
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 12: Spark Streaming

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Outlines

¡ Data Stream

¡ Spark Streaming

¡ DStream

¡ Transformations on DStreams

1

Data Stream

¡ A data stream is an unbounded sequence
of data arriving continuously.

¡ Streaming divides continuously flowing
input data into discrete units for further
processing.

¡ Stream processing typically requires:
¡ High volume data processing ability.

¡ Real-time data processing with low latency.

¡ Ability to efficiently recover from failures.

2

Image source: https://www.ibmbigdatahub.com/blog/quick-reference-guide-technologies-and-applications-stream-computing

https://www.ibmbigdatahub.com/blog/quick-reference-guide-technologies-and-applications-stream-computing

Example: Social Media Stream Monitoring

3

Image source: E6893 Big Data Analytics Lecture 7, CY Lin, Columbia University

Limitation of Stream Processing on Hadoop and Storm

¡ Using Hadoop (only) is suitable for processing batch data, but not quite suitable for
processing stream data.
¡ Reason: High latency.

¡ Using Storm+Hadoop can tremendously reduce the latency (up to millisecond level).
However, there are other problems:
¡ Tends to loose “state” in data processing if a node running Storm goes down.
¡ Increases code size.
¡ Other issues.

¡ Apache Spark Streaming can overcome these limitations.
¡ But Storm still has lower latency than Spark.

4

SPARK STREAMING

5

Spark Streaming

• Spark Streaming is an extension of the core
Spark API that enables scalable, high-
throughput, fault-tolerant stream processing
of live data streams.

• Input: Data can be ingested from many
sources like Kafka, Flume, Kinesis, or TCP
sockets.

• Output: Processed data can be pushed out
to filesystems, databases, and live
dashboards.

6

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Spark Streaming

• Input data streams are divided into batches based on time intervals (of a few seconds
or sub-second).

• Each batch of data as RDDs and processes them using RDD operations.

• Processed results are pushed out in batches.

7

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Streams and Batches

¡ Spark has provided a unified engine that natively supports both batch and streaming
workloads.

¡ This lets users write streaming applications using a very similar API to batch jobs, and
thus reuse a lot of the skills and even code they built for those.

Goals of Spark Streaming

¡ Dynamic load balancing (small sized RDDs in DStreams).

¡ Fast failure recovery (“checkpointing” mechanism).

¡ Unification of batch, streaming and interactive analytics.

¡ Advanced analytics like machine learning and interactive SQL.

¡ Performance.

9

Example: Network WordCount

¡ First, we import StreamingContext, which is the main entry point for all streaming
functionality.

¡ We create a local StreamingContext with two execution threads, and batch interval
of 1 second.

10

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Network WordCount

¡ Using this context, we can create a DStream that represents streaming data from a TCP source,
specified as hostname (e.g. localhost) and port (e.g. 9999).

¡ This lines DStream represents the stream of data that will be received from the data server. Each
record in this DStream is a line of text. Next, we want to split the lines by space into words.

11

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Network WordCount

¡ The words DStream is further mapped to a DStream of (word,1) pairs, which is then
reduced to get the frequency of words in each batch of data.

¡ Finally, wordCounts.pprint() will print a few of the counts generated every second.

12

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Network WordCount

¡ Note that when these lines are executed, Spark Streaming only sets up the
computation it will perform when it is started, and no real processing has started yet.

¡ To start the processing after all the transformations have been setup, we finally call

13

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Network WordCount

14

Python script of network wordcount

¡ You will first need to run Netcat (a small utility found in
most Unix-like systems) as a data server by call nc in
terminal.

¡ Then, any lines typed in the terminal running the Netcat
server will be counted and printed on screen every second.

Results in Terminal

If this command doesn’t work,
try add --master local[2] here.

Example: Network WordCount

15

¡ Jupyter Notebook doesn’t
support to run this
example.

¡ Call spark-submit to run
the python script on
terminal.
¡ If you linked PySpark with

Jupyter Notebook
previously, you should run

$unset PYSPARK_DRIVER_PYTHON

DSTREAM

16

DStream

¡ Discretized Stream (DStream) is the basic abstraction provided by Spark Streaming.

¡ It represents a continuous stream of data:
¡ either the input data stream received from source,

¡ or the processed data stream generated by transforming the input stream.

¡ Internally, a DStream is represented by a continuous series of RDDs.

¡ Each RDD in a DStream contains data from a certain interval.

17

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

DStream

¡ Any operation applied on a DStream translates to operations on the underlying RDDs.
¡ For example, the flatMap operation is applied on each RDD in the lines DStream to generate the RDDs of

the words DStream.
¡ These underlying RDD transformations are computed by the Spark engine.

¡ The DStream operations hide most of these details and provide the developer with a higher-level API for convenience.

¡ Again, you don’t need to care about how transformations are applied to streaming data.

18

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Input DStream

¡ Input DStream is a DStream representing the
stream of input data from streaming source.

¡ A receiver object is associated with every
input DStream object.

¡ Receivers receive the data from a source and
stores it in Spark’s memory for processing.

¡ Two types of built-in streaming sources:
¡ Basic sources (file systems, and socket

connections).

¡ Advanced sources (Kafka, Flume, Kinesis).

19

Image source: https://zhuanlan.zhihu.com/p/103818677

SparkContext

Driver Program

Cluster Manager

Worker Node
Cache

Task Task
(Receiver)

Executor

HDFS、HBase

Input DStream

Input DStream

Worker Node
Cache

Task Task
(Receiver)

Executor

https://zhuanlan.zhihu.com/p/103818677

TRANSFORMATIONS ON DSTREAMS

20

Transformations on DStreams

¡ Stateless transformations.

¡ Stateful transformations.
¡ updateStateByKey() operation.

¡ Window operations.

21

Stateless Transformations

22

¡ Stateless transformations are similar to that of RDDs applied on every batch
(meaning every RDD in a DStream).
¡ Common RDD transformations: map(), filter(), reduceByKey() etc.

¡ Key-Value RDD transformations: cogroup(), join(), leftOuterJoin() etc.

¡ Performing these operations on DStreams is equivalent to performing underlying
RDD operations on each batch.
¡ The only difference is that it is applied to a DStream or a DStream pair.

Stateless Transformations

23

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Stateless Transformations

24

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Transform Operation

¡ The transform operation allows arbitrary RDD-to-RDD functions to be applied on a
DStream.

¡ It can be used to apply any RDD operation that is not exposed in the DStream API.
¡ For example, the functionality of joining every batch in a data stream with another dataset is not

directly exposed in the DStream API.

25

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Stateful Transformations

¡ Stateful transformations are operations on DStreams that track data across time.

¡ Thus it makes use of some data from previous batches to generate the results for a
new batch.

¡ Two main types:
¡ updateStateByKey() operation.

¡ Windowed operations.

26

updateStateByKey() Operation

¡ The updateStateByKey() operation allows you to maintain arbitrary state while
continuously updating it with new information.

¡ To use this, you will have to do two steps.
¡ Define the state: The state can be an arbitrary data type.

¡ Define the state update function: Specify with a function how to update the state using the
previous state and the new values from an input stream.

¡ In every batch, Spark will apply the state update function for all existing keys,
regardless of whether they have new data in a batch or not.
¡ If the update function returns None then the key-value pair will be eliminated.

27

updateStateByKey() Operation

¡ Let’s illustrate this with an example. Say you want to maintain a running count of each word seen in a text data
stream. Here, the running count is the state and it is an integer. We define the update function as:

¡ This is applied on a DStream containing words (say, the pairs DStream containing (word,1) pairs in the earlier
example).

28

Example: Stateful Network WordCount

29

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

Note that using update
StateByKey() requires
the checkpoint directory to
be configured.

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Stateful Network WordCount

30

Windowed Operations

¡ Windowed operations apply transformations over a sliding window of data.
¡ It is useful when you want to track a period (e.g. Tweeter topics in the latest 24 hours).
¡ Two parameters must be included:

¡ Window length: The duration of the window (3 in the figure).
¡ Sliding interval: The interval at which the window operation is performed (2 in the figure).

31

Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Windowed Operations

¡ Now, we only want to keep the word counts over the last 30 seconds of data, in every
10 seconds period.

¡ This is done using the operation reduceByKeyAndWindow().
¡ It applies the reduceByKey() operation on the pairs DStream of (word,1) pairs over the last 30

seconds of data.

32

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Windowed Operations

¡ Some of the common window operations are as follows.
¡ All of these operations take the said two parameters - windowLength and slideInterval.

33

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Windowed Operations

¡ Some of the common window operations are as follows.
¡ All of these operations take the said two parameters - windowLength and slideInterval.

34

Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Example: Windowed Network WordCount

35

windowLength=10 and slideInterval=5

Refresh for
every 5 seconds.

Only accumulate
for the latest 10
seconds.

Spark Streaming Programming Model

¡ Create input DStream.

¡ Define operations (transformations and output) on DStreams.

¡ Use streamingContext.start() to start accepting and processing data.

¡ Use streamingContext.awaitTermination() to waiting for termination (manually
or by incidents).

¡ You may use streamingContext.stop() to manually stop the data processing.

36

Output Operations

¡ Output operations allow DStream’s data to be pushed out to external systems like a
database or a file systems.

37

Checkpointing

¡ A streaming application must operate 24/7 and hence must be resilient to failures
unrelated to the application logic.

¡ For this to be possible, Spark Streaming needs to checkpoint enough information to a
fault-tolerant storage system such that it can recover from failures.

¡ There are two types of data that are checkpointed:
¡ Metadata checkpointing: Saving of the information defining the streaming computation to fault-

tolerant storage like HDFS. It is primarily needed for recovery from driver failures.

¡ Data checkpointing: Saving of the generated RDDs to reliable storage. It is necessary for basic
functioning if stateful transformations are used.

38

When to Enable Checkpointing

¡ Checkpointing must be enabled for applications with any of the following requirements:
¡ Usage of stateful transformations: If either updateStateByKey or reduceByKeyAndWindow is

used in the application, then the checkpoint directory must be provided to allow for periodic RDD
checkpointing.

¡ Recovering from failures of the driver running the application: Metadata checkpoints are used to
recover with progress information.

¡ Note that simple streaming applications without the aforementioned stateful
transformations can be run without enabling checkpointing.
¡ This is often acceptable and many run Spark Streaming applications in this way.

¡ You can think that stateless transformations are less important to make it fault tolerant.

39

How to Configure Checkpointing

¡ Checkpointing can be enabled by setting a
directory in a fault-tolerant, reliable file
system (e.g., HDFS) to save the checkpoint
information. This is done by
¡ When the program is being started for the first

time, it will create a new StreamingContext,
set up all the streams and then call start().

¡ When the program is being restarted after
failure, it will re-create a StreamingContext
from the checkpoint data in the checkpoint
directory.

40

Conclusion

After this lecture, you should know:
¡ What is a data stream.

¡ What analytics solution can be made from data stream.

¡ How does Spark Streaming handle data stream.

¡ What is DStream.

¡ What is the difference between stateless and stateful transformations.

41

Thank you!

Reference:
¡ Spark Streaming Official Guide: http://spark.apache.org/docs/latest/streaming-programming-

guide.html.

42

Acknowledgement: Thankfully acknowledge slide contents shared by Dr. Ye Luo.

http://spark.apache.org/docs/latest/streaming-programming-guide.html

