complexity of the latent matrices with a regularization
parameter:

𝑋, 𝑌 = argmin
#,%

9
(!,")∈)

𝑋!𝑌"* −𝑀!"
+
+ 𝜆 𝑋 , + 𝑌 ,

25

Frobenius norm

Mathematics of Matrix Factorization

¡ The matrices 𝑋 and 𝑌 can then be obtained following a gradient descent optimization
process.
¡ In each iteration, we consider only a subset of the pairs in 𝐸, because we can’t fill all data in memory.

¡ The gradient descent can be done alternatively on 𝑋 and 𝑌 at each step (in each iteration, fix one and
update another).

¡ Once the matrix has been factorized, to make a new recommendation is to simply multiply a
user vector by any item vector and recommend the items with highest scores.

¡ Notice that we could also use memory-based methods with these new representations of
users and items, because the burden of 𝑘NN search is relieved by low dimensional
representation.

26

Beyond Matrix Factorization

¡ Notice that, our goal is to learn
latent representation of users and
items.
¡ Matrix factorization is only one solution.

¡ We can use neural networks to
accomplish the goal.

27

Image source: He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T.S., 2017, April. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182).

Explicit vs. Implicit Feedback

¡ The standard approach to matrix factorization-based collaborative filtering treats the
entries in the user-item interaction matrix as explicit preferences given by the user to
the item, for example, users giving ratings to movies.
¡ However, the ratings may not be available for all recommendation scenarios.

¡ It is common in many real-world use cases to only have access to implicit
feedback (e.g. view duration, number of clicks, purchases, likes, shares, etc.).
¡ Those numbers are then related to the level of confidence in observed user preferences. It can

somehow replace explicit ratings given to items.

28

Cold Start Problem

¡ As it only consider past interactions to make recommendations, collaborative filtering suffer
from the cold start problem.

¡ It is impossible to recommend anything to new users or to recommend a new item to any
users.
¡ Initially, there’s no interaction for a new user and a new item.

¡ This drawback can be addressed in different way:
¡ Random strategy: recommending random items to new users or new items to random users.
¡ Maximum expectation strategy: recommending popular items to new users or new items to most active

users.
¡ Exploratory strategy: recommending a set of various items to new users or a new item to a set of

various users.
¡ Hybrid strategy: using content-based method for the early stage of the user or the item.

29

Content-Based Methods vs. Collaborative Filtering

30

Content-Based Methods Collaborative Filtering

Advantages • Don’t need any data about other users.
• Interpretable results.

• Don't need domain knowledge because the
embeddings are automatically learned.

• Can help users discover new interests.

Disadvantages

• Highly depend on feature engineering and
domain knowledge.

• Can only make recommendations based on
existing interests of the user.

• Cold start problem.
• Useful and informative features can’t be

used.

MLlib API

¡ MLlib currently supports model-based collaborative filtering, in which users and
products are described by a small set of latent factors that can be used to predict
missing entries.
¡ Specifically, a matrix factorization method called the alternating least squares (ALS) algorithm is

used.

¡ You are suggested to read the following papers:
¡ Koren, Y., Bell, R. and Volinsky, C., 2009. Matrix factorization techniques for recommender

systems. Computer, 42(8), pp.30-37.

¡ Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R., 2008, June. Large-scale parallel collaborative filtering for
the netflix prize. In International conference on algorithmic applications in management (pp. 337-348).
Springer, Berlin, Heidelberg.

31

MLlib API

¡ Train a matrix factorization model given an RDD of ratings by users for a subset of products.

¡ The ratings matrix is approximated as the product of two lower-rank matrices of a given rank (number of features).
¡ Input and parameters:

¡ ratings – RDD of Rating or (userID, productID, rating) tuple.
¡ rank – Number of features to use (also referred to as the number of latent factors or embedding dimension).

¡ iterations – Number of iterations of ALS. (default: 5)

¡ lambda – Regularization parameter. (default: 0.01)

¡ blocks – Number of blocks used to parallelize the computation. A value of -1 will use an auto-configured number of blocks. (default: -1)

¡ nonnegative – A value of True will solve least-squares with nonnegativity constraints. (default: False)

32

Source: https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.recommendation.ALS

https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html

MLlib Example with Explicit Feedback

¡ Training data:

33

¡ Test data:

¡ User 1 and 4 are similar: like item 1, 3, 4 and dislike item 2.

¡ User 2 and 3 are similar: like item 3 and dislike item 1, 2, 4.

MLlib Example

34

Code source: https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

MLlib Example

35

RELATED ISSUES

36

Evaluation of a Recommender System

¡ If the model generates real numeric values such as ratings predictions or matching
probabilities, we can evaluate it as a regression problem using an error measurement
metric such as MSE.

¡ If the model generates binary predictions, we can then evaluate the accuracy (as well
as precision, recall, F1 score, AUC).

¡ In this case, the model is trained only on a part of the available interactions and is
tested on the remaining ones.

37

Click Through Rate

¡ When we launch our recommender system online, the evaluation becomes different.
¡ We only show the items with positive predictions to users. Therefore,

¡ there will never be false positive (users have no chance to click the negative predictions);
¡ the user interation is not accurate (sometimes miss the item, rather than be not interested).

¡ In this case, we usually call a user-item interaction as a click, and a item that the user has
seen as an impression.

¡ Click Through Rate (CTR) is usually defined for online evaluation. It is the number of clicks
that your items receives divided by the number of items is shown:

𝐶𝑇𝑅 = 𝑐𝑙𝑖𝑐𝑘𝑠 / 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠.
¡ For example, if you had 5 clicks and 100 impressions, then your CTR would be 5%.

38

Recommender Systems with Different Scenarios

¡ For movies, books, and news, you may be interested in similar ones.

¡ However, for some products, you don’t need similar ones.
¡ E.g. you won’t buy similar laptop computers after you buy one from amazon. Instead, you may

need keyboard, mouse, headphone and related equipments.

¡ Therefore, in different scenarios, the focus of a recommender system is different.
¡ It is not that easy to simply apply a general recommender system to all scenarios.

¡ Analysis and discussion should be made before implementing technical details.

¡ Usually done by data analysts and product managers.

39

Diversity of a Recommender System

¡ A direct consequence of recommender system is that you will fall into the small
world of your interest.
¡ E.g. once you clicked one or two times the news about Donald Trump, all the news shown to you is

about Donald Trump, the While House, Republicans, US-China relationship…

¡ Someday you will feel bored.

¡ A good recommender system should mix your interests and something else for
exploration and discovery.
¡ Diversity is crucial for preventing customer churn.

¡ However, this trade-off is hard to handle. It is also called exploration-exploitation dilemma.

40

Tutorial

¡ Try this example as tutorial. Run it by yourself and upload to Attendance Quiz.
¡ https://www.kaggle.com/vchulski/tutorial-collaborative-filtering-with-pyspark.

41

https://www.kaggle.com/vchulski/tutorial-collaborative-filtering-with-pyspark

Conclusion

After this lecture, you should know:
¡ What is a recommender system.

¡ What are the differences between content-based methods and collaborative filtering.

¡ What is a user-item interaction matrix.

¡ What are the differences between memory-based and model-based methods.

¡ How does matrix factorization work.

42

Thank you!

¡ Reference:
¡ Tutorial in towardsdatascience.com: https://towardsdatascience.com/introduction-to-

recommender-systems-6c66cf15ada

¡ MLlib official site: https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

¡ Koren, Y., Bell, R. and Volinsky, C., 2009. Matrix factorization techniques for recommender
systems. Computer, 42(8), pp.30-37.

43

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html

