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Outlines

® Data Stream
= Spark Streaming
® DStream

® Transformations on DStreams
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Data Stream

" A data stream is an unbounded sequence
of data arriving continuously.

= Streaming divides continuously flowing =

input data into discrete units for further ": Qa ”

processing. DP X B ing Aoty 00
= Stream processing typically requires: @&l”’“‘? o

= High volume data processing ability. {] ET")@

= Real-time data processing with low latency. /

= Ability to efficiently recover from failures.
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Example: Social Media Stream Monitoring

Live
Monitoring

Monitoring real-time
tweets on keyword:

Monitor live tweets »

Link
Exploration

Visualizing relationships,
discussion sequences
and graphs

View relationships »

Trend
Monitoring

Analyzing trend of
conversations based on
hashtags

View trends »

' —r— - |I

Impact
Prediction
Analyzing conversations
and predicting their
impact to business

View impacts »

Multimedia
Monitoring

Recognizing visual
content and analyzing
visual sentiments

View multimedia »

g

Story
Detection

Detecting live developing
stories on social media
and their evolution

View stories »

Geo
Monitoring

Monitoring the places
that people are sending
out tweets

View places »

Person
Analytics
Analyzing a person's

personality,
trustworthiness, etc.

View person »

Scope
Identification

Define user-specified
sets of keywords for
monitoring and analytics

Define scopes »

Target
Discovery

Inspecting potential
users for bot detection,
marketing, or influencing

Inspect targets »

Concept
Analytics

Analyzing statistics of
groups based on time,
topics, etc

Concept searches »

Forensic
Analytics

Analyzing retweet
sequences and
displaying anomalies

View anomalies »

Approach: Modeling, Tracking and Affecting
Information Dissemination in Context

Modeling
(Thrust 1)

Detecting &

Tracking
(Thrust 2)

=

=

Affecting
(Thrust 3)

T

T

T

Social N N N
Media =) Social Media Analytics Infrastructure
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Large-scale Network Unstructured .
Progcessing Analysis & Information Real-time Psrgz:?si
Management Management  Translation ng

Architecture
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= Using Hadoop (only) is suitable for processing batch data, but not quite suitable for
processing stream data.

= Reason: High latency.

= Using Storm+Hadoop can tremendously reduce the latency (up to millisecond level).
However, there are other problems:

= Tends to loose “state” in data processing if a node running Storm goes down.
= |ncreases code size.

= QOther issues.

® Apache Spark Streaming can overcome these limitations.
= But Storm still has lower latency than Spark.
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SPARK STREAMING




Spark Streaming

« Spark Streaming is an extension of the core
Spark API that enables scalable, high-
throughput, fault-tolerant stream processing

of live data streams. Kafka [ |
HDFS
. FI < <

« Input: Data can be ingested from many HD::;; SparK m—

sources like Kafka, Flume, Kinesis, or TCP i Streaming

Dashboard

sockets. S ashboards
* Output: Processed data can be pushed out

to filesystems, databases, and live

dashboards.
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Image source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#discretized-streams-dstreams
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Spark Streaming

* Input data streams are divided into batches based on time intervals (of a few seconds
or sub-second).

* Each batch of data as RDDs and processes them using RDD operations.

* Processed results are pushed out in batches.

input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine |1
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Streams and Batches

® Spark has provided a unified engine that natively supports both batch and streaming
workloads.

" This lets users write streaming applications using a very similar APl to batch jobs, and
thus reuse a lot of the skills and even code they built for those.
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Goals of Spark Streaming

® Dynamic load balancing (small sized RDDs in DStreams).

= Fast failure recovery (“checkpointing” mechanism).

= Unification of batch, streaming and interactive analytics.

= Advanced analytics like machine learning and interactive SQL.

= Performance.
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Example: Network WordCount

" First, we import streamingContext, which is the main entry point for all streaming
functionality.

= We create a local streamingContext with two execution threads, and batch interval
of 1 second.

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

# Create a local StreamingContext with two working thread and batch interval of 1 second
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)
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Source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams
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Example: Network WordCount

= Using this context, we can create a DStream that represents streaming data from a TCP source,
specified as hostname (e.g. localhost) and port (e.g. 9999).

# Create a DStream that will connect to hostname:port, like localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

= This lines DStream represents the stream of data that will be received from the data server. Each
record in this DStream is a line of text. Next, we want to split the lines by space into words.

# Split each line into words
words = lines.flatMap(lambda line: line.split(" "))
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Example: Network WordCount

® The words DStream is further mapped to a DStream of (word, 1) pairs, which is then
reduced to get the frequency of words in each batch of data.

" Finally, wordCcounts.pprint () will print a few of the counts generated every second.

# Count each word in each batch
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

# Print the first ten elements of each RDD generated in this DStream to the console

wordCounts.pprint()
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Example: Network WordCount

= Note that when these lines are executed, Spark Streaming only sets up the
computation it will perform when it is started, and no real processing has started yet.

= To start the processing after all the transformations have been setup, we finally call

ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate
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Example: Network WordCount

import sys

=  You will first need to run Netcat (a small utility found in

most Unix-like systems) as a data server by call nc in from pyspark import SparkContext
te rmlnal' from pyspark.streaming import StreamingContext
= Then, any lines typed in the terminal running the Netcat Hname_ == "_nain_":

. . if len(sys.argv) != 3:
server will be counted and printed on screen every second.

print("Usage: network_wordcount.py <hostname> <port>", file=sys.stderr)

sys.exit(-1)

# TERMINAL 1: # TERMINAL 2: RUNNING network_wordcount.py sc = SparkContext(appName="PythonStreamingNetworkWordCount")
# Running Net ssc = StreamingContext(sc, 1)
cat $ ./bin/spark-submit examples/src/main/python/streaming/network_wordcount.py local

host 9999

lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))

nc -1k 9999 : ts = 1i .flatMap(lambda line: line.split(" "
$ If this command doesn’t WOFk, counts ines.flatMap(lambda line: line.split( )DL
.map(lambda word: (word, 1))\
ime: .95 try add --master local[2] here.
hello world Time: 2014-10-14 15:25:21 Y [2] .reduceByKey(lambda a, b: a+b)

counts.pprint()
(hello,1)

(world,1) ssc.start()

ssc.awaitTermination()

Results in Terminal Python script of network wordcount

) EITARER

/" SCHOOL OF INFORMATICS XIAMEN UNIVERSITY

XIAMEN UNIVERSITY MALAYSIA

JE PR R T AR AT RNEELR 14




Example: Network WordCount

= Jupyter Notebook doesn’t
support to run this
example.

® Call spark-submit to run
the python script on
terminal.

= If you linked PySpark with
Jupyter Notebook
previously, you should run

Sunset PYSPARK DRIVER PYTHON
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DSTREAM




m Discretized Stream (DStream) is the basic abstraction provided by Spark Streaming.

= |t represents a continuous stream of data:
= either the input data stream received from source,
= orthe processed data stream generated by transforming the input stream.

= |nternally, a DStream is represented by a continuous series of RDDs.

= Each RDD in a DStream contains data from a certain interval.

RDD @time1 RDD@time2 RDD@time3 RDD @ time 4

DStream = = - data from e data from S data from — data from ._>

timeOto1l time 1to 2 time2to3 time3to4
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DStream

= Any operation applied on a DStream translates to operations on the underlying RDDs.

= For example, the £1atMap operation is applied on each RDD in the lines DStream to generate the RDDs of
the words DStream.

= These underlying RDD transformations are computed by the Spark engine.
®  The DStream operations hide most of these details and provide the developer with a higher-level API for convenience.

®  Again, you don’t need to care about how transformations are applied to streaming data.

lines lines from lines from lines from lines from
DStream timeOto 1 time 1to 2 time 2to 3 time 3to 4
flatMap
operation
words words from words from words from words from
DStream timeOto 1 time 1to 2 time 2to 3 time 3to 4
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® |nput DStream is a DStream representing the

stream of input data from streaming source. Worker Node
. . . . . Executor Cache
= A receiver object is associated with every Input DStream
i i Driver Program Task (Recciver) JTTTTTT
input DStream object.
= Receivers receive the data from a source and SparkContext > Cluster Manager \ Worker Node |
stores it in Spark’s memory for processing. Bxcoutor | cun | ot DS

. . . Task Re];zsil\(/er :l:l:l:l:l:lI
= Two types of built-in streaming sources: —

A 4

" Basic sources (file systems, and socket

connections). HDFS, HBase

®  Advanced sources (Kafka, Flume, Kinesis).
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Transformations on DStreams

= Stateless transformations.

= Stateful transformations.

" updateStateByKey () operation.

= Window operations.
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Stateless Transformations

= Stateless transformations are similar to that of RDDs applied on every batch
(meaning every RDD in a DStream).

= Common RDD transformations: map (), filter (), reduceByKey () etc.

= Key-Value RDD transformations: cogroup( ), join(), leftOuterJoin() etc.

= Performing these operations on DStreams is equivalent to performing underlying
RDD operations on each batch.

= The only difference is that it is applied to a DStream or a DStream pair.
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Stateless Transformations

map(func) Return a new DStream by passing each element of the source DStream through a function func.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items.

filter(func) Return a new DStream by selecting only the records of the source DStream on which func returns true.
repartition(numPartitions) Changes the level of parallelism in this DStream by creating more or fewer partitions.

union(otherStream) Return a new DStream that contains the union of the elements in the source DStream and otherDStream.
count() Return a new DStream of single-element RDDs by counting the number of elements in each RDD of the

source DStream.

reduce(func) Return a new DStream of single-element RDDs by aggregating the elements in each RDD of the source
DStream using a function func (which takes two arguments and returns one). The function should be
associative and commutative so that it can be computed in parallel.
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Stateless Transformations

countByValue()

reduceByKey(func, [numTasks]))

join(otherStream, [numTasks])

cogroup(otherStream,
[numTasks])

transform(func)
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When called on a DStream of elements of type K, return a new DStream of (K, Long) pairs where the value
of each key is its frequency in each RDD of the source DStream.

When called on a DStream of (K, V) pairs, return a new DStream of (K, V) pairs where the values for each
key are aggregated using the given reduce function. Note: By default, this uses Spark's default number of
parallel tasks (2 for local mode, and in cluster mode the number is determined by the config property
spark.default.parallelism) to do the grouping. You can pass an optional numTasks argument to set a
different number of tasks.

When called on two DStreams of (K, V) and (K, W) pairs, return a new DStream of (K, (V, W)) pairs with all
pairs of elements for each key.

When called on a DStream of (K, V) and (K, W) pairs, return a new DStream of (K, Seq[V], Seq[W]) tuples.

Return a new DStream by applying a RDD-to-RDD function to every RDD of the source DStream. This can
be used to do arbitrary RDD operations on the DStream.
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Transform Operation

" The transform operation allows arbitrary RDD-to-RDD functions to be applied on a
DStream.

It can be used to apply any RDD operation that is not exposed in the DStream API.

= For example, the functionality of joining every batch in a data stream with another dataset is not
directly exposed in the DStream API.

spamInfoRDD = sc.pickleFile(...) # RDD containing spam information

# join data stream with spam information to do data cleaning

cleanedDStream = wordCounts.transform(lambda rdd: rdd.join(spamInfoRDD).filter(...))
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Stateful Transformations

= Stateful transformations are operations on DStreams that track data across time.

® Thus it makes use of some data from previous batches to generate the results for a
new batch.

= Two main types:
" updateStateByKey () operation.

= Windowed operations.
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updateStateByKey () Operation

" The updateStateByKey () operation allows you to maintain arbitrary state while
continuously updating it with new information.

= To use this, you will have to do two steps.

= Define the state: The state can be an arbitrary data type.

= Define the state update function: Specify with a function how to update the state using the
previous state and the new values from an input stream.

" |n every batch, Spark will apply the state update function for all existing keys,
regardless of whether they have new data in a batch or not.

= |f the update function returns None then the key-value pair will be eliminated.
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updateStateByKey () Operation

®  Let’s illustrate this with an example. Say you want to maintain a running count of each word seen in a text data
stream. Here, the running count is the state and it is an integer. We define the update function as:

def updateFunction(newValues, runningCount):
if runningCount is None:
runningCount = @
return sum(newValues, runningCount) # add the new values with the previous running count to get the new cou
nt

®  This is applied on a DStream containing words (say, the pairs DStream containing (word, 1) pairs in the earlier
example).

runningCounts = pairs.updateStateByKey(updateFunction)
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Example: Stateful Network WordCount

. sc = SparkContext(appName="PythonStreamingStatefulNetworkWordCount")
Note that using update

StateByKey () requires
the checkpoint directory to
be configured.

ssc = StreamingContext(sc, 1)

ssc.checkpoint("checkpoint")

# RDD with initial state (key, value) pairs
initialStateRDD = sc.parallelize([(u'hello', 1), (u'world', 1)])

def updateFunc(new_values, last_sum):

return sum(new_values) + (last_sum or 0)

lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))

running_counts = lines.flatMap(lambda line: line.split(" "))\

.map(lambda word: (word, 1))\
.updateStateByKey(updateFunc, initialRDD=initialStateRDD)

running_counts.pprint()
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Example: Stateful Network WordCount
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Windowed Operations

= Windowed operations apply transformations over a sliding window of data.
= |t is useful when you want to track a period (e.g. Tweeter topics in the latest 24 hours).
= Two parameters must be included:

"  Window length: The duration of the window (3 in the figure).

= Sliding interval: The interval at which the window operation is performed (2 in the figure).

time 1 time 2 time 3 time 4 time 5
original ]
DStream

window-based
operation
windowed
DStream
window window window
at time 1 attime 3 attime 5
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Windowed Operations

= Now, we only want to keep the word counts over the last 30 seconds of data, in every
10 seconds period.

® This is done using the operation reduceByKeyAndWindow( ).

= |t applies the reduceByKey () operation on the pairs DStream of (word, 1) pairs over the last 30
seconds of data.

# Reduce last 30 seconds of data, every 10 seconds
windowedWordCounts = pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y: x -y, 30, 10)
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Windowed Operations

= Some of the common window operations are as follows.
= All of these operations take the said two parameters - windowLength and slideInterval.

window(windowLength, slidelnterval) Return a new DStream which is computed based on windowed batches of the source DStream.
countByWindow(windowLength, Return a sliding window count of elements in the stream.

slidelnterval)

reduceByWindow(func, windowLength, Return a new single-element stream, created by aggregating elements in the stream over a sliding
slidelnterval) interval using func. The function should be associative and commutative so that it can be

computed correctly in parallel.

reduceByKeyAndWindow(func, When called on a DStream of (K, V) pairs, returns a new DStream of (K, V) pairs where the values

windowLength, slidelnterval, [numTasks]) for each key are aggregated using the given reduce function func over batches in a sliding
window. Note: By default, this uses Spark's default number of parallel tasks (2 for local mode,
and in cluster mode the number is determined by the config property
spark.default.parallelism) to do the grouping. You can pass an optional numTasks argument to
set a different number of tasks.
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Windowed Operations

= Some of the common window operations are as follows.

= All of these operations take the said two parameters - windowLength and slideInterval.

reduceByKeyAndWindow(func, invFunc,
windowLength, slidelnterval, [numTasks])

countByValueAndWindow(windowLength,
slidelnterval, [numTasks))
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A more efficient version of the above reduceByKeyAndWindow() where the reduce value of each
window is calculated incrementally using the reduce values of the previous window. This is done
by reducing the new data that enters the sliding window, and “inverse reducing” the old data that
leaves the window. An example would be that of “adding” and “subtracting” counts of keys as
the window slides. However, it is applicable only to “invertible reduce functions”, that is, those
reduce functions which have a corresponding “inverse reduce” function (taken as parameter
invFunc). Like in reduceByKeyAndWindow, the number of reduce tasks is configurable through an
optional argument. Note that checkpointing must be enabled for using this operation.

When called on a DStream of (K, V) pairs, returns a new DStream of (K, Long) pairs where the
value of each key is its frequency within a sliding window. Like in reduceByKeyAndWindow, the
number of reduce tasks is configurable through an optional argument.
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Example: Windowed Network WordCount

Refresh for
every 5 seconds.

Only accumulate
for the latest 10
seconds.

windowLength=10 and slideInterval=5
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Spark Streaming Programming Model

= Create input DStream.
= Define operations (transformations and output) on DStreams.
" Use streamingContext.start () to start accepting and processing data.

" Use streamingContext.awaitTermination() to waiting for termination (manually
or by incidents).

® You may use streamingContext.stop() to manually stop the data processing.
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Output Operations

" Qutput operations allow DStream’s data to be pushed out to external systems like a
database or a file systems.

Output Operation Meaning

print() Prints the first ten elements of every batch of data in a DStream on the driver node running the
streaming application. This is useful for development and debugging.
This is called pprint() in the Python API.

saveAsTextFiles(prefix, [suffix]) Save this DStream's contents as text files. The file name at each batch interval is generated based
on prefix and suffix: "prefix-TIME_IN_MS/[.suffix]".

saveAsObjectFiles(prefix, [suffix]) Save this DStream's contents as SequenceFiles of serialized Java objects. The file name at each
batch interval is generated based on prefix and suffix: "prefix-TIME_IN_MS].suffix]".

This is not available in the Python API.

saveAsHadoopFiles(prefix, [suffix]) Save this DStream's contents as Hadoop files. The file name at each batch interval is generated
based on prefix and suffix: "prefix-TIME_IN_MS][.suffix]".

This is not available in the Python API.

foreachRDD(func) The most generic output operator that applies a function, func, to each RDD generated from the
stream. This function should push the data in each RDD to an external system, such as saving the
RDD to files, or writing it over the network to a database. Note that the function func is executed in
the driver process running the streaming application, and will usually have RDD actions in it that will
force the computation of the streaming RDDs.
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Checkpointing

= A streaming application must operate 24/7 and hence must be resilient to failures
unrelated to the application logic.

" For this to be possible, Spark Streaming needs to checkpoint enough information to a
fault-tolerant storage system such that it can recover from failures.
" There are two types of data that are checkpointed:

= Metadata checkpointing: Saving of the information defining the streaming computation to fault-
tolerant storage like HDFS. It is primarily needed for recovery from driver failures.

= Data checkpointing: Saving of the generated RDDs to reliable storage. It is necessary for basic
functioning if stateful transformations are used.
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When to Enable Checkpointing

= Checkpointing must be enabled for applications with any of the following requirements:

= Usage of stateful transformations: If either updateStateByKey or reduceByKeyAndWindow is
used in the application, then the checkpoint directory must be provided to allow for periodic RDD

checkpointing.

= Recovering from failures of the driver running the application: Metadata checkpoints are used to
recover with progress information.

= Note that simple streaming applications without the aforementioned stateful
transformations can be run without enabling checkpointing.

= This is often acceptable and many run Spark Streaming applications in this way.

= You can think that stateless transformations are less important to make it fault tolerant.
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How to Configure Checkpointing

" Checkpointing can be enabled by setting a
directory in a fault-tolerant, reliable file
system (e.g., HDFS) to save the checkpoint
information. This is done by

# Function to create and setup a new StreamingContext
def functionToCreateContext():

sc = SparkContext(...) # new context

ssc = StreamingContext(...)

lines = ssc.socketTextStream(...) # create DStreams

= When the program is being started for the first
time, it will create a new StreamingContext,
set up all the streams and then call start ().

= When the program is being restarted after
failure, it will re-create a StreamingContext
from the checkpoint data in the checkpoint
directory.
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=P ssc.checkpoint(checkpointDirectory) # set checkpoint directory
return ssc

# Get StreamingContext from checkpoint data or create a new one
context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext)

# Do additional setup on context that needs to be done,
# irrespective of whether it is being started or restarted
context. ...

# Start the context

context.start()
context.awaitTermination()
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Conclusion

After this lecture, you should know:
= What is a data stream.
= What analytics solution can be made from data stream.
= How does Spark Streaming handle data stream.
= What is DStream.

= What is the difference between stateless and stateful transformations.
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Thank youl!

Reference:

= Spark Streaming Official Guide: http://spark.apache.org/docs/latest/streaming-programming-
guide.html.

Acknowledgement: Thankfully acknowledge slide contents shared by Dr. Ye Luo.
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